COMP1215 Foundations of Computer Science
 A short introduction to graph theory

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk Homepage angms.science

Version: November 25, 2023
First draft: May 24, 2023

Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
Converting digraph to undigraph
Two extreme simple undigraph: null and complete
Special graphs
Subgraph
Null and complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks Graph vertex coloring and chromatic polynomial

The what-why-how of graph

- What is graph: "graph" in graph theory is not the about plotting $y=f(x)$

graphs in graph theory

not the graph in graph theory
- Why graph: a useful modelling "language" about connectivity
- How to graph: we use set, linear algebra and combinatorics to describe graph
v \# of vertices

$$
\begin{aligned}
& \text { Shams al-Din al-Bukhar } \\
& \text { Gregory Chioniadis }
\end{aligned}
$$

Manuel Bryennios

$$
\begin{aligned}
& \text { I } \\
& \text { Theodore Metochites }
\end{aligned}
$$

Gregory Palamas

Nilos Kabasilas
Demetrios Kydones
Georgios Plethon Gemistos

$$
\begin{aligned}
& \text { Basilios } \frac{1}{1}
\end{aligned}
$$

Janus Lascaris

$$
\begin{aligned}
& \text { Janus Lascanis } \\
& \text { Marco Musuro }
\end{aligned}
$$

Giovanni Battista della Monte

$$
\begin{gathered}
\text { Bassianno Landi } \\
\text { Theodor Zwinger } \\
\text { I } \\
\text { Petrus Ryyff }
\end{gathered}
$$

$$
\begin{gathered}
\text { Petrus Ryff } \\
\text { Emmanuel Stupanus }
\end{gathered}
$$

Nikolaus Eglinger

$$
\begin{gathered}
\text { Johann Bermoulli }
\end{gathered}
$$

$$
\begin{gathered}
\text { Leonhard Euler } \\
\text { I }
\end{gathered}
$$

Joseph-Louis Lagrange
siméon Poisson
Joseph Liouville
Eugène Charles Catalan

$$
\begin{gathered}
\text { I } \\
\text { Charles Hermite }
\end{gathered}
$$

Henri Poincaré
Théophile De Donder
Théophile Lepage
Paul Pierre Gillis
Jacques Teghem
François Glineur

Nicolas Gillis Andersen Ang

$$
v=1
$$

N

$$
v=2 \Longleftrightarrow \underbrace{}_{z^{0}}
$$

$$
8
$$

$$
\infty_{x^{0}|a| l}^{\infty}
$$

Gene regulatory network

Graph isomorphism

- These 3 graphs are the SAME: there is a function F that maps them

$$
\begin{array}{ll}
F(a)=6 & F(u)=3 \\
F(b)=3 & F(v)=1 \\
F(c)=5 \\
F(d)=1 & \text { mapping between } G_{1} \text { and } G_{3} \\
F(e)=4 & F(w)=6 \\
F(f)=2 & F(x)=5 \\
F(y)=4 \\
& F(z)=2
\end{array}
$$

- Checking graph isomorphism is generally hard

We actually don't even know how hard it is to check graph isomorphism

- The message: in graph theory $\left\{\begin{array}{l}\text { how we name the nodes doesn't matter } \\ \text { how we draw the lines doesn't matter } \\ \text { how the nodes connect matters }\end{array}\right.$

Pre-course information

- What is graph: connectivity structure
- The fancy name of graph is 1-dimensional CW complex in topology

Prerequisite

- Set
- Matrix
- Combinatorics

Warning: graph theory is very hard

- because it is one of the most difficult area in mathematics
- because it is universal (can be used in everything)
\Longrightarrow it is important for computer science
- because you probably have never experienced graph theory it before
- Study material: these lecture slides + workbook + reading books + watch online video yourself self learning
- Book
- Discrete Mathematics and Its Applications by Kenneth Rosen
- A First Look at Graph Theory by John Clark and Derek Allan Holton
enough for this course
- Introduction to graph theory by Douglas West
- Graph Theory by Reinhard Diestel
free but not for first reading
- Schaum's Outline of Graph Theory for more practise problems

Table of Contents

Basic concepts of graph: VVEEMAD (only this part will be examed 2023)

Converting multigraph to simple graph
Converting digraph to undigraph
Two extreme simple undigraph: null and complete
Special graphs
Subgraph
Null and complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks
Graph vertex coloring and chromatic polynomial

VVEEMAD

- Definition We denote a graph as $G(V, E)$, where V is a set of vertices, and E is a set of edges.
- V is the set of nodes. Here $V=\{1,2,3,4,5,6\}$.
$|V|$ is the number of node in V. I.e. the cardinality of V. Here $|V|=6$.
- E is the set of edge connecting a pair of node $i, j \in V$.
- $1 \rightarrow 1$ so we have an edge $(1,1)$
- $1 \rightarrow 2$ so we have an edge $(1,2)$
- $1 \rightarrow 3$ so we have an edge $(1,3)$
- $1 \rightarrow 5$ so we have an edge $(1,5)$
- $3 \rightarrow 4$ so we have an edge $(3,4)$
- $4 \rightarrow 1$ so we have an edge $(4,1)$
- $4 \rightarrow 3$ so we have an edge $(4,3)$
- $5 \rightarrow 3$ so we have an edge $(5,3)_{a}$
- $5 \rightarrow 3$ so we have an edge $(5,3)_{b}$
- $5 \rightarrow 4$ so we have an edge $(5,4)$

$$
E=\left\{(1,1),(1,2),(1,3),(1,5),(3,4),(4,1),(4,3),(5,3)_{a},(5,3)_{b},(5,4)\right\}
$$

$|E|$ is the cardinality of E, here $|E|=10$.

