
COMP1311 A short intro to graph theory

Andersen Ang
U.Southampton UK
angms.science

December 16, 2024

1st draft
May 24, 2023

Basic graph concepts: VVEEMAD
Converting multigraph to simple graph
Converting digraph to undigraph
Subgraph
Special subgraphs

Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree
Bipartite
Combinatorics and graph theory
Connectivity
Graph vertex coloring and chromatic polynomial

https://angms.science/

The what-why-how of graph
• What is graph: graph theory is not about plotting y = f(x)

a b

c

d

e

x

y

u

v

z

graphs in graph theory

−3 −2 −1 1 2 3

−10

−5

5

10

not the graph in graph theory

• Why graph: it is a “language” to talk about connectivity

• How to graph: we use set, combinatorics and linear algebra to describe graph

• Theoretical computer science ≈ graph theory on steroid

• No panic: we just touch the basic

2 / 71

Bahmanyar

Omar Khayyam

Saraf al-Dīn Muhammad al-Masʿūdī al-Marwazī

Kamal al-Din Yunus

Nasir al-Din al-Tusi

Shams al‐Din al‐Bukhari

Gregory Chioniadis

Manuel Bryennios

Theodore Metochites

Gregory Palamas

Nilos Kabasilas

Demetrios Kydones

Georgios Plethon Gemistos

Basilios Bessarion

Janus Lascaris

Marco Musuro

Giovanni Battista della Monte

Bassiano Landi

Theodor Zwinger

Petrus Ryff

Emmanuel Stupanus

Nikolaus Eglinger

Johann Bernoulli

Leonhard Euler

Joseph-Louis Lagrange

Siméon Poisson

Joseph Liouville

Eugène Charles Catalan

Charles Hermite

Henri Poincaré

Théophile De Donder

Théophile Lepage

Paul Pierre Gillis

Jacques Teghem

François Glineur

Nicolas Gillis

Andersen Ang

Mrs. Keadle JH Science

2
Glucose Model

Glucose has a chemical formula of: C6H12O6

That means glucose is made of 6 carbon atoms, 12 hydrogen atoms and 6 oxygen atoms.

You will be building one type of sugar called glucose. Glucose is produced during
photosynthesis and acts as the fuel for many organisms.

Materials
 12 white marshmallows
 6 green marshmallows
 6 pink marshmallows

25 toothpicks

Procedure
For the example below, white is oxygen, green is carbon and pink is hydrogen. The brown lines
represent the toothpicks which show chemical bonds. Keep in mind that chemical bonds are
forces and not physical connections.

1. Use the white marshmallows to represent the oxygen (O) atoms and the green
 marshmallows to represent carbon (C) atoms. Build a ring like structure using 6 toothpicks, 5
 carbon marshmallows, and 1 oxygen marshmallows.

2. Add the sixth carbon (green) to the carbon that is next to the oxygen atom.

←my academic tree

• Graph Theory studies
relation

• Everything has a relation

• Graph theory is
everything 3 / 71

Graph isomorphism
G1

1 2 3

4 5 6

G2

a b

c

de

f

G3

x

w

y

u

v
z

• These 3 graphs are the SAME: there is a function F that maps them

mapping between G1 and G2

F (a) = 6
F (b) = 3
F (c) = 5
F (d) = 1
F (e) = 4
F (f) = 2

mapping between G1 and G3

F (u) = 3
F (v) = 1
F (w) = 6
F (x) = 5
F (y) = 4
F (z) = 2

• Checking graph isomorphism is generally hard. We don’t even know how hard it is (open problem)

• The message: in graph theory


we don’t care how we name the vertices

we don’t care how we draw the lines

we care how the vertices connect
4 / 71

Pre-course information

• What is graph: connectivity structure

• Fancy name of graph: 1-dimensional closure-finite weak topology complex

• Warning: graph theory is VERY hard

• one of the most difficult area in mathematics
• it is universal (can be used in everything)

=⇒ important for computer science
• you probably have never experienced graph theory before

• Study material: lecture slides + workbook + reading books + watch online video︸ ︷︷ ︸
self learning

• Book

• Discrete Mathematics and Its Applications by Kenneth Rosen enough for this course
• A First Look at Graph Theory by John Clark and Derek Allan Holton first 41 pages
• Introduction to graph theory by Douglas West
• Graph Theory by Reinhard Diestel free but not for first reading
• Schaum’s Outline of Graph Theory for more practise problems

• Outcome: understand the very basics of graph

Prerequisite

Set

Matrix

Combinatorics

5 / 71

Motivation by application of graph theory

Image segmentation by graph cut
http://cs-www.cs.yale.edu/homes/spielman/sgta/

6 / 71

http://cs-www.cs.yale.edu/homes/spielman/sgta/

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

7 / 71

VVEEMAD
• Definition A graph G(V,E) has a vertex set V and an edge set E.

