Key concepts for COMP1215 and reading list

Andersen Ang @ ECS, University of Southampton andersen.ang@soton.ac.uk version: December 9, 2023

(For the parts on combinatorics, graph, probability and statistics of COMP1215, October semester of the year 2023)

1 Key concepts in combinatorics

1.1 Basic counting techniques from set theory

- 1. Given a set A, the number of elements of A is denoted as |A|
- 2. Inclusion-exclusion principle $|A \cup B| = |A| + |B| |A \cap B|$ Its generalisation to 3 sets.
- 3. Counting by enumeration: list all possible outcome. Draw tree to visualize.
- 4. Sum rule as a special case of inclusion-exclusion principle: $|A \cup B| = |A| + |B|$ if A, B disjoint
- 5. Product rule as application of Cartesian product $|A \times B| = |A| \cdot |B|$
- 6. Subtraction rule as application of complement and disjoint set: If $A \subset S$ then for $A^c = S \setminus A$, we have $|A^c| = |S| |A|$
- 7. Floor function $\lfloor x \rfloor := \max\{m \in \mathbb{Z} \mid m \leq x\}$, and counting number of divisible integers

1.2 Basic counting techniques from binomial coefficient

1. Factorial
$$k! = \begin{cases} 1 & k = 0 \\ k(k-1)! & k > 0 \end{cases}$$

2. binomial coefficient $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

3. trinomial coefficient
$$\binom{n}{i,j,k} = \frac{n!}{i!j!k!}$$
 and multinomial coefficient $\binom{n}{k_1,\cdots,k_r} = \frac{n!}{k_1!\cdots k_r!}$

4. Definition of permutation: an ordered arrangement of a set of distinct objects

5. Definition of combination: an unordered arrangement of a set of distinct objects

- 6. n! = number of permutation of *n*-set of distinct object
- 7. $\binom{n}{k}$ = number of *n*-choose-*k* combination of a *n*-set of distinct objects

8.
$$\binom{n}{k_1, k_2, ..., k_r}$$
 = number of permutation of a *n*-set with $(k_1, k_2, ..., k_r)$ repeated object

9.
$$\binom{n+k-1}{k}$$
 = number of *n*-choose-*k* combination of a *n*-set with *k* repeated objects

Ň	order important	order not important
no repetition	permutation $n!$	combination $\binom{n}{k}$
repetition	generalized permutation $egin{pmatrix}n\\n_1,n_2\dots,n_r\end{pmatrix}$	generalized combination $\binom{n+k-1}{k}$

- 10. Number of shortest lattice paths from $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} m \\ n \end{bmatrix}$ is $\binom{m+n}{m}$
- 11. Binomial expansion $(x+y)^n$
- 12. Solving trinomial expansion using binomial expansion
- 13. Properties of binomial coefficient, Pascal's triangle and Fibonacci sequence

1.3 Advanced counting techniques

- Counting by bijection: lif counting directly on X is difficult
 - construct a function $x \mapsto f(x)$ that $f: X \to Y$ is bijective
 - count Y instead
- Generating function technique G(x) in counting and recursion
 - Counting by polynomial coefficient $[x^n]$ on the outcome of tossing dice
 - Geometric series: $1 + x + x^2 + \ldots + x^n = \frac{1 x^{n+1}}{1 x}$ for $x \neq 1$ and $1 + x + x^2 + \cdots = \frac{1}{1 x}$ for |x| < 1
 - $-\left(1+x+x^2+...\right)^n = \sum_{n=1}^{\infty} \binom{n+r-1}{r} x^r \quad \text{(this formula will be given in the question if needed)}$ - Partial fraction decomposition of $\frac{f(x)}{q(x)}$
- Pigeonhole principle

2 Key concepts in basic graph theory

- 1. Representation of a graph: VVEEMAD
 - V is the set of nodes
 - E is the set of edge (i, j)
 - Incidence matrix $M_{ij} = 1$ if $(i, j) \in E$
 - Adjacency matrix $A_{ij} = 1$ if $(i, j) \in E$ or $(j, i) \in E$
 - D_{ii} is how many edge touching node i
- 2. Not in exam
 - Directed vs undirected, weighted, simple vs multi-edge
 - · Handshaking lemma, all graph has even number of odd vertices
 - Null graph, complete graph
 - Walk, trail, path, cycle, tree, forest, bipartite
 - Number of k-walks in a graph
 - · Graph coloring and chromatic polynomial

3 Key concepts in probability

3.1 Classical probability from set theory

- 1. Sample space Ω , event E and probability $\mathbb{P}(E) := \frac{|E|}{|\Omega|}$
- 2. The probability axioms
 - Axiom-0 $\Omega \neq \emptyset$
 - Axiom-1 $\mathbb{P}(E) > 0$ for any event $E \subset \Omega$
 - Axiom-2 $\mathbb{P}(\Omega) = 1$ for any Ω
 - Axiom-3 Sum rule for disjoint event if $E \subset \Omega$, $F \subset \Omega$ and $E \cap F = \emptyset$, then $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)$
- 3. Complementary event, mutually exclusive events
- 4. Using combinatorics in the classical probability of tossing multiple dices

