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The what-why-how of graph
e What is graph: graph theory is not about plotting y = f(x)

e e '

~10

graphs in graph theory not the graph in graph theory

Why graph: it is a “language”’ to talk about connectivity

® How to graph: we use set, combinatorics and linear algebra to describe graph

Theoretical computer science ~ graph theory on steroid

. : we just touch the basic
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Graph isomorphism

F(a) =6 Fu)=3
Fb)=3 Fv)=1
mapping between G and G» 5((25 :? mapping between G1 and G3 2(53 Z g
F(e)=14 F(y)=4
F(f)=2 F(z) =2

® Checking graph isomorphism is generally hard. We don't even know how hard it is (open problem)

we don't care how we name the vertices
® The message: in graph theory { we don't care how we draw the lines

we care how the vertices connect
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Pre-course information Prerequisite

® What is graph: connectivity structure Set

® Fancy name of graph: I-dimensional closure-finite weak topology complex Matrix

Combinatorics
® Warning: graph theory is VERY hard

® one of the most difficult area in mathematics
® it is universal (can be used in everything)
—> important for computer science
® you probably have never experienced graph theory before

® Study material: lecture slides + workbook + reading books + watch online video

self learning

® Book
® Discrete Mathematics and Its Applications by Kenneth Rosen enough for this course
® A First Look at Graph Theory by John Clark and Derek Allan Holton first 41 pages
® [ntroduction to graph theory by Douglas West
® Graph Theory by Reinhard Diestel free but not for first reading
® Schaum'’s Outline of Graph Theory for more practise problems

® Qutcome: understand the very basics of graph
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Motivation by application of graph theory

Image segmentation by graph cut
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http://cs-www.cs.yale.edu/homes/spielman/sgta/
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Basic graph concepts: VVEEMAD
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VVEEMAD
e Definition A graph G(V, E) has a vertex set V' and an edge set .

® V is the set of vertices. Here V = {1,2,3,4,5,6}.
|V| = the number of vertex in V' = the cardinality of V. Here |V| = 6.

® F is the set of edge connecting a pair of vertice i,j € V.

1 — 1 so we have an edge (1,1)

1 — 2 so we have an edge (1,2) e e

1 — 3 so we have an edge (1, 3)
s”v°

L]
L]
L]
® 1 — 5 so we have an edge (1,5
® 3 — 4 so we have an edge (3,4
® 4 — 1 so we have an edge (4,1
® 4 — 3 so we have an edge (4 e @
® 5 — 3 so we have an edge (5
® 5 — 3 so we have an edge (5,
o 5
1

5 — 4 so we have an edge (5,4

® Terminology

® \ertex = node = dots = points
® Edge = arc = curve = line
® Two edges sharing the same vertices are parallel, e.g., (5,3)q and (5, 3).
® (1,1) is a self-loop
8/71



Mo E={(11).(1,2),(1,3),(1,5), (3,4), (4,1),(4,3), (5,3)a, (5,3), (5, 4) }

® From E, we get incidence matrix M

0 if(ij)¢E
Vx|V 1 if (i,j) € E
M e {0,1,2,...,[V[} where (M) = {5 it o (i.5) B o X
1110 10 (1] [1]2]3]5] "
000000 P . 0
00 0 1 0 O o . 3lo(a
M = 1 01 0 0 O incidenList = nilGEe
O (5] =[3]3]4
000000 -

® M expressed as an incidence list (code-friendly)
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A

B={(1,1),(1,2),(1,3), (1,5), (3.4), (4,1), (4,3), (5.8)u. (5.3)n, (5.4) }

® From E we get adjacency matrix A

0 if(¢,7) and (j,%) ¢ E
1 if (4,5) or (j,i) € E

A € {0,1,2,..., [VHIVIXIVI where [Alij = {2 iftwo (¢,5) or (j,i) € E

OO OO

ON OO

O OO

T space (storage) complexity:O(|V|?)