• V is the set of vertices. Here V =
{
1, 2, 3, 4, 5, 6

}
.

|V | = the number of vertex in V = the cardinality of V . Here |V | = 6.

• E is the set of edge connecting a pair of vertice i, j ∈ V .

• 1 → 1 so we have an edge (1, 1)
• 1 → 2 so we have an edge (1, 2)
• 1 → 3 so we have an edge (1, 3)
• 1 → 5 so we have an edge (1, 5)
• 3 → 4 so we have an edge (3, 4)
• 4 → 1 so we have an edge (4, 1)
• 4 → 3 so we have an edge (4, 3)
• 5 → 3 so we have an edge (5, 3)a
• 5 → 3 so we have an edge (5, 3)b
• 5 → 4 so we have an edge (5, 4)

E =
{
(1, 1), (1, 2), (1, 3), (1, 5), (3, 4), (4, 1), (4, 3), (5, 3)a, (5, 3)b, (5, 4)

}
. |E| = 10.

• Terminology

• Vertex = node = dots = points
• Edge = arc = curve = line
• Two edges sharing the same vertices are parallel, e.g., (5, 3)a and (5, 3)b.
• (1, 1) is a self-loop

1

2

3

4

5

6

8 / 71

M E =
{
(1, 1), (1, 2), (1, 3), (1, 5), (3, 4), (4, 1), (4, 3), (5, 3)a, (5, 3)b, (5, 4)

}

• From E, we get incidence matrix M

M ∈ {0, 1, 2, . . . , |V |}|V |×|V |, where [M]ij =


0 if (i, j) /∈ E

1 if (i, j) ∈ E

2 if two (i, j) ∈ E
...

M =


1 1 1 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0
1 0 1 0 0 0
0 0 2 1 0 0
0 0 0 0 0 0

 incidenList =

1 → 1 2 3 5

2

3 → 4

4 → 1 3

5 → 3 3 4

6

• M expressed as an incidence list (code-friendly)

1

2

3

4

5

6

9 / 71

A E =
{
(1, 1), (1, 2), (1, 3), (1, 5), (3, 4), (4, 1), (4, 3), (5, 3)a, (5, 3)b, (5, 4)

}

• From E we get adjacency matrix A

A ∈ {0, 1, 2, ..., |V |}|V |×|V |, where [A]ij =


0 if (i, j) and (j, i) /∈ E

1 if (i, j) or (j, i) ∈ E

2 if two (i, j) or (j, i) ∈ E

...

A =


1 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 2 0
1 0 1 0 1 0
1 0 2 1 0 0
0 0 0 0 0 0

 , A = A⊤ space (storage) complexity:O(|V |2)
search (time) complexity:O(1)

• A expressed by adjacency list (code-friendly)

adjList =

1 − 1 2 3 4 5

2 − 1

3 − 1 4 4 5 5

4 − 1 3 3 5

5 − 1 3 3 4

6

space (storage) complexity:O(|V |+ |E|)
search (time) complexity:O(log |V |)

1

2

3

4

5

6

10 / 71

D

M =


1 1 1 0 1 0
0 0 0 1 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 A =


1 1 1 1 1 0
1 0 0 0 0 0
1 0 0 1 2 0
1 0 1 0 1 0
1 0 2 1 0 0
0 0 0 0 0 0


• In-degree: number of edges come to the node

• Out-degree: number of edges leave from the node

• Degree: number of edges touching the node

DIn =


2

1
4

2
1

0

 , DOut =


4

0
1

2
3

0



D = DIn +DOut =


6

1
5

4
4

0


• Degree-0 vertex is called isolated. E.g. vertex 6

• Degree-1 vertex is called leaf, very useful in tree. E.g. vertex 2.

1

2

3

4

5

6

11 / 71

First Theorem of Graph theory: Handshaking lemma

• Theorem (Euler 1736) For any graph G with |E| edges and |V | = n vertices

The sum of degree of all vertices =

|V |∑
i=1

degi = 2|E|,

where degi stands for degree of vertex i.

Proof Each edge has two end vertices, thus contributes exactly 2 to the sum of the degrees.

• Handshaking interpretation
In a party of n people, the total number of handshakes equals to 2 times the number of handshaked pairs.

• Pigeonhole principle.

12 / 71

All graph has even number of odd vertices
• Definition An vertex is called odd (even) if its degree is odd (even).

• Corollary In any graph, there is an even number of odd vertices.

