Key concepts for COMP1215 and reading list

Andersen Ang @ ECS, University of Southampton

andersen.ang@soton.ac.uk

version: December 9, 2023
(For the parts on combinatorics, graph, probability and statistics of COMP1215, October semester of the year 2023)

1 Key concepts in combinatorics

1.1 Basic counting techniques from set theory

1. Given a set A, the number of elements of A is denoted as $|A|$
2. Inclusion-exclusion principle $|A \cup B|=|A|+|B|-|A \cap B|$ Its generalisation to 3 sets.
3. Counting by enumeration: list all possible outcome. Draw tree to visualize.
4. Sum rule as a special case of inclusion-exclusion principle: $|A \cup B|=|A|+|B|$ if A, B disjoint
5. Product rule as application of Cartesian product $|A \times B|=|A| \cdot|B|$
6. Subtraction rule as application of complement and disjoint set: If $A \subset S$ then for $A^{c}=S \backslash A$, we have $\left|A^{c}\right|=|S|-|A|$
7. Floor function $\lfloor x\rfloor:=\max \{m \in \mathbb{Z} \mid m \leq x\}$, and counting number of divisible integers

1.2 Basic counting techniques from binomial coefficient

1. Factorial $k!= \begin{cases}1 & k=0 \\ k(k-1)! & k>0\end{cases}$
2. binomial coefficient $\binom{n}{k}=\frac{n!}{(n-k)!k!}$
3. trinomial coefficient $\binom{n}{i, j, k}=\frac{n!}{i!j!k!}$ and multinomial coefficient $\binom{n}{k_{1}, \cdots, k_{r}}=\frac{n!}{k_{1}!\cdots k_{r}!}$
4. Definition of permutation: an ordered arrangement of a set of distinct objects
5. Definition of combination: an unordered arrangement of a set of distinct objects
6. $n!=$ number of permutation of n-set of distinct object
7. $\binom{n}{k}=$ number of n-choose- k combination of a n-set of distinct objects
8. $\binom{n}{k_{1}, k_{2}, \ldots, k_{r}}=$ number of permutation of a n-set with $\left(k_{1}, k_{2}, \ldots, k_{r}\right)$ repeated object
9. $\binom{n+k-1}{k}=$ number of n-choose- k combination of a n-set with k repeated objects

	order important	order not important
no repetition	permutation $n!$	combination $\binom{n}{k}$
repetition	generalized permutation $\binom{n}{n_{1}, n_{2} \ldots, n_{r}}$	generalized combination $\binom{n+k-1}{k}$

10. Number of shortest lattice paths from $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ to $\left[\begin{array}{c}m \\ n\end{array}\right]$ is $\binom{m+n}{m}$
11. Binomial expansion $(x+y)^{n}$
12. Solving trinomial expansion using binomial expansion
13. Properties of binomial coefficient, Pascal's triangle and Fibonacci sequence

1.3 Advanced counting techniques

- Counting by bijection: lif counting directly on X is difficult
- construct a function $x \mapsto f(x)$ that $f: X \rightarrow Y$ is bijective
- count Y instead
- Generating function technique $G(x)$ in counting and recursion
- Counting by polynomial coefficient $\left[x^{n}\right]$ on the outcome of tossing dice
- Geometric series: $1+x+x^{2}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$ for $x \neq 1$ and $1+x+x^{2}+\cdots=\frac{1}{1-x}$ for $|x|<1$
$-\left(1+x+x^{2}+\ldots\right)^{n}=\sum_{r=0}^{\infty}\binom{n+r-1}{r} x^{r} \quad$ (this formula will be given in the question if needed)
- Partial fraction decomposition of $\frac{f(x)}{g(x)}$
- Pigeonhole principle

2 Key concepts in basic graph theory

1. Representation of a graph: VVEEMAD

- V is the set of nodes
- E is the set of edge (i, j)
- Incidence matrix $M_{i j}=1$ if $(i, j) \in E$
- Adjacency matrix $A_{i j}=1$ if $(i, j) \in E$ or $(j, i) \in E$
- $D_{i i}$ is how many edge touching node i

2. Not in exam

- Directed vs undirected, weighted, simple vs multi-edge
- Handshaking lemma, all graph has even number of odd vertices
- Null graph, complete graph
- Walk, trail, path, cycle, tree, forest, bipartite
- Number of k-walks in a graph
- Graph coloring and chromatic polynomial

3 Key concepts in probability

3.1 Classical probability from set theory

1. Sample space Ω, event E and probability $\mathbb{P}(E):=\frac{|E|}{|\Omega|}$
2. The probability axioms

- Axiom-0 $\Omega \neq \varnothing$
- Axiom- $1 \mathbb{P}(E) \geq 0$ for any event $E \subset \Omega$
- Axiom- $2 \mathbb{P}(\Omega)=1$ for any Ω
- Axiom-3 Sum rule for disjoint event if $E \subset \Omega, F \subset \Omega$ and $E \cap F=\varnothing$, then $\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)$