» A=A search (time) complexity:O(1)

OO R NO -
[eleloBoNel

0,

® A expressed by adjacency list (code-friendly)

adjList

1]2]3]4]5]

1

114]4(5 5‘ space (storage) complexity:O(|V| + |E|)
113135 search (time) complexity:O(log |V])
11313

%
AL
©
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D 1 1. 1 0 1 O 1 1 1 1 1 0
0O 0 0 1 0 O 1 0 0 0 0 O
0O 0 0 1 0 O 1 0 0 1 2 O
M = 1 0 0 0 0 O A= 1 01 0 1 O
0O 0 1 0 0 O 1 0 2 1 0 O
0O 0 0 0 0 O 0O 0 0 0 0 O
® |n-degree: number of edges come to the node
® Qut-degree: number of edges leave from the node
® Degree: number of edges touching the node
2 4
1 0
4 1
Dln— 2 3 DOut— 2
1 3
0 0
6
1
5
D = D + Douw = 4
4

0 11/71



First Theorem of Graph theory: Handshaking lemma

® Theorem (Euler 1736) For any graph G with |E| edges and |V| = n vertices

V]
The sum of degree of all vertices = Zdegi = 2|E|,
i=1

where deg, stands for degree of vertex .

Proof Each edge has two end vertices, thus contributes exactly 2 to the sum of the degrees.

® Handshaking interpretation
In a party of n people, the total number of handshakes equals to 2 times the number of handshaked pairs.

® Pigeonhole principle.
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All graph has even number of odd vertices

e Definition An vertex is called odd (even) if its degree is odd (even).

® Corollary In any graph, there is an even number of odd vertices.

Proof Vi
Zdegi = 2|E| Hanshaking lemma
=1
= Z deg, + Z deg, = 2|E| split vertices into odd and even group
i€odd i€even
i€odd i€even
2|E| — Z deg, is an even number
i€even

® 2|F| is even
J E deg; is even because all the vertex i here has even degree
i€even

For Z deg, to be even, there must be even number of odd vertices. O

i€odd
odd 13/71



We ignore isolated node(s)

isolated
® Vertex 6 is ¢ has degree 0
no edge connects to it

® Graph theory is about interaction, no edge = no interaction, so we ignore isolated node

remove vertex 6
—

® Graphs that all vertices are isolated are called null graph, denoted by N
14/71



Directed graph (digraph) and undirected graph (undigraph)

® Directed graph: have arrow (1,2) # (2,1)
e Undirected graph: no arrow (1,2) = (2,1)
e Undirected graph is not the same as bidirected graph (out of scope)

digraph

OO
Sl
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Simple graph, multigraph and pseudograph
‘ Pseudograph  Multigraph  Simple graph
no

have self loop ok no
have multiedge ok ok no

® multiedge: edge connecting the same pair
® self loop: edge connecting the same node

® Multigraph can be converted to simple graph = we focus on simple graph

pseudo undigraph multi undigraph simple undigraph

Gt g
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Exercise: draw the simple graph

o G(V,E) with V = {1,2,3,4} and E = {(1,2),(2,3), (2,4)}

o G(V,E) with V = {1,2,3,4,5} and E = {(1,2),(2,3), (3,1), (4,5)}

e G(V,E) with V ={1,2,3} and E = {}

17/71



Exercise: find the G(V, E) for these unlabeled simple undigraphs

avd
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Exercise: find the G(V, E) for these unlabeled simple digraphs

ave

19/71



Ok now go turbo on practice:
write down the VVEEMAD

n

T\;-
o

e

RPN
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Converting multigraph to simple graph
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Converting multigraph to simple graph
E ={(3,5)0,(3,5)

/—’H

(34,5), (3s,5), 3a,3b

3= {3a 35}

E:{(3,4),(473)}e‘*“a”"é"d‘g“"“{ b} — FE= {3(“5 (35,5), (3a 3b

e 3={34,3p}
=
S e AT
Rename 3b as 6 e‘ Slmpllignon ‘
©

0.0 S
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Converting digraph to undigraph
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Draw a graph from M

e Consider a directed graph G(V, E) with M =

—— O
o o
o = O

® The draw the graph from the given information

® From the number of rows in M, we know that there are 3 vertices, |V| = 3.
Suppose we name the 3 vertices z,, 2.

V= {m,y,z}, V| =3.

From M we know the arrows

Mis=1meansz —y

M1 =1 meansy = x ’@
()

My 3 =1 means y — z
- E=A{(2,y), (y,2), (y,2), (z,2)}
Mz =1 means z — x e

® 4 non-zeros in M means |E| = 4.

