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(For the parts on combinatorics, graph, probability and statistics of COMP1215, October semester of the year 2023)

1 Key concepts in combinatorics

1.1 Basic counting techniques from set theory

1. Given a set A, the number of elements of A is denoted as |A|

2. Inclusion-exclusion principle |A ∪B| = |A|+ |B| − |A ∩B|
Its generalisation to 3 sets.

3. Counting by enumeration: list all possible outcome.
Draw tree to visualize.

4. Sum rule as a special case of inclusion-exclusion principle: |A ∪B| = |A|+ |B| if A,B disjoint

5. Product rule as application of Cartesian product |A×B| = |A| · |B|

6. Subtraction rule as application of complement and disjoint set: If A ⊂ S then for Ac = S \A, we have |Ac| = |S| − |A|

7. Floor function ⌊x⌋ := max{m ∈ Z | m ≤ x}, and counting number of divisible integers

1.2 Basic counting techniques from binomial coefficient

1. Factorial k! =

{
1 k = 0

k(k − 1)! k > 0

2. binomial coefficient

(
n

k

)
=

n!

(n− k)!k!

3. trinomial coefficient

(
n

i, j, k

)
=

n!

i!j!k!
and multinomial coefficient

(
n

k1, · · · , kr

)
=

n!

k1! · · · kr!

4. Definition of permutation: an ordered arrangement of a set of distinct objects

5. Definition of combination: an unordered arrangement of a set of distinct objects

6. n! = number of permutation of n-set of distinct object

7.

(
n

k

)
= number of n-choose-k combination of a n-set of distinct objects

8.

(
n

k1, k2, ..., kr

)
= number of permutation of a n-set with (k1, k2, ..., kr) repeated object

9.

(
n+ k − 1

k

)
= number of n-choose-k combination of a n-set with k repeated objects

order important order not important

no repetition permutation n! combination

(
n

k

)
repetition generalized permutation

(
n

n1, n2 . . . , nr

)
generalized combination

(
n+ k − 1

k

)

10. Number of shortest lattice paths from

[
0
0

]
to

[
m
n

]
is

(
m+ n

m

)
11. Binomial expansion (x+ y)n

12. Solving trinomial expansion using binomial expansion

13. Properties of binomial coefficient, Pascal’s triangle and Fibonacci sequence
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1.3 Advanced counting techniques

• Counting by bijection: Iif counting directly on X is difficult

– construct a function x 7→ f(x) that f : X → Y is bijective

– count Y instead

• Generating function technique G(x) in counting and recursion

– Counting by polynomial coefficient [xn] on the outcome of tossing dice

– Geometric series: 1 + x+ x2 + ...+ xn =
1− xn+1

1− x
for x ̸= 1 and 1 + x+ x2 + · · · = 1

1− x
for |x| < 1

–
(
1 + x+ x2 + ...

)n

=

∞∑
r=0

(
n+ r − 1

r

)
xr (this formula will be given in the question if needed)

– Partial fraction decomposition of
f(x)

g(x)

• Pigeonhole principle

2 Key concepts in basic graph theory

1. Representation of a graph: VVEEMAD

• V is the set of nodes

• E is the set of edge (i, j)

• Incidence matrix Mij = 1 if (i, j) ∈ E

• Adjacency matrix Aij = 1 if (i, j) ∈ E or (j, i) ∈ E

• Dii is how many edge touching node i

2. Not in exam

• Directed vs undirected, weighted, simple vs multi-edge

• Handshaking lemma, all graph has even number of odd vertices

• Null graph, complete graph

• Walk, trail, path, cycle, tree, forest, bipartite

• Number of k-walks in a graph

• Graph coloring and chromatic polynomial

3 Key concepts in probability

3.1 Classical probability from set theory

1. Sample space Ω, event E and probability P(E) :=
|E|
|Ω|

2. The probability axioms

• Axiom-0 Ω ̸= ∅
• Axiom-1 P(E) ≥ 0 for any event E ⊂ Ω

• Axiom-2 P(Ω) = 1 for any Ω

• Axiom-3 Sum rule for disjoint event if E ⊂ Ω, F ⊂ Ω and E ∩ F = ∅, then P(E ∪ F ) = P(E) + P(F )

3. Complementary event, mutually exclusive events

4. Using combinatorics in the classical probability of tossing multiple dices
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3.2 Random variable