3. Complementary event, mutually exclusive events
4. Using combinatorics in the classical probability of tossing multiple dices

3.2 Random variable

1. Joint probability $\mathbb{P}(X=x, Y=y)$ means the probability of the event $\{X=x$ AND $Y=y\}$
2. Marginal probability $\mathbb{P}(X=x)=\sum_{y \in \mathcal{Y}} \mathbb{P}(X=x, Y=y)$
3. Conditional probability $\mathbb{P}(X=x \mid Y=y):=\frac{\mathbb{P}(X=x, Y=y)}{\mathbb{P}(Y=y)}, \mathbb{P}(Y=y) \neq 0$
4. Independent random variables $\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)$
5. Expected value $\mathbb{E}[X]:=\sum_{x \in \mathcal{X}} x p(x)$ and $\mathbb{E}[f(X)]:=\sum_{x \in \mathcal{X}} f(x) p(x)$, where $p(x):=\mathbb{P}(X=x)$
6. Expectation is linear $\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c$
7. Variance $\mathbb{V}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$
8. Variance quadratic formula $\mathbb{V}[a X \pm b Y+c]=a^{2} \mathbb{V}[X] \pm 2 a b \operatorname{cov}(X, Y)+b^{2} \mathbb{V}[Y]$
9. $\operatorname{cov}(X, Y):=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$
how to remember: replace one X in $\mathbb{V}[X]$ by Y
10. $\operatorname{corr}(X, Y):=\frac{\operatorname{cov}(X, Y)}{\sqrt{\mathbb{V}[X] \mathbb{V}[Y]}}$ as normalized covariance
11. Distinguish between $\mathbb{E}[X+Y], \mathbb{E}[X Y]$ and $\mathbb{E}[(X, Y)]$

4 Key concepts in statistics

4.1 Probability distribution function (Not in exam 2023)

1. Probability $=$ area under the curve of PDF
2. Crazy things about probability for continuous random variable
(a) $\mathbb{P}(X \leq a)=\mathbb{P}(X<a)$ because $\mathbb{P}(X=a)=0$ this is not true for discrete random variable
(b) Zero probability \neq impossible to occur
3. Bernoulli distribution

- $\mathcal{X}=\{0,1\}$
- $X \sim \operatorname{Ber}(\theta)$ then $\mathbb{P}(X=x \mid \theta)=p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}$
- It is used for modelling binary event

4. Binomial distribution

- $\mathcal{X}=\{0,1, \ldots, n\}$
- $X \sim \operatorname{Bin}(n, \theta)$ then $\mathbb{P}(X=x \mid n, \theta)=p(x \mid n, \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$
- It is used for modelling number of success in n binary event

5. Poisson distribution

- $\mathcal{X}=\{0,1,2, \ldots\}$
- $X \sim \operatorname{Poi}(\lambda)$ then $\mathbb{P}(X=x \mid \lambda)=p(x \mid \lambda)=\frac{\lambda^{x} e^{-} \lambda}{x!}$
- It is used for modelling time interval event

4.2 Normal random variable (important)

1. Normal random variable

- $\mathcal{X}=\mathbb{R}$
- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then $\mathbb{P}\left(X=x \mid \mu, \sigma^{2}\right)=p\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$, it means "the probability of X takes the value x, given that X is a normal random variable with parameter μ, σ^{2}, has the expression $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$,
- $\mathbb{E}[X]=\mu$, the expected value of X is μ
- $\mathbb{V}[X]=\sigma^{2}$, the variance of X is σ^{2}
- The curve $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$ is symmetric (even function)

2. Standard Normal random variable $Z \sim \mathcal{N}(0,1)$ and $\mathbb{P}(Z=z \mid 0,1)=p(z \mid 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$
3. If $Z \sim \mathcal{N}(0,1)$ then $\mathbb{P}(a \leq Z \leq b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z=\frac{\operatorname{erf}(b)-\operatorname{erf}(a)}{2}$
4. The error function $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$ can only be calculated by computer
5. Standardization: if $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then $Z=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$

4.3 Point estimation

- Sample mean / average $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$, the symbol \bar{x} is pronounced as " x -bar"
- Theorem If $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then sample mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$
- Unbiased estimator of variance $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
- Sample variance $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is a biased estimator