- Terminology
- Vertex is also called node, dots, points
- Edge is also called arc, curve, line
- Two edges sharing the same nodes are called parallel, e.g., $(5,3)_{a}$ and $(5,3)_{b}$.
- $(1,1)$ is a self-loop

VVEEMAD $E=\left\{(1,1),(1,2),(1,3),(1,5),(3,4),(4,1),(4,3),(5,3)_{a},(5,3)_{b},(5,4)\right\}$

- From E, we get incidence information M
- M can be expressed as incidence matrix (preferred by math-people)

$$
\begin{aligned}
& M \in\{0,1,2, \ldots,|V|\}^{|V| \times|V|}, \text { where }[M]_{i j}= \begin{cases}0 & \text { if }(i, j) \notin E \\
1 & \text { if }(i, j) \in E \\
2 & \text { if two }(i, j) \in E \\
\vdots & \end{cases}
\end{aligned}
$$

- M can be expressed as an incidence list (preferred by CS-people)

VVEEMAD $E=\left\{(1,1),(1,2),(1,3),(1,5),(3,4),(4,1),(4,3),(5,3)_{a},(5,3)_{b},(5,4)\right\}$

- From E we can get A, which stands for "adjacency".
- A can be expressed by an adjacency matrix (preferred by math-people)
$A \in\{0,1,2, \ldots,|V|\}^{|V| \times|V|}$, where $[A]_{i j}= \begin{cases}0 & \text { if }(i, j) \text { and }(j, i) \notin E \\ 1 & \text { if }(i, j) \text { or }(j, i) \in E \\ 2 & \text { if two }(i, j) \text { or }(j, i) \in E \\ \vdots & \end{cases}$

$$
A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 2 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], A=A^{\top} \begin{gathered}
\text { space (storage) complexity: } \mathcal{O}\left(|V|^{2}\right) \\
\text { search (time) complexity: } \mathcal{O}(1)
\end{gathered}
$$

- A can be expressed by an adjacency list (preferred by CS-people)

VVEEMAD

$$
M=\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad A=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 2 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Indegree: number of edges come to the node
- Outdegree: number of edges leave from the node
- Degree: number of edges touching the node

$$
\begin{aligned}
& \delta^{-}=D_{\ln }=\left[\begin{array}{cccccc}
2 & & & & & \\
& 1 & & & & \\
& & 4 & & & \\
& & & 2 & & \\
& & & & 1 & \\
& & & & & 0
\end{array}\right], \delta^{+}=D_{\text {Out }}=\left[\begin{array}{lllll}
4 & & & & \\
& 0 & & & \\
& & 1 & & \\
& & & 2 & \\
& & & & 3
\end{array}\right] \\
& D=D_{\text {ln }}+D_{\text {Out }}=\left[\begin{array}{llllll}
6 & & & & & \\
& 1 & & & & \\
& & 5 & & & \\
& & & 4 & & \\
& & & & 4 & \\
& & & & & 0
\end{array}\right]
\end{aligned}
$$

- Degree-0 vertex is called isolated. E.g. vertex 6
- Degree-1 vertex is called leaf, very useful in tree. E.g. vertex 2 .

First Theorem of Graph theory / Handshaking lemma

- Theorem (Leonhard Euler, 1736) For any graph G with $|E|$ edges and $|V|=n$ vertices

$$
\text { The sum of degree of all nodes }=\sum_{i=1}^{|V|} \operatorname{deg}_{i}=2|E| \text {, }
$$

where deg_{i} stands for degree of node i.
Proof Each edge has two end vertices, thus contributes exactly 2 to the sum of the degrees.

- Handshaking interpretation

In a party of n people, the total number of handshakes equals to 2 times the number of handshaked pairs.

- Pigeonhole principle.

All graph has even number of odd vertices

- Definition An vertex is called odd (even) if its degree is odd (even).
- Corollary In any graph, there is an even number of odd vertices.