1. Joint probability P(X = x, Y = y) means the probability of the event {X = x AND Y = y}

2. Marginal probability P(X = x) =
∑
y∈Y

P(X = x, Y = y)

3. Conditional probability P(X = x|Y = y) :=
P(X = x, Y = y)

P(Y = y)
, P(Y = y) ̸= 0

4. Independent random variables P(X = x, Y = y) = P(X = x)P(Y = y)

5. Expected value E[X] :=
∑
x∈X

xp(x) and E[f(X)] :=
∑
x∈X

f(x)p(x), where p(x) := P(X = x)

6. Expectation is linear E
[
aX + bY + c

]
= aE[X] + bE[Y ] + c

7. Variance V[X] := E
[(
X − E[X]

)2]
= E[X2]−

(
E[X]

)2

8. Variance quadratic formula V
[
aX ± bY + c

]
= a2V[X]± 2ab cov(X,Y ) + b2V[Y ]

9. cov(X,Y ) := E
[(
X − E[X]

)(
Y − E[Y ]

)]
how to remember: replace one X in V[X] by Y

10. corr(X,Y ) :=
cov(X,Y )√
V[X]V[Y ]

as normalized covariance

11. Distinguish between E[X + Y ],E[XY ] and E[(X,Y )]

4 Key concepts in statistics

4.1 Probability distribution function (Not in exam 2023)

1. Probability = area under the curve of PDF

2. Crazy things about probability for continuous random variable

(a) P(X ≤ a) = P(X < a) because P(X = a) = 0 this is not true for discrete random variable

(b) Zero probability ̸= impossible to occur

3. Bernoulli distribution

• X = {0, 1}
• X ∼ Ber(θ) then P(X = x|θ) = p(x|θ) = θx(1− θ)1−x

• It is used for modelling binary event

4. Binomial distribution

• X = {0, 1, ..., n}

• X ∼ Bin(n, θ) then P(X = x|n, θ) = p(x|n, θ) =
(
n

x

)
θx(1− θ)n−x

• It is used for modelling number of success in n binary event

5. Poisson distribution

• X = {0, 1, 2, ...}

• X ∼ Poi(λ) then P(X = x|λ) = p(x|λ) = λxe−λ

x!
• It is used for modelling time interval event
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4.2 Normal random variable (important)

1. Normal random variable

• X = R

• X ∼ N (µ, σ2) then P(X = x|µ, σ2) = p(x|µ, σ2) =
1√
2πσ2

e−
(x−µ)2

2σ2 , it means “the probability of X takes the

value x, given that X is a normal random variable with parameter µ, σ2, has the expression
1√
2πσ2

e−
(x−µ)2

2σ2 ”

• E[X] = µ, the expected value of X is µ

• V[X] = σ2, the variance of X is σ2

• The curve
1√
2πσ2

e−
(x−µ)2

2σ2 is symmetric (even function)

2. Standard Normal random variable Z ∼ N (0, 1) and P(Z = z|0, 1) = p(z|0, 1) = 1√
2π

e−
z2

2

3. If Z ∼ N (0, 1) then P(a ≤ Z ≤ b) =

∫ b

a

1√
2π

e−
z2

2 dz =
erf(b)− erf(a)

2

4. The error function erf(x) =
2√
π

∫ x

0

e−t2dt can only be calculated by computer

5. Standardization: if X ∼ N (µ, σ2) then Z =
X − µ

σ
∼ N (0, 1)

4.3 Point estimation

• Sample mean / average x =
1

n

n∑
i=1

xi, the symbol x is pronounced as “x-bar”

• Theorem If X1, ..., Xn ∼ N (µ, σ2) then sample mean x =
1

n

n∑
i=1

xi ∼ N (µ,
σ2

n
)

• Unbiased estimator of variance s2 =
1

n− 1

n∑
i=1

(xi − x)2

– Sample variance
1

n

n∑
i=1

(xi − x)2 is a biased estimator

4.4 Confidence interval

1. The 100(1− α)% confidence interval of population mean, with known variance is

Tα =
[
x− zα/2

σ√
n
, x+ zα/2

σ√
n

]
where Z ∼ N (0, 1). For 95% confidence interval, α = 0.05 and zα/2 = 1.96 (computed by solving error function).