24 /71



Converting digraph to undigraph
e Consider the edge e(z,y)

® Replace 6(1‘, y) by (l‘, 7-)1)7 (vlv 7_)2), (1)1, 1)3), (’Ug, ’U4), (U4v U5)a (U3ay)

= O
® To go back from undigraph to digraph @ @ @

Identify all leaf (degree-1 vertex) {z,v2,v5,y}
Find the leaf whose neighbour has degree 2 {vs} because deg(vs) = 2
The neighbour is v4 and it has neighbour vs

vs has a unique neighbour that

® has degree 3, and

® adjacent to a leaf

(this neighbour of vz is v1 and v is adjacent to a leaf v2)

® The other neighbour of v; is x

® The other neighbour of vs is y

® Delete vy, v2,...,v5 and connect arrow from x to y

25/71
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Summary

V,|VI,E,|E|,M,A,D
Direct, undirect, multiedge, self-loop, simple
Converting multigraph to simple graph

Converting digraph to undigraph

From now on we focus on simple undigraph.

not in exam

not in exam

27/71
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Subgraph
® |ike subset in set, we can define subgraph of a graph
A subgraph of a graph G(V, E), is a graph S(U, F) that U CV,F C E.
S can be obtained from G by deleting edges and/or vertices.
® Trivial fact: every graph is a subgraph of itself.

e Example

a subgraph e e

® Set operations carry over to graph
® [ntersection
® Union
e Complement
29/71



Subgraph

e A graph G(V, E) with |V| =5,|FE| =38
A triangle subgraph T'(U, F)

e UCV
e FCFE

® Subgraph is not unique: there are 6 possible triangles T from G

LLDLD LI LN

® This is NOT a triangle because it has four vertices

30/71
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Special subgraphs
Null & complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite
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Two extreme simple undigraph: null and complete graphs

V={1,2,3,4}, [V]=4
e E=0, |E|=0
e M=A=D=0

® Null graphs are not interesting

o V={1,2,3,4}, |V| =4
e E= {(172)7 (173)7 (174)7 (2,3), (274)7 (3’4)}

. _._Viqvi=1) _ (V]
a2 (1)

D=

=)
—_— O =

1
1
1
0

== O = =

3

® Complete graph of n vertices are denoted by K,

isomorphism
—

32/71



Two extreme simple graphs: null and complete graphs
® Consider simple graph G with |[V| = n.

e Null graph N, is G with the smallest possible |E| |[E|=0

15| = \V|<|v2| -1 _ <V|>

e Complete graph K, is G with the largest possible |E| 5

® A complete graph is a graph in which all pair of vertices is joined by an edge
o K, forn=1to8

_ DB

® All graphs with n vertices are between N,, and K, and we can define sparse and dense graph as

Vi-1
® A graph is sparse if |E| < O(%) =0(|V]})

e A graph is dense if |[E| = O(|V|?)
e Recall Big-O notation f(z) = O(g(x)) if f(z) < Mg(x) for sufficiently large 33,71



Walk, trail, path, cycle

Definition A walk is a sequence vg — v2 — ...V, in a graph.
® vg: initial vertex/ source
® vy, final vertex/ sink
® The number of edges in a walk, m + 1, is called its length

Example 1 -2 -3 —+4—5—5—4— 2is a length-7 walk.
Walk can also be expressed using sequence of edge

W= {(1,2),(2, 3), (3,4), (4,5), (5,5), (5,4), (4, 2)}

We say this walk traverses the edges in W

Definition A trail is a walk if distinct edges.

eg {(1,2),(2,3),(3,4),(4,5), (5,5)}

Another definition of trail: a walk that traverse each edge at most once.

Definition A path is a trail if distinct vertices except possibly source = sink
eg {(1,2),(2:3),(3,4),(4,5)}

Another definition of path: a trail that traverse each vertex at most once.

Definition A cycle is a closed path (source = sink)

eg.{(L3L(&4L(&1)}

©
e{{‘eiet

‘ walk  trail  path
edge repeat ok no no
vertex repeat ok ok no

34/71



Example of path graph and cycle graph

® A path graph with length-£ is a graph with V = {1,2,..,¢} and E = {(1,2),(2,3), ..., ({,£+ 1)}, after
renaming the vertices and edges
Path graphs of length £ =1,2,3,4