Proof |V |∑
i=1

degi = 2|E| Hanshaking lemma

⇐⇒
∑
i∈odd

degi +
∑

i∈even

degi = 2|E| split vertices into odd and even group

⇐⇒
∑
i∈odd

degi = 2|E| −
∑

i∈even

degi

2|E| −
∑

i∈even

degi is an even number

• 2|E| is even
•

∑

i∈even

degi is even because all the vertex i here has even degree

For
∑
i∈odd

degi︸︷︷︸
odd

to be even, there must be even number of odd vertices.

13 / 71

We ignore isolated node(s)

• Vertex 6 is


isolated

has degree 0

no edge connects to it

• Graph theory is about interaction, no edge = no interaction, so we ignore isolated node

1

2

3

4

5

6

remove vertex 6−→

1

2

3

4

5

• Graphs that all vertices are isolated are called null graph, denoted by N

14 / 71

Directed graph (digraph) and undirected graph (undigraph)

• Directed graph: have arrow (1, 2) ̸= (2, 1)

• Undirected graph: no arrow (1, 2) = (2, 1)

• Undirected graph is not the same as bidirected graph (out of scope)

digraph undigraph

1

2

3

4

5

1

2

3

4

5

15 / 71

Simple graph, multigraph and pseudograph
Pseudograph Multigraph Simple graph

have self loop ok no no
have multiedge ok ok no

• multiedge: edge connecting the same pair

• self loop: edge connecting the same node

• Multigraph can be converted to simple graph =⇒ we focus on simple graph

pseudo undigraph multi undigraph simple undigraph

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

16 / 71

Exercise: draw the simple graph

• G(V,E) with V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (2, 4)}

• G(V,E) with V = {1, 2, 3, 4, 5} and E = {(1, 2), (2, 3), (3, 1), (4, 5)}

• G(V,E) with V = {1, 2, 3} and E = {}

17 / 71

Exercise: find the G(V,E) for these unlabeled simple undigraphs

18 / 71

Exercise: find the G(V,E) for these unlabeled simple digraphs

19 / 71

Ok now go turbo on practice:
write down the VVEEMAD

20 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

21 / 71

Converting multigraph to simple graph
E =

{
(3, 5)a, (3, 5)b

}
⇐⇒ E′ =

{
(3a, 5), (3b, 5), (3a, 3b)

}
3

5

3={3a,3b}−→

3a

3b

5

E =
{
(3, 4), (4, 3)

}
equal in undigraph

=
{
(3, 4)a, (3, 4)b

}
⇐⇒ E′ =

{
(3a, 5), (3b, 5), (3a, 3b)

}

3

4 3={3a,3b}−→ 3a

3b

4

Rename 3b as 6

1

2

3

4

5

simplification−→

1

2

3

6

4

5

22 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

23 / 71

Draw a graph from M

• Consider a directed graph G(V,E) with M =

0 1 0
1 0 1
1 0 0

.
• The draw the graph from the given information

• From the number of rows in M , we know that there are 3 vertices, |V | = 3.
Suppose we name the 3 vertices x, y, z.

V =
{
x, y, z

}
, |V | = 3.

• From M we know the arrows

• M1,2 = 1 means x → y

• M2,1 = 1 means y → x

• M2,3 = 1 means y → z

• M3,1 = 1 means z → x

• 4 non-zeros in M means |E| = 4.

E = {(x, y), (y, x), (y, z), (z, x)}
x

y

z

24 / 71

Converting digraph to undigraph
• Consider the edge e(x, y)

• Replace e(x, y) by (x, v1), (v1, v2), (v1, v3), (v3, v4), (v4, v5), (v3, y)

x

y

−→ x v1

v2

v3

v4 v5

y

• To go back from undigraph to digraph
• Identify all leaf (degree-1 vertex) {x, v2, v5, y}
• Find the leaf whose neighbour has degree 2 {v5} because deg(v4) = 2
• The neighbour is v4 and it has neighbour v3
• v3 has a unique neighbour that
• has degree 3, and
• adjacent to a leaf
(this neighbour of v3 is v1 and v1 is adjacent to a leaf v2)

• The other neighbour of v1 is x
• The other neighbour of v3 is y
• Delete v1, v2, ..., v5 and connect arrow from x to y

25 / 71

x

y

z

⇐⇒

x

y

z

26 / 71

Summary

• V, |V |, E, |E|,M,A,D

• Direct, undirect, multiedge, self-loop, simple

• Converting multigraph to simple graph not in exam

• Converting digraph to undigraph not in exam

From now on we focus on simple undigraph.