3.2 Random variable

1. Joint probability $\mathbb{P}(X = x, Y = y)$ means the probability of the event $\{X = x \text{ AND } Y = y\}$

2. Marginal probability
$$\mathbb{P}(X=x) = \sum_{y \in \mathcal{Y}} \mathbb{P}(X=x,Y=y)$$

3. Conditional probability $\mathbb{P}(X = x | Y = y) \coloneqq \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$, $\mathbb{P}(Y = y) \neq 0$

4. Independent random variables $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\mathbb{P}(Y=y)$

5. Expected value
$$\mathbb{E}[X] \coloneqq \sum_{x \in \mathcal{X}} xp(x)$$
 and $\mathbb{E}[f(X)] \coloneqq \sum_{x \in \mathcal{X}} f(x)p(x)$, where $p(x) \coloneqq \mathbb{P}(X = x)$

6. Expectation is linear
$$\mathbb{E}\left[aX + bY + c\right] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$$

7. Variance
$$\mathbb{V}[X] \coloneqq \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right] = \mathbb{E}[X^2] - \left(\mathbb{E}[X]\right)^2$$

- 8. Variance quadratic formula $\mathbb{V}\Big[aX \pm bY + c\Big] = a^2 \mathbb{V}[X] \pm 2ab \operatorname{cov}(X, Y) + b^2 \mathbb{V}[Y]$
- 9. $\operatorname{cov}(X, Y) := \mathbb{E}\Big[(X \mathbb{E}[X]) (Y \mathbb{E}[Y]) \Big]$ how to remember: replace one X in $\mathbb{V}[X]$ by Y

10.
$$\operatorname{corr}(X,Y) \coloneqq \frac{\operatorname{cov}(X,Y)}{\sqrt{\mathbb{V}[X]\mathbb{V}[Y]}}$$
 as normalized covariance

11. Distinguish between $\mathbb{E}[X + Y], \mathbb{E}[XY]$ and $\mathbb{E}[(X, Y)]$

4 Key concepts in statistics

4.1 Probability distribution function (Not in exam 2023)

- 1. Probability = area under the curve of PDF
- 2. Crazy things about probability for continuous random variable

(a)
$$\mathbb{P}(X \le a) = \mathbb{P}(X < a)$$
 because $\mathbb{P}(X = a) = 0$

- (b) Zero probability \neq impossible to occur
- 3. Bernoulli distribution
 - $\mathcal{X} = \{0, 1\}$

•
$$X \sim \text{Ber}(\theta)$$
 then $\mathbb{P}(X = x|\theta) = p(x|\theta) = \theta^x (1-\theta)^{1-x}$

- It is used for modelling binary event
- 4. Binomial distribution
 - $\mathcal{X} = \{0, 1, ..., n\}$

•
$$X \sim \operatorname{Bin}(n,\theta)$$
 then $\mathbb{P}(X = x|n,\theta) = p(x|n,\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$

- It is used for modelling number of success in \boldsymbol{n} binary event
- 5. Poisson distribution
 - $\mathcal{X} = \{0, 1, 2, ...\}$

•
$$X \sim \operatorname{Poi}(\lambda)$$
 then $\mathbb{P}(X = x|\lambda) = p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$

• It is used for modelling time interval event

this is not true for discrete random variable

**** m

4.2 Normal random variable (important)

- 1. Normal random variable
 - $\mathcal{X} = \mathbb{R}$
 - $X \sim \mathcal{N}(\mu, \sigma^2)$ then $\mathbb{P}(X = x | \mu, \sigma^2) = p(x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, it means "the probability of X takes the value x, given that X is a normal random variable with parameter μ, σ^2 , has the expression $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ "
 - $\mathbb{E}[X] = \mu$, the expected value of X is μ
 - $\mathbb{V}[X] = \sigma^2$, the variance of X is σ^2
 - The curve $\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ is symmetric (even function)
- 2. Standard Normal random variable $Z \sim \mathcal{N}(0,1)$ and $\mathbb{P}(Z=z|0,1) = p(z|0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$
- 3. If $Z \sim \mathcal{N}(0,1)$ then $\mathbb{P}(a \le Z \le b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = \frac{\operatorname{erf}(b) \operatorname{erf}(a)}{2}$
- 4. The error function $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ can only be calculated by computer
- 5. Standardization: if $X \sim \mathcal{N}(\mu, \sigma^2)$ then $Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$

4.3 Point estimation

- Sample mean / average $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, the symbol \overline{x} is pronounced as "x-bar"
- **Theorem** If $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ then sample mean $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$
- Unbiased estimator of variance $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$

– Sample variance
$$rac{1}{n}\sum_{i=1}^n (x_i-\overline{x})^2$$
 is a biased estimator

4.4 Confidence interval

1. The $100(1-\alpha)\%$ confidence interval of population mean, with known variance is

$$T_{\alpha} = \left[\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

where $Z \sim \mathcal{N}(0,1)$. For 95% confidence interval, $\alpha = 0.05$ and $z_{\alpha/2} = 1.96$ (computed by solving error function).