4.4 Confidence interval

1. The $100(1-\alpha) \%$ confidence interval of population mean, with known variance is

$$
T_{\alpha}=\left[\bar{x}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]
$$

where $Z \sim \mathcal{N}(0,1)$. For 95% confidence interval, $\alpha=0.05$ and $z_{\alpha / 2}=1.96$ (computed by solving error function).
2. (Not in exam) The $100(1-\alpha) \%$ confidence interval of population mean, with unknown variance is

$$
T_{\alpha}=\left[\bar{x}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right]
$$

where $T \sim T(n-1)$ is the T distribution with $n-1$ degree of freedom. The value $t_{\alpha / 2, n-1}$ is computed by computer.
3. (Not in exam) The $100(1-\alpha) \%$ confidence interval of difference of two population mean, with known variance is

$$
T_{\alpha}=\left[\bar{x}_{A}-\bar{x}_{B}-z_{\alpha / 2} \sqrt{\frac{\sigma_{A}^{2}}{n_{A}}+\frac{\sigma_{B}^{2}}{n_{B}}}, \bar{x}_{A}-\bar{x}_{B}+z_{\alpha / 2} \sqrt{\frac{\sigma_{A}^{2}}{n_{A}}+\frac{\sigma_{B}^{2}}{n_{B}}}\right]
$$

we use the same formula for the case of unknown variance, by replacing σ^{2} with s^{2}

4.5 Hypothesis testing

1. We take the null hypothesis (innocent) as the default position, and we use data to get evidence against the null
2. p-value is the probability $\mathbb{P}\left(\right.$ data $\left.\mid H_{0}\right)$

- $\mathbb{P}\left(\right.$ data $\left.\mid H_{0}\right)$ means "the conditional probability of seeing the data given that the null hypothesis H_{0} is true"
- small p-value means we have lots of evidence against the null, so null is probably false
- large p-value means we do not have enough evidence against the null, no conclusion Note that a large p-value does not mean H_{0} is true

3. For $\begin{array}{ccc}H_{0} & : & \mu=\mu_{0} \\ & \text { vs } & \\ H_{A} & : & \mu \neq \mu_{0}\end{array}$, the p-value is

$$
p=2 \mathbb{P}\left(Z<-\left|z^{*}\right|\right)=2 \int_{-\infty}^{z^{*}} p(z) d z \text { where } \quad z^{*}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}
$$

\bar{x} is the sample mean / data average, μ_{0} is the guess value in the null hypothesis (you make the hypothesis that the unknown μ is μ_{0}), σ is the standard deviation and n is the number of data point

If σ is unknown we estimate it using the unbiased estimator of variance $s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$

5 So, you want a reading list?

- Discrete Mathematics and Its Applications, 7th Edition

Author: Kenneth Rosen

QA39 ROS in Hartley Library

- Chapter 6 Counting
page 385-444
- Chapter 7 Discrete Probability page 445-494
Skip Section 7.3
- Chapter 8 Advanced Counting Techniques

Section 8.4 Generating Functions
page 537-552
Section 8.5 Inclusion-Exclusion
page 552-558

- Chapter 10 Graphs
page 641-678
Older or newer version are also ok
- Introductory Statistics, 3rd edition

Author: Sheldon Ross
The library has the ebook (click "view ebook" on the right)
Basically just read the first 500 pages

- Chapter 1-3 are "high school level"
you can skip or read
- Chapter 4 Probability you can skip or read
- Chapter 5 Discrete Random Variables page 209-page 260
Focus on 5.1-5.5
- Chapter 7 Distributions of Sampling Statistics you can skip or read You can read the whole chapter, skip the whole chapter, or just focus on 7.3 and 7.4
- Chapter 6 Normal Random Variables
page 261-296
- Chapter 8.5-8.7
page 347-386
- Chapter 9 Testing Statistical Hypotheses
page 387-442
Focus on 9.1-9.4
- Chapter 10 Hypothesis Tests Concerning Two Populations
page 443-502
Focus on 10.1-10.3
- Foundations of Computer Science, 2nd Revised Edition
- Chapter 6.5-6.8
- Chapter 8.5-8.6
- Chapter 9.1-9.2
- Schaum's outlines Discrete Mathematics, 3rd edition

Author: Seymour Lipschutz QA43 LIP in Hartley library, have ebook

- Chapter 5 to Chapter $9 \quad$ page 88-204

6 Advanced / challenging books

- Concrete Mathematics A foundation for Computer Science, 2nd edition QA39 GRA in Hartley library
- Chapter 2 Sums
- Chapter 3.1 Floors and Ceilings page 67-78
- Chapter 5 Binomial Coefficients
* Ch5. 1
* Ch5.4
page 153-172
page 196-204
- Chapter 7 Generating Functions
page 320-380
- Chapter 8 Discrete Probability
page 381-38
- Counting : the art of enumerative combinatorics
author: Graham, Knuth, Patashnik QA164.8 MAR

7 Very challenging books

- 102 Combinatorial Problems: From the Training of the USA IMO Team
- Enumerative combinatorics. Volume 1

Author: Richard P Stanley
ebook avaliable in the library