27 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

28 / 71

Subgraph
• Like subset in set, we can define subgraph of a graph

A subgraph of a graph G(V,E), is a graph S(U,F) that U ⊆ V, F ⊆ E.

S can be obtained from G by deleting edges and/or vertices.

• Trivial fact: every graph is a subgraph of itself.

• Example

1

2

3

4

5

a subgraph−→
1

3

4

• Set operations carry over to graph

• Intersection
• Union
• Complement

29 / 71

Subgraph
• A graph G(V,E) with |V | = 5, |E| = 8

A triangle subgraph T (U,F)

• U ⊂ V

• F ⊂ E

• Subgraph is not unique: there are 6 possible triangles T from G

• This is NOT a triangle because it has four vertices

30 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

31 / 71

Two extreme simple undigraph: null and complete graphs
• V = {1, 2, 3, 4}, |V | = 4

• E = ∅, |E| = 0

• M = A = D = 0

• Null graphs are not interesting

• V = {1, 2, 3, 4}, |V | = 4

• E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

• |E| = 6 =
|V |(|V | − 1)

2
=

(
|V |
2

)

M = A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , D =


3

3
3

3


• Complete graph of n vertices are denoted by Kn

isomorphism⇐⇒

32 / 71

Two extreme simple graphs: null and complete graphs
• Consider simple graph G with |V | = n.

• Null graph Nn is G with the smallest possible |E| |E| = 0

• Complete graph Kn is G with the largest possible |E| |E| = |V |(|V | − 1)

2
=

(
|V |
2

)
• A complete graph is a graph in which all pair of vertices is joined by an edge
• Kn for n = 1 to 8

• All graphs with n vertices are between Nn and Kn, and we can define sparse and dense graph as

• A graph is sparse if |E| ≪ O
(|V |(|V | − 1)

2

)
= O(|V |2)

• A graph is dense if |E| ≊ O(|V |2)
• Recall Big-O notation f(x) = O(g(x)) if f(x) ≤ Mg(x) for sufficiently large x

33 / 71

Walk, trail, path, cycle
• Definition A walk is a sequence v0 → v2 → . . . vm in a graph.
• v0: initial vertex/ source
• vm: final vertex/ sink
• The number of edges in a walk, m+ 1, is called its length

• Example 1 → 2 → 3 → 4 → 5 → 5 → 4 → 2 is a length-7 walk.
Walk can also be expressed using sequence of edge

W =
{
(1, 2), (2, 3), (3, 4), (4, 5), (5, 5), (5, 4), (4, 2)

}
We say this walk traverses the edges in W

• Definition A trail is a walk if distinct edges.

e.g.
{
(1, 2), (2, 3), (3, 4), (4, 5), (5, 5)

}
Another definition of trail: a walk that traverse each edge at most once.

• Definition A path is a trail if distinct vertices except possibly source = sink

e.g.
{
(1, 2), (2, 3), (3, 4), (4, 5)

}
Another definition of path: a trail that traverse each vertex at most once.

• Definition A cycle is a closed path (source = sink)

e.g.
{
(1, 3), (3, 4), (4, 1)

}

1 2

3

4

5

walk trail path
edge repeat ok no no
vertex repeat ok ok no

34 / 71

Example of path graph and cycle graph

• A path graph with length-ℓ is a graph with V = {1, 2, .., ℓ} and E = {(1, 2), (2, 3), ..., (ℓ, ℓ+ 1)}, after
renaming the vertices and edges
Path graphs of length ℓ = 1, 2, 3, 4

• A cycle of length ℓ ≥ 3 is a graph with V = {1, 2, .., ℓ} and E = {(1, 2), (2, 3), ..., (ℓ, 1)}, after renaming the
vertices and edges

Cycle graph of length ℓ = 3, 4, 5, 6

35 / 71

Other structures: circuit (= a closed trail) not in exam
• Circuit vs cycle: disregard starting and ending vertices
• Circuit allows repeated vertices
• Cycle does not allow repeated vertices

• Eulerian: a circuit consists of a closed path that visits every edge of a graph exactly once
“use each road exactly once, possibly visiting same city many times”

• Hamiltonian: a circuit that visits every vertex of a graph exactly once.
“visits each city exactly once, possibly using the same road many times”

A graph
A circuit

It is Eulerian
It is not Hamiltonian

A cycle

• Chinese postman problem (Meigu Guan, 1960): find a shortest circuit that visits every edge at least once

36 / 71

Other structures: clique not in exam

• Clique: a set C of G that all pair of distinct vertices in C are adjacent.