2. (Not in exam) The $100(1-\alpha)\%$ confidence interval of population mean, with unknown variance is

$$T_{\alpha} = \left[\overline{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}, \ \overline{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}\right]$$

where $T \sim T(n-1)$ is the T distribution with n-1 degree of freedom. The value $t_{\alpha/2,n-1}$ is computed by computer.

3. (Not in exam) The $100(1-\alpha)\%$ confidence interval of difference of two population mean, with known variance is

$$T_{\alpha} = \left[\overline{x}_A - \overline{x}_B - z_{\alpha/2}\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}, \ \overline{x}_A - \overline{x}_B + z_{\alpha/2}\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}\right]$$

we use the same formula for the case of unknown variance, by replacing σ^2 with s^2

4.5 Hypothesis testing

- 1. We take the null hypothesis (innocent) as the default position, and we use data to get evidence against the null
- 2. *p*-value is the probability $\mathbb{P}(\mathsf{data}|H_0)$
 - $\mathbb{P}(\text{data}|H_0)$ means "the conditional probability of seeing the data given that the null hypothesis H_0 is true"
 - small *p*-value means we have lots of evidence against the null, so null is probably false
 - large $p\mbox{-value}$ means we do not have enough evidence against the null, no conclusion Note that a large $p\mbox{-value}$ does not mean H_0 is true

3. For $\begin{array}{ccc} H_0 & : & \mu=\mu_0 \\ \text{vs} & & \text{, the p-value is} \\ H_A & : & \mu\neq\mu_0 \end{array}$

$$p = 2\mathbb{P}\Big(Z < -|z^*|\Big) = 2\int_{-\infty}^{z^*} p(z)dz \quad \text{where} \quad z^* = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}}$$

 \overline{x} is the sample mean / data average, μ_0 is the guess value in the null hypothesis (you make the hypothesis that the unknown μ is μ_0), σ is the standard deviation and n is the number of data point

If σ is unknown we estimate it using the unbiased estimator of variance $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \overline{x})^2}$

5 So, you want a reading list?

• Discrete Mathematics and Its Applications, 7th Edition QA39 ROS in Hartley Library	Author: Kenneth Rosen
– Chapter 6 Counting	page 385-444
 Chapter 7 Discrete Probability Skip Section 7.3 	page 445-494
 Chapter 8 Advanced Counting Techniques Section 8.4 Generating Functions Section 8.5 Inclusion-Exclusion 	page 537-552 page 552-558
– Chapter 10 Graphs	page 641-678
Older or newer version are also ok	
• Introductory Statistics, 3rd edition The library has the ebook (click "view ebook" on the right) Basically just read the first 500 pages	Author: Sheldon Ross
 Chapter 1-3 are "high school level" 	you can skip or read
– Chapter 4 Probability	you can skip or read
 Chapter 5 Discrete Random Variables Focus on 5.1-5.5 	page 209-page 260
 Chapter 7 Distributions of Sampling Statistics You can read the whole chapter, skip the whole chapter, or just focus on 7.3 and 	you can skip or read I 7.4
– Chapter 6 Normal Random Variables	page 261-296
- Chapter 8.5-8.7	page 347-386
 Chapter 9 Testing Statistical Hypotheses Focus on 9.1-9.4 	page 387-442
 Chapter 10 Hypothesis Tests Concerning Two Populations Focus on 10.1-10.3 	page 443-502
• Foundations of Computer Science, 2nd Revised Edition QA39 SOB in Hartley library, 36 copies	Compilded by Powel Sobocinski
- Chapter 6.1-6.3	page 505-539
- Chapter 6.5-6.8	page 545-569
- Chapter 8.1-8.2	page 617-640

	pu60 000 000
– Chapter 9.1-9.2	page 681-694
 Schaum's outlines Discrete Mathematics, 3rd edition QA43 LIP in Hartley library, have ebook 	Author: Seymour Lipschutz
- Chapter 5 to Chapter 9	page 88-204
Advanced / challenging books	
• Concrete Mathematics A foundation for Computer Science, 2nd edition QA39 GRA in Hartley library	author: Graham, Knuth, Patashnik
– Chapter 2 Sums	page 21-25, page 30-41
 Chapter 3.1 Floors and Ceilings 	page 67-78
– Chapter 5 Binomial Coefficients	
* Ch5.1	page 153-172
* Ch5.4	page 196-204
 Chapter 7 Generating Functions 	page 320-380
 Chapter 8 Discrete Probability 	page 381-38
• Counting : the art of enumerative combinatorics QA164.8 MAR	author: George E Martin

7 Very challenging books

- Chapter 8.5-8.6

6

- 102 Combinatorial Problems: From the Training of the USA IMO Team
- Enumerative combinatorics. Volume 1 ebook available in the library

Author: Richard P Stanley

page 653-665

END OF PDF