2. (Not in exam) The 100(1− α)% confidence interval of population mean, with unknown variance is

Tα =
[
x− tα/2,n−1

s√
n
, x+ tα/2,n−1

s√
n

]
where T ∼ T (n− 1) is the T distribution with n− 1 degree of freedom. The value tα/2,n−1 is computed by computer.

3. (Not in exam) The 100(1− α)% confidence interval of difference of two population mean, with known variance is

Tα =

[
xA − xB − zα/2

√
σ2
A

nA
+

σ2
B

nB
, xA − xB + zα/2

√
σ2
A

nA
+

σ2
B

nB

]

we use the same formula for the case of unknown variance, by replacing σ2 with s2
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4.5 Hypothesis testing

1. We take the null hypothesis (innocent) as the default position, and we use data to get evidence against the null

2. p-value is the probability P(data|H0)

• P(data|H0) means “the conditional probability of seeing the data given that the null hypothesis H0 is true”

• small p-value means we have lots of evidence against the null, so null is probably false

• large p-value means we do not have enough evidence against the null, no conclusion
Note that a large p-value does not mean H0 is true

3. For
H0 : µ = µ0

vs
HA : µ ̸= µ0

, the p-value is

p = 2P
(
Z < −|z∗|

)
= 2

∫ z∗

−∞
p(z)dz where z∗ =

x− µ0

σ/
√
n

x is the sample mean / data average, µ0 is the guess value in the null hypothesis (you make the hypothesis that the
unknown µ is µ0), σ is the standard deviation and n is the number of data point

If σ is unknown we estimate it using the unbiased estimator of variance s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2

5 So, you want a reading list?

• Discrete Mathematics and Its Applications, 7th Edition Author: Kenneth Rosen
QA39 ROS in Hartley Library

– Chapter 6 Counting page 385-444

– Chapter 7 Discrete Probability page 445-494
Skip Section 7.3

– Chapter 8 Advanced Counting Techniques
Section 8.4 Generating Functions page 537-552
Section 8.5 Inclusion-Exclusion page 552-558

– Chapter 10 Graphs page 641-678

Older or newer version are also ok

• Introductory Statistics, 3rd edition Author: Sheldon Ross
The library has the ebook (click “view ebook” on the right)
Basically just read the first 500 pages

– Chapter 1-3 are “high school level” you can skip or read

– Chapter 4 Probability you can skip or read

– Chapter 5 Discrete Random Variables page 209-page 260
Focus on 5.1-5.5

– Chapter 7 Distributions of Sampling Statistics you can skip or read
You can read the whole chapter, skip the whole chapter, or just focus on 7.3 and 7.4

– Chapter 6 Normal Random Variables page 261-296

– Chapter 8.5-8.7 page 347-386

– Chapter 9 Testing Statistical Hypotheses page 387-442
Focus on 9.1-9.4

– Chapter 10 Hypothesis Tests Concerning Two Populations page 443-502
Focus on 10.1-10.3

• Foundations of Computer Science, 2nd Revised Edition Compilded by Powel Sobocinski
QA39 SOB in Hartley library, 36 copies

– Chapter 6.1-6.3 page 505-539

– Chapter 6.5-6.8 page 545-569

– Chapter 8.1-8.2 page 617-640
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– Chapter 8.5-8.6 page 653-665

– Chapter 9.1-9.2 page 681-694

• Schaum’s outlines Discrete Mathematics, 3rd edition Author: Seymour Lipschutz
QA43 LIP in Hartley library, have ebook

– Chapter 5 to Chapter 9 page 88-204

6 Advanced / challenging books

• Concrete Mathematics A foundation for Computer Science, 2nd edition author: Graham, Knuth, Patashnik
QA39 GRA in Hartley library

– Chapter 2 Sums page 21-25, page 30-41

– Chapter 3.1 Floors and Ceilings page 67-78

– Chapter 5 Binomial Coefficients

∗ Ch5.1 page 153-172

∗ Ch5.4 page 196-204

– Chapter 7 Generating Functions page 320-380

– Chapter 8 Discrete Probability page 381-38

• Counting : the art of enumerative combinatorics author: George E Martin
QA164.8 MAR

7 Very challenging books

• 102 Combinatorial Problems: From the Training of the USA IMO Team

• Enumerative combinatorics. Volume 1 Author: Richard P Stanley
ebook avaliable in the library

END OF PDF
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