• the subgraph induced by a clique is a complete graph
• maximal clique: a clique that cannot be made larger by adding more vertices from the graph

A graph
a clique

maximal

a clique

maximal

a clique

non maximal

not clique

37 / 71

Other terms not in exam

Boundary Surface area Diameter Eccentricity Bandwidth
Block Embedding Star Butterfly Chain
Claw Chord circumference core cut
DAG degeneracy depth diamond dual
expander face forbidden height hole
induced intersection list minor modular
matroid neighbour network order orientation
plannar perfect power proper quasi
Ramanujan reachable rectangle saturated sibling
space spanner split square strong
successor total treewidth utility unweighted
weight wealkly connected wheel

38 / 71

Other structures: Petersen graph not in exam

https://mathworld.wolfram.com/PetersenGraph.html
39 / 71

https://mathworld.wolfram.com/PetersenGraph.html

Other structures: k-regular not in exam

k-regular means degv = k for all v ∈ V

Example of 3-regular

40 / 71

Connectivity, forest, tree and bipartite

not forest not tree
(there is a cycle

4-2-5-3-4)
bipartite

tree
forest (1 tree)

bipartite

not tree
forest

bipartite
complete bipartite K3,3

• A graph is connected if for any i ∈ V, j ∈ V, i ̸= j, there is a path connecting i to j.

• Definition A forest is an acyclic graph. Acyclic = no cycle

• Definition A tree is an acyclic connected graph. Acyclic = no cycle

• Definition A bipartite is graph that vertices can be divided into two parts such that there is no edges within
each part.

41 / 71

How to tell a graph is bipartite

• Theorems

• Every tree is bipartite

• A graph is bipartite if and only if it has no subgraph that has an odd-length cycle.

not bipartite

• Application of bipartite: assignment problem, stable marriage problem (Not in exam)

42 / 71

Summary

repeated vertices repeated edge open/closed

Walk Y Y Both
Trail Y N O
Path N N O
Cycle N N C
Circuit Y N C

Term definition

Connected there is a path for any (i, j)
Forest acyclic graph
Tree acyclic connected graph
Bipartite vertices can be divised into two parts with no edges within each part

43 / 71

Do you remember these terms?

Graph Vertex Edge
Incidence Adjacency Degree Directed Undirected
Simple Multigraph Pseudograph
Null Complete Subgraph
Open/Closed Walk Trail Path Cycle
Circuit Clique
Forest Tree Bipartite
Connected Isolated

gray = ok to ignore

44 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

45 / 71

Tree and Forest
Tree = acyclic connected graph

6 vertices, 5 edges, 1 tree

Forest = acyclic graph

7 vertices, 5 edges, 2 trees
• Null graph Nn is also a forest (the whole forest has no edge)

• Equivalence conditions of tree

G is connected and acyclic

⇐⇒ G is connected, and become disconnected if any single edge is removed from G

⇐⇒ G is acyclic, and become cyclic if any single edge is added to G

⇐⇒ any two vertices in G can be connected by a unique simple path

46 / 71

Tree terminology not in exam
• The top vertex is called root

• A is the parent of A1 and A2

• A1 and A2 is the children of A

• A,B are branch nodes

• A1, A2, B1, C are leaf nodes

• Height := the length from root to the furthest vertex
The height is 3 here

• The depth of A is 1 and the depth of A1 is 2.

• At depth-0, the width is 1.
At depth-1, the width is 3

• A subtree is you chop a branch out of the main tree

Root

A

A1 A2

B

B1

C

47 / 71

Application of Tree not in exam
• Mental picture for combinatorics

• Syntax tree

• BFS

• DFS

• Spanning Tree

• Prim
• Kruskal

• Data structure

• binary tree
• red-black tree
• Adelson-Velsky-Landis

• Stack (Last-in-First-out)

• Queue (First-in-First-out)

Monte Carlo Tree Search (AlphaGo)

Root

A

A1 A2

B

B1 B2

C

C1 C2

48 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

49 / 71

Bipartite
• A graph is bipartite if its vertices can be renamed into two groups {L1, L2, ..., Li, R1, R2, ..., Rj} and each of

its edge joins i ∈ L and j ∈ R.

• L,R stands for left and right
• A bipartite graph is that there is no edge within the L and there is no edge within the R

• E.g. Six bipartite graphs

• A complete bipartite is a bipartite that every vertex in L is joined by an edge to every vertex in R

• In the 6 graphs

not complete not complete not complete not complete not complete complete

The last graph is complete bipartite: all Li is joined to every Rj

50 / 71

It is not trivial to see if a graph is bipartite

• doesn’t look like bipartite

• But actually it is bipartite

• Is this bipartite?
This is not bipartite.
How do you know?