— /N W V7

® A cycle of length £ > 3 is a graph with V = {1,2,..,4} and E = {(1,2),(2,3), ..., (¢, 1)}, after renaming the

vertices and edges

Cycle graph of length £ = 3,4,5,6

35/71



Other structures: circuit (= a closed trail) not in exam

e Circuit vs cycle: disregard starting and ending vertices
® Circuit allows repeated vertices
® Cycle does not allow repeated vertices

® FEulerian: a circuit consists of a closed path that visits every edge of a graph exactly once
“use each road exactly once, possibly visiting same city many times”

® Hamiltonian: a circuit that visits every vertex of a graph exactly once.
“visits each city exactly once, possibly using the same road many times”
A circuit
A graph A cycle

It is Eulerian
It is not Hamiltonian

® Chinese postman problem (Meigu Guan, 1960): find a shortest circuit that visits every edge at least once
36/71



Other structures: clique not in exam

® Clique: a set C of (G that all pair of distinct vertices in C' are adjacent.

® the subgraph induced by a clique is a complete graph
® maximal clique: a clique that cannot be made larger by adding more vertices from the graph

a clique a clique a clique

A graph not clique

] L
maximal maximal non maximal

37/71



Other terms

Boundary
Block
Claw
DAG
expander
induced
matroid
plannar
Ramanujan
space
successor
weight

Surface area
Embedding
Chord
degeneracy
face
intersection
neighbour
perfect
reachable
spanner
total
wealkly connected

not in exam

Diameter Eccentricity
Star Butterfly
circumference core
depth diamond
forbidden height
list minor
network order
power proper
rectangle saturated
split square
treewidth utility
wheel

Bandwidth
Chain

cut

dual

hole
modular
orientation
quasi
sibling
strong
unweighted
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Other structures: Petersen graph not in exam

https://mathworld.wolfram.com/PetersenGraph.html
39/71


https://mathworld.wolfram.com/PetersenGraph.html

Other structures: k-regular not in exam

k-regular means deg, = k for all v e V

Example of 3-regular

40/71



Connectivity, forest, tree and bipartite

71 AT

not forest not tree

(there is a cycle tree not tree
4.2.5.3 43/ forest (1 tree) forest complete bipartite K33
bipartite bipartite

bipartite
® A graph is connected if for any i € V,j € Vi # j, there is a path connecting i to j.

e Definition A forest is an acyclic graph. Acyclic = no cycle
e Definition A tree is an acyclic connected graph. Acyclic = no cycle
[ ]

Definition A bipartite is graph that vertices can be divided into two parts such that there is no edges within
each part.

41/71



How to tell a graph is bipartite

® Theorems

® FEvery tree is bipartite

® A graph is bipartite if and only if it has no subgraph that has an odd-length cycle.

not bipartite

® Application of bipartite: assignment problem, stable marriage problem (Not in exam)

42 /71



Summary

\ repeated vertices repeated edge open/closed

Walk Y Y Both
Trail Y N )
Path N N 0]
Cycle N N C
Circuit Y N C
Term | definition
Connected there is a path for any (i, j)
Forest acyclic graph
Tree acyclic connected graph
Bipartite vertices can be divised into two parts with no edges within each part

43 /71



Do you remember these terms?

Graph
Incidence
Simple

Null
Open/Closed
Circuit
Forest
Connected

gray = ok to ignore

Vertex
Adjacency
Multigraph
Complete
Walk
Clique
Tree
Isolated

Edge
Degree
Pseudograph
Subgraph
Trail

Bipartite

Directed Undirected

Path

Cycle

4471
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Tree
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Tree and Forest
Tree = acyclic connected graph Forest = acyclic graph

6 vertices, 5 edges, 1 tree 7 vertices, 5 edges, 2 trees

® Null graph N, is also a forest (the whole forest has no edge)

e Equivalence conditions of tree

11y

G is connected and acyclic
G is connected, and become disconnected if any single edge is removed from GG
G is acyclic, and become cyclic if any single edge is added to G

any two vertices in GG can be connected by a unique simple path

46 /71



Tree terminology not in exam

The top vertex is called root
A is the parent of Al and A2
Al and A2 is the children of A

A, B are branch nodes @
Al, A2, B1,C are leaf nodes

Height := the length from root to the furthest vertex ° e e
The height is 3 here

The depth of A is 1 and the depth of Al is 2. @ @ @

At depth-0, the width is 1.
At depth-1, the width is 3

A subtree is you chop a branch out of the main tree

47/71



Application of Tree not in exam

® Mental picture for combinatorics
® Syntax tree

® BFS Monte Carlo Tree Search (AlphaGo)
® DFS

Spanning Tree
® Prim

® Kruskal

® Data structure

® binary tree
® red-black tree
® Adelson-Velsky-Landis

e Stack (Last-in-First-out)
® Queue (First-in-First-out)