51 / 71

How to decide a graph is not bipartite

• Theorem A graph is bipartite if it contains no odd-cycle.

• Check for Odd-Length Cycles
A graph is bipartite if and only if it does not contain any odd-length cycles in its subgraphs.
If an odd-length cycle is found in the graph, it is not bipartite.

is not bipartite because it has a 3-cycle

• Graph-coloring and Breadth-First Search (BFS)
Perform a BFS starting from any vertex.
Assign the starting vertex one color, alternate colors for each level of the BFS tree.
If two adjacent vertices with the same color is found ing this process, the graph is not bipartite.

52 / 71

Understanding the no odd-cycle theorem of bipartite

• Is this bipartite?

1

2

34

5
0

Method 1: By the “No odd-cycle Theorem” (there is a 5-cycle), this graph is not bipartite

• Method 2: we draw it to see it
1. Write vertex-1 on the right

1

2. Write all vertices adjacent to vertex-1 to the left

1

2

5

0

3. Bipartite means “left-right”, for the remaining ver-
tices, we put them to using a left-right-left-right or-
der.
For vertex-2, its adjacent vertex-3, put to the right

1

23

5

0

4. For vertex-5, its adjacent vertex-4, put to the right

1

23

4 5

0

5. For vertex-4, connect the remaning edge

1

23

4 5

0

The (3,4) is making the graph not bipartite

53 / 71

Algorithm 1: IsGBipartite: a naive Bipartite checking algorithm
Input: A simple undigraph G(V,E)
Output: True if G is bipartite, False otherwise

1 Initialize L = ∅, R = ∅, Q = ∅ // left-set, right-set, queue

2 L = {1}, Q = {1} // add node 1 to L and enqueue 1 to Q
3 while Q ̸= ∅ do
4 Take a node i ∈ Q
5 for each neighbor j of i do
6 if j is not visited then
7 if i ∈ L then
8 R = R ∪ {j} // add j to L

9 else
10 L = L ∪ {j} // add j to R

11 Q = Q ∪ {j} // enqueue j to Q

12 for each (i, j) ∈ E do
13 if i ∈ L and j ∈ L or i ∈ R and j ∈ R then
14 return False

15 else
16 return True

How fast is it? Can we make it faster? What is the theoretical fastest way to do this? Is there other way?

54 / 71

Application of bipartite

Application

• Job-assignment problem in resource Allocation
Slide 18 https://angms.science/doc/teaching/

CO327/0Intro_motivation_examples.pdf

• Stable marriage problem

• Recommendation system

• Social Network

• Transportation Networks

Example of real-life bipartite

• Movie-Cast Networks
for telling is a new movie good based on
historical linking data

• Customer-Product Purchases
for advertisement

• Drug-Target Interaction
represent relationships between drugs and
molecular targets in pharmacology

• user-music playlist generation
create personalized music playlists

55 / 71

https://angms.science/doc/teaching/CO327/0Intro_motivation_examples.pdf
https://angms.science/doc/teaching/CO327/0Intro_motivation_examples.pdf

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

56 / 71

How many k-cycles in a simple complete graph Kn?
Question: how many 3-cycle (triangle) in K8?

Theorem There are
1

2k

n!

(n− k)!
k-cycles in Kn.

Proof (
n

k

)
number of ways to choose k vertices among n vertices

(k − 1)! the number of orderings in the selected k-set

2 number of orientation of the cycle (clockwise and anticlockwise)(
n

k

)
(k − 1)!

2
by product rule and division rule(

n

k

)
(k − 1)!

2
=

n!

(n− k)!k!
(k − 1)!

2
=

1

2k

n!

(n− k)!
=

1

2k
nk

There are
1

2 · 3
8!

(8− 3)!
= 56 triangles in K8. Similarly, there are

1

2 · 3
4!

(4− 3)!
= 4 triangles in K4.

57 / 71

Combinatorics of graph can be very difficult not in exam

• Question: What is the maximum number of edges in a triangle-free n-vertex graph?

Answer (Mantel’s Theorem) ⌊n
2

4
⌋

So for 5-vertex graph, it is possible to have a 6-edge, can you draw it?

• Question: What is the minimum number of triangle in a n-vertex m-edge graph?

Answer
4m

3n

(
m− n2

4

)

• (Odd Town Problem) A town with n citizen has m clubs such that

• each club has an odd number of members
• any two different club share an even number of common members

For the conditions to hold, we must have m ≤ n

58 / 71

Combinatorics of bipartite

• E.g. In a (m,n) bipartite graph, what is the smallest possible number of edges and the largest possible
number of edges?

• Smallest possible: null graph, so |E| = 0
• Largest possible: complete bipartite, so |E| = mn

• E.g. In a bipartite graph G(V,E) with n = |V |, what is the largest possible number of edges?

• The maximum number of edges occurs when the vertices are divided as evenly as possible into two sets L,R.

• If n is even, each set will have
n

2
vertices.

• If n is odd, one set will have
⌊n
2

⌋
vertices and the other will have

⌈n
2

⌉
vertices.

• Mximum number of edges is: ⌊n
2

⌋
×
⌈n
2

⌉

59 / 71

Combinatorics of tree
• Theorem A tree T (V,E) with n vertices has n− 1 edges

Proof Mathematical induction with strong induction

• Theorem A tree T (V,E) with n vertices has nn−2 ways to label the vertices.

Root Left Child Right Child Left Grandchild

1 1 2 3 4
2 1 2 4 3
3 1 3 2 4
4 1 3 4 2
5 1 4 2 3
6 1 4 3 2
7 2 1 3 4
8 2 1 4 3
9 2 3 1 4
10 2 3 4 1
11 2 4 1 3
12 2 4 3 1
13 3 1 2 4
14 3 1 4 2
15 3 2 1 4
16 3 2 4 1 60 / 71

Combinatorics of hypercube graph Qn

• Theorem Qn has 2n vertices
• Each vertex in Qn can be represented by an n-bit binary string.
• As each bit can be either 0 or 1, there are 2n possible combinations of these bits

• Theorem Qn has n2n−1 edges
• Each vertex in Qn is connected to n other vertices: flipping any one of the n bits in the binary

representation of a vertex will result in an adjacent vertex.
• As there are 2n vertices and each vertex has n edges, there are n · 2nedges, but this double counted each

edge, half of this gives n2n−1.

• Theorem Qn has 22
n−n−1

n∏
k=2

k(
n
k) spanning trees (WTF?)

You can see this number grows very quickly to a large number, but in fact this is still a “small number”
61 / 71

Combinatorics of graph can go crazily large: Kirby-Paris Hydra
• Start with a tree (hydra)

In each turn n (n is the turn number), the player pick a vertex h
• h means head, it can only be a leaf in the tree
• let p =Parent(h) and g =Parent(p)
• chop head: remove h from the tree
• grows n additional copies of modified p as children on g

• E.g. suppose we are at turn n = 2
The hydra You chop a head p and g Grow n additional copies

• E.g. Hydra(n) = number of steps required to chop a head of depth n with no further right branches

n 1 2 3 4
Hydra(n) 1 3 37 big number ≫ number of atoms in the observable universe 1082

• How do you study big number: ordinal ω, ω + 1, ω2, ωω, log, log log

• Googology Wiki 62 / 71

Combinatorics, graph theory and matrix walk into a bar ...

• First Theorem in Algebraic Graph Theory. Given the adjacent matrix of a graph G(V,E). The number of
length-k walks starting from vertex i to vertex j is (Ak)ij .

• Proof by mathematical induction

• Base case: for k = 1, Ak
ij = Aij is the number of length-1 walk from i to j

• Hypothesis case: assume the statement is true at case k = n.
I.e., the number of length-k walks starting from vertex i to vertex j is (Ak)ij .

• Inductive step: consider the case k = n+ 1.

• Consider An+1 = AnA.
• Now the number of length-(n+ 1) walks between i to j equals the number of length-n walks from i to v

that is adjacent to j, which is the (i, j) entry of AnA = An+1 the non-zero entries of the column of A
corresponding to v are precisely the first neighbours of v.

63 / 71

E.g. How length-3 walks from 5 to 3?
Counting walks in a directed graph

4

5 2

1

3

A =

2
66664

0 2 0 1 1
0 0 3 0 0
0 0 0 0 0
0 0 2 0 0
1 0 0 0 0

3
77775

A2 =

2
66664

1 0 8 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 2 0 1 1

3
77775

A3 =

2
66664

0 2 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 8 0 0

3
77775

Prof. Tesler Ch. 10.3: Counting walks Math 184A / Winter 2017 9 / 20

All the walks from 5 to 3 with length 3

1. 5→ 1→top 2→right 3

2. 5→ 1→top 2→middle 3

3. 5→ 1→top 2→left 3

4. 5→ 1→bottom 2→right 3

5. 5→ 1→bottom 2→middle 3

6. 5→ 1→bottom 2→left 3

7. 5→ 1→ 4→top 3

8. 5→ 1→ 4→bottom 3

M =




0 2 0 1 1
0 0 3 0 0
0 0 0 0 0
0 0 2 0 0
1 0 0 0 0




M2 =




1 0 8 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 2 0 1 1




M3 =




0 2 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 8 0 0




64 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

65 / 71

Connectivity

• A graph is connected if for any i, j ∈ V , the graph G has a subgraph that is a path from i to j

• Theorem All connected graph with no subgraph that is odd-cycle is bipartite
Proof: mathematical induction

• Bridge A bridge in a connected graph G is an edge whose removal disconnects G

• Fact: for a path graph, every edge is a bridge.