48 /71
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Bipartite

® A graph is bipartite if its vertices can be renamed into two groups {L1, L2, ..., L;, R1, Ra, ..., R; } and each of
its edge joins i € L and j € R.
® | R stands for left and right
® A bipartite graph is that there is no edge within the L and there is no edge within the R

e E.g. Six bipartite graphs

> X SRS <

® A complete bipartite is a bipartite that every vertex in L is joined by an edge to every vertex in R

® |n the 6 graphs
not complete not complete not complete not complete not complete complete

The last graph is complete bipartite: all L; is joined to every R;
50 /71



It is not trivial to see if a graph is bipartite

L doesn't look like bipartite

® But actually it is bipartite

SRR SIS

® |s this bipartite? @
This is not bipartite.
How do you know?

51/71



How to decide a graph is not bipartite

® Theorem A graph is bipartite if it contains no odd-cycle.

® Check for Odd-Length Cycles
A graph is bipartite if and only if it does not contain any odd-length cycles in its subgraphs.

If an odd-length cycle is found in the graph, it is not bipartite.
o

L is not bipartite because it has a 3-cycle

® Graph-coloring and Breadth-First Search (BFS)
Perform a BFS starting from any vertex.
Assign the starting vertex one color, alternate colors for each level of the BFS tree.
If two adjacent vertices with the same color is found ing this process, the graph is not bipartite.

52/71



Understanding the no odd-cycle theorem of bipartite
@

@@)@

® s this bipartite? @®—Q
Method 1: By the “No odd-cycle Theorem” (there is a 5-cycle), this graph is not bipartite

® Method 2: we draw it to see it
1. Write vertex-1 on the right

@
. . . 4. For vertex-5, its adjacent vertex-4, put to the right
2. Write all vertices adjacent to vertex-1 to the left 3 o
o 2
= @ ©
0 @5
®
. . ) o 5. For vertex-4, connect the remaning edge
3. Bipartite means “left-right”, for the remaining ver- 3 o
tices, we put them to using a left-right-left-right or- <
d @ )
er.
For vertex-2, its adjacent vertex-3, put to the right @ ®
©) ) The (3,4) is making the graph not bipartite
@ Q@

® 53/71



o ~N O G RWN =

10

11

12
13
14

15
16

Algorithm 1: IsGBipartite: a naive Bipartite

checking algorithm

Input: A simple undigraph G(V, E)
Output: True if G is bipartite, False otherwise
Initialize L=9, R=0, Q=9
L={1},Q={1}
while Q # @ do
Take a node i € Q
for each neighbor j of i do
if 7 is not visited then
if i € L then
| R=RuU{j}
else
| L=Lu{j}

Q=Qu{j}

for each (i,j) € E do
if icLandj€e Lori€ R andj € R then
L return False

else
L return True

// left-set, right-set, queue
// add node 1 to L and enqueue 1 to @

// add j to L

// add j to R
// enqueue j to Q

How fast is it? Can we make it faster?

What is the theoretical fastest way to do this?

Is there other way?
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Application of bipartite

Example of real-life bipartite

Application ® Movie-Cast Networks

L4 Job-assignment problem in resource Allocation for te|||ng IS a new movie good based on
Slide 18 https://angms.science/doc/teaching/ historical linking data
COSZ?/OIntro_motivation_examples .pdf

® Customer-Product Purchases

® Stable marriage problem for advertisement
® Recommendation system ® Drug-Target Interaction
represent relationships between drugs and
® Social Network molecular targets in pharmacology
® Transportation Networks ® user-music playlist generation

create personalized music playlists

55 /71
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Contents

Combinatorics and graph theory
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How many k-cycles in a simple complete graph K,?

Question:  how many 3-cycle (triangle) in Kg?

!
Theorem There are iﬁ k-cycles in K.
Proof
n . .
(k) number of ways to choose k vertices among n vertices
(k—1)!'" the number of orderings in the selected k-set
2 number of orientation of the cycle (clockwise and anticlockwise)
n
k—1)!
(1)
— by product rule and division rule
n !
k=D (1)
<k> B (n—k)!k!( ) R SR R RS
2 B 2 2k (n—k)! 2k
1 8! . . . 1 4! . .
There are —— ———— = 56 triangles in Kg. Similarly, there are —— ———— = 4 triangles in Kj.

2-3(8—3)! 2-3(4-3)! 57/71



Combinatorics of graph can be very difficult not in exam

® Question: What is the maximum number of edges in a triangle-free n-vertex graph?

2
Answer (Mantel’s Theorem) L%J
So for 5-vertex graph, it is possible to have a 6-edge, can you draw it?

® Question: What is the minimum number of triangle in a n-vertex m-edge graph?
2

Answer 4—m (m — n—)
3n 4

¢ (Odd Town Problem) A town with n citizen has m clubs such that

® cach club has an odd number of members
® any two different club share an even number of common members

For the conditions to hold, we must have m < n

58 /71



Combinatorics of bipartite

e E.g. In a (m,n) bipartite graph, what is the smallest possible number of edges and the largest possible
number of edges?

® Smallest possible: null graph, so |[E| =0
® Largest possible: complete bipartite, so |E| = mn

e E.g. In a bipartite graph G(V, E) with n = |V, what is the largest possible number of edges?
® The maximum number of edges occurs when the vertices are divided as evenly as possible into two sets L, R.

® If n is even, each set will have 3 vertices.

® |f n is odd, one set will have {gJ vertices and the other will have [gw vertices.
® Mximum number of edges is:
n n
>< —
5] 3]
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Combinatorics of tree

® Theorem A tree T'(V, E) with n vertices has n — 1 edges
Proof Mathematical induction with strong induction

® Theorem A tree T(V, E) with n vertices has n" ™2 ways to label the vertices.

# | Root | Left Child | Right Child | Left Grandchild
1 1 2 3 4
2 1 2 4 3
3 1 3 2 4
4 1 3 4 2
5 1 4 2 3
6 1 4 3 2
7 2 1 3 4
8 2 1 4 3
9 2 3 1 4
10 2 3 4 1
11 2 4 1 3
12 2 4 3 1
13 3 1 2 4
14 3 1 4 2
15 3 2 1 4
16 3 2 4 1

60 /71



Combinatorics of hypercube graph @),

® Theorem (Q,, has 2" vertices
® FEach vertex in (), can be represented by an n-bit binary string.
® As each bit can be either 0 or 1, there are 2" possible combinations of these bits

® Theorem (),, has n2n ! edges
® FEach vertex in (), is connected to n other vertices: flipping any one of the n bits in the binary
representation of a vertex will result in an adjacent vertex.
® As there are 2" vertices and each vertex has n edges, there are n - 2"edges, but this double counted each

edge, half of this gives n2" .

e Theorem Q,, has 22" ! H k(%) spanning trees (WTF?)
k=2

You can see this number grows very quickly to a large number, but in fact this is still a “small number”
61,71



Combinatorics of graph can go crazily large: Kirby-Paris Hydra

® Start with a tree (hydra)
In each turn n (n is the turn number), the player pick a vertex h
h means head, it can only be a leaf in the tree
let p =Parent(h) and g =Parent(p)
chop head: remove h from the tree
grows n additional copies of modified p as children on g

® E.g. suppose we are at turn n = 2

The hydra You chop a head p and g Grow n additional copies
e E.g. Hydra(n) = number of steps required to chop a head of depth n with no further right branches
n 1 2 3 4

Hydra(n) 1 3 37 big number > number of atoms in the observable universe 10>

® How do you study big number: ordinal w, w + 1, w?, w*, log,loglog
® Googology Wiki 62/71



Combinatorics, graph theory and matrix walk into a bar ...

® First Theorem in Algebraic Graph Theory. Given the adjacent matrix of a graph G(V, E). The number of
length-k walks starting from vertex i to vertex j is (A*);;.

® Proof by mathematical induction
® Base case: for k =1, Afj = A;j is the number of length-1 walk from i to j
® Hypothesis case: assume the statement is true at case £ = n.
l.e., the number of length-k walks starting from vertex i to vertex j is (A");;.

® |[nductive step: consider the case k =n + 1.