• Fact: for any connected graph, it contains a spanning tree

66 / 71

Algebraic connectivity: Laplacian matrix

• Laplacian = Degree - Adjacency
L = D −A

• Theorem G(V,E) is a connected graph ⇐⇒ the second smallest eigenvalue of L(G) is larger than zero

• E.g.

Label
Root: 1
Left Child: 2
Right Child: 3
Left Grandchild: 4

A =


0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

 D =


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 L =


2 −1 −1 0
−1 2 0 −1
−1 0 1 0
0 −1 0 1


Eigenvalues of L : λ1 ≈ 3.41, λ2 = 2.00, λ3 ≈ 0.59, λ4 ≈ 0

• This is similar to you using [xn] of a polynomial to count things in combinatorics.
You previously learned how to count things using polynomial of x, a scalar.
Now in graph theory, we count things using polynomial of matrix

67 / 71

Contents

Basic graph concepts: VVEEMAD

Converting multigraph to simple graph

Converting digraph to undigraph

Subgraph

Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Tree

Bipartite

Combinatorics and graph theory

Connectivity

Graph vertex coloring and chromatic polynomial

68 / 71

Graph vertex coloring and chromatic polynomial
• Proper coloring: two adjacent vertices with different color

• Chromatic polynomial: the number of ways a graph can be properly colored
• Notation: χG(t) is the chromatic polynomial of a graph G, here t is the number of color you can use
• Line L2, χL2(t) = t(t− 1) = t2 − t
• Line L3, χL3(t) = t(t− 1)2 = t3 − 2t2 + t
• Line Ln, χLn(t) = t(t− 1)n−1

• Triangle K3, χK3(t) = t(t− 1)(t− 2) = t3 − 3t2 + 2t
• Square χsquare(t) = t4 − 4t3 + 6t2 − 3t = t(t− 1)2 + t(t− 1)(t− 2)2 WTF??

a b

cd
G

• For vertex a, you have t ways to color

• For vertices b and d, you have t− 1 ways to color
case 1. color of b = color of d
Then for c you have t− 1 ways to color

case 2. color of b ̸= color of d
Then for c you have t− 2 ways to color

χsquare(t) = t︸︷︷︸
a

(t− 1)︸ ︷︷ ︸
b

· 1︸︷︷︸
d

· (t− 1)︸ ︷︷ ︸
c

+ t︸︷︷︸
a

(t− 1)︸ ︷︷ ︸
b

(t− 2)︸ ︷︷ ︸
d

(t− 2)︸ ︷︷ ︸
c

• What’s the big deal: you can use a polynomial to represent a graph !!!!

69 / 71

Other topics
• Graph complement, graph disjoint, graph intersection, graph union

• Weighted graph, Graph cut, graph flow

• Eulerian Graph, Hamiltonian path, Petersen graph, Ramanujan graph

• Graph Laplacian L = D −A

• Graph theory + Linear algebra gives

• Spectral graph theory view graph as matrix, use eigendecomposition to study graph
• Matroid abstraction based on the notion of linear independence

Graph algorithms you will learn next semester / next year

• Dijkstra’s alg. finding shortest path of weighted graph

• Bellman-Ford alg. generalized Dijkstra

• Floyd-Warshall alg. dynamic programming for finding shortest path of weighted graph

• Prim’s alg. node-based, finding min. spanning tree

• Kruskal’s alg. edge-based, finding min. spanning tree

• Ford-Fulkerson alg. max-flow

Hypergraph and topology

70 / 71

Summary

• V, |V |, E, |E|,M,A,D

• Direct, undirect, multiedge, self loop, simple

• Converting multigraph to simple graph

• Walk, trail, path, circuit, cycle, forest, tree, bipartite

• Number of walks

• Connectivity

• Coloring and chromatic polynomial

71 / 71

	Basic graph concepts: VVEEMAD
	Converting multigraph to simple graph
	Converting digraph to undigraph
	Subgraph
	Special subgraphs
	Null & complete graph
	Walk, Trail, Path, Cycle, Circuit
	Connectivity, forest, tree and bipartite

	Tree
	Bipartite
	Combinatorics and graph theory
	Connectivity
	Graph vertex coloring and chromatic polynomial