® Consider A"Th = A" A,

® Now the number of length-(n 4 1) walks between i to j equals the number of length-n walks from i to v
that is adjacent to j, which is the (4, j) entry of A" A = A™"! the non-zero entries of the column of A
corresponding to v are precisely the first neighbours of v.
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E.g. How length-3 walks from 5 to 37

M =

M? =

© N o g B~ b=

N OO OO

All the walks from 5 to 3 with length 3
5 =1 —=top 2 =right 3

5—>1 —rtop 2 —middle 3

51 —=iop 2 —ieft 3

5 =1 —bottom 2 —Fright 3

5 = 1 —bottom 2 —middie 3

5 = 1 —bottom 2 —Fleft 3

5—=1—=4—=0p 3

5—=1—4 —bottom 3

8 0 0 02011
000 00000
000 M3=10 00 00
000 00000
01 1 10800
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Connectivity

® A graph is connected if for any ¢,j € V, the graph G has a subgraph that is a path from i to j

® Theorem All connected graph with no subgraph that is odd-cycle is bipartite
Proof: mathematical induction

Bridge A bridge in a connected graph G is an edge whose removal disconnects G

® Fact: for a path graph, every edge is a bridge.

® Fact: for any connected graph, it contains a spanning tree
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Algebraic connectivity: Laplacian matrix

® | aplacian = Degree - Adjacency
L=D-A

® Theorem G(V, E) is a connected graph <= the second smallest eigenvalue of L(G) is larger than zero

e Eg.
Label 01 1 0 2 0 0 O 2 -1 -1 0
Root: 1 1 0 0 1 0 2 0 O -1 2 0 -1
Left Child: 2 A= 1 0 0 O D= 0 0 1 O L= -1 0 1 0
Right Child: 3 0 1 0 O 0 0 0 1 0 -1 0 1

Left Grandchild: 4
Eigenvalues of L : \; &= 3.41, X2 =2.00, A3~0.59, M\ =0

® This is similar to you using [z"] of a polynomial to count things in combinatorics.
You previously learned how to count things using polynomial of x, a scalar.
Now in graph theory, we count things using polynomial of matrix
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Graph vertex coloring and chromatic polynomial

® Proper coloring: two adjacent vertices with different color

e Chromatic polynomial: the number of ways a graph can be properly colored

e Notation: x¢(t) is the chromatic polynomial of a graph G, here t is the number of color you can use

o Line Lo, xr,(t) =t(t—1) =12 —t

® Line L3, xr,(t) =t(t —1)> =t —2t> +¢

® Line Ly, xr,(t) =t(t—1)""

e Triangle K3, Xk, (t ) (t—l)(t—2)—t3—3t + 2t

® Square Xsquare(t) = t* — 41> + 6t — 3t = t(t — 1)? + t(t — 1)(t — 2)? WTF??

® For vertex a, you have t ways to color

® For vertices b and d, you have t — 1 ways to color
e case 1. color of b = color of d
Then for ¢ you have ¢ — 1 ways to color
case 2. color of b # color of d

@ e Then for ¢ you have t — 2 ways to color
G
t)y=_t (t—1)- 1 -(t—1 t t—=—1)(t—-2)({t—-2
quuare() . ( b ) d,( )+‘a,( ; )( ’ )( )
(& c

® What's the big deal: you can use a polynomial to represent a graph !!!!
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Other topics

® Graph complement, graph disjoint, graph intersection, graph union

® \Weighted graph, Graph cut, graph flow

® FEulerian Graph, Hamiltonian path, Petersen graph, Ramanujan graph
® Graph Laplacian L=D — A

® Graph theory + Linear algebra gives

® Spectral graph theory view graph as matrix, use eigendecomposition to study graph
® Matroid abstraction based on the notion of linear independence

Graph algorithms you will learn next semester / next year

® Dijkstra's alg. finding shortest path of weighted graph
® Bellman-Ford alg. generalized Dijkstra
® Floyd-Warshall alg. dynamic programming for finding shortest path of weighted graph
® Prim’s alg. node-based, finding min. spanning tree
® Kruskal's alg. edge-based, finding min. spanning tree
® Ford-Fulkerson alg. max-flow

Hypergraph and topology
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Summary

e V|V|,E,|E|,M,A,D

® Direct, undirect, multiedge, self loop, simple

® Converting multigraph to simple graph

e Walk, trail, path, circuit, cycle, forest, tree, bipartite
® Number of walks

® Connectivity

® Coloring and chromatic polynomial
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