Proof

$$
\begin{aligned}
\sum_{i=1}^{|V|} \operatorname{deg}_{i} & =2|E| \\
\Longleftrightarrow \quad \sum_{i \in \text { odd }} \operatorname{deg}_{i}+\sum_{i \in \text { even }} \operatorname{deg}_{i} & =2|E| \\
\Longleftrightarrow \sum_{i \in \text { odd }} \operatorname{deg}_{i} & =2|E|-\sum_{i \in \text { even }} \operatorname{deg}_{i}
\end{aligned}
$$

Now $2|E|-\sum_{i \in \text { even }} \operatorname{deg}_{i}$ is an even number

- $2|E|$ is even
- $\sum_{i \in \text { even }} \operatorname{deg}_{i}$ is even because all the node i here has even degree

For $\sum_{i \in \text { odd }} \underbrace{\operatorname{deg}_{i}}_{\text {odd }}$ to be even, there must be even number of odd vertices.

We ignore isolated node(s)

- Vertex 6 is $\left\{\begin{array}{l}\text { isolated } \\ \text { has degree }=\mathbf{0} \\ \text { no edge connects to it }\end{array}\right.$
- Graph theory is about interaction, no edge $=$ no interaction, so we ignore isolated node

- Graphs that all nodes are isolated are null graph, denoted by N

Directed graph (digraph) and undirected graph (undigraph)

- Directed graph: have arrow
- Undirected graph: no arrow
- Undirected graph is not the same as bidirected graph (out of scope)

Simple graph, multigraph and pseudograph

	Pseudograph	Multigraph	Simple graph
have self loop	ok	no	no
have multiedge	ok	ok	no

- multiedge: edge connecting the same pair
- self loop: edge connecting the same node
- Multigraph can be converted to simple graph \Longrightarrow we focus on simple graph
pseudo undigraph

multi undigraph

simple undigraph

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
```

Converting multigraph to simple graph

Converting digraph to undigraph

Two extreme simple undigraph: null and complete
Special graphs
Subgraph
Null and complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite

Combinatorics and graph theory

Combinatorics, graph and linear algebra: number of walks

Graph vertex coloring and chromatic polynomial

Converting multigraph to simple graph

$$
E=\{(3,4),(4,3)\}^{\text {equal in undigraph }}=\left\{(3,4)_{a},(3,4)_{b}\right\} \quad \Longleftrightarrow \quad E^{\prime}=\left\{\left(3_{a}, 5\right),\left(3_{b}, 5\right),\left(3_{a}, 3_{b}\right)\right\}
$$

$$
3=\underline{\left\{_{a}, 3_{b}\right\}}
$$

simplification

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
```


Converting digraph to undigraph

Two extreme simple undigraph: null and complete
Special graphs
Subgraph
Null and complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks
Graph vertex coloring and chromatic polynomial

Draw a graph from M

- Consider a directed graph $G(V, E)$ with $M=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.
- The draw the graph from the given information
- From the number of rows in M, we know that there are 3 vertices, $|V|=3$.

Suppose we name the 3 nodes x, y, z.

$$
V=\{x, y, z\}, \quad|V|=3
$$

- From M we know the arrows
- $M_{1,2}=1$ means $x \rightarrow y$
- $M_{2,1}=1$ means $y \rightarrow x$
- $M_{2,3}=1$ means $y \rightarrow z$

$$
E=\{(x, y),(y, x),(y, z),(z, x)\}
$$

- $M_{3,1}=1$ means $z \rightarrow x$

- 4 non-zeros in M means $|E|=4$.

Converting digraph to undigraph

- Consider the edge $e(x, y)$
- Replace $e(x, y)$ by $\left(x, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right),\left(v_{3}, y\right)$

- To go back from undigraph to digraph
- Identify all leaf (degree-1 vertex)
- Find the leaf whose neighbour has degree 2

$$
\begin{array}{r}
\left\{x, v_{2}, v_{5}, y\right\} \\
\left\{v_{5}\right\} \text { because } \operatorname{deg}\left(v_{4}\right)=2
\end{array}
$$

- The neighbour is v_{4} and it has neighbour v_{3}
- v_{3} has a unique neighbour that
- has degree 3, and
- adjacent to a leaf
(this neighbour of v_{3} is v_{1} and v_{1} is adjacent to a leaf v_{2})
- The other neighbour of v_{1} is x
- The other neighbour of v_{3} is y
- Delete $v_{1}, v_{2}, \ldots, v_{5}$ and connect arrow from x to y

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
Converting digraph to undigraph
```

Two extreme simple undigraph: null and complete

```
Special graphs
    Subgraph
    Null and complete graph
    Walk, Trail, Path, Cycle, Circuit
    Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks
Graph vertex coloring and chromatic polynomial
```

Null graph and complete digraph

- $V=\{1,2,3,4,5,6\},|V|=6$
- $E=\varnothing,|E|=0$
- $M=A=D=0$

(1) (4)
(3)
- Null graphs N_{n} are not interesting
- $V=\{1,2,3,4\},|V|=4$
- $E=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$
- $|E|=6=\frac{|V|(|V|-1)}{2}=\binom{|V|}{2}$
$M=A=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], D=\left[\begin{array}{llll}3 & & & \\ & 3 & & \\ & & 3 & \\ & & & 3\end{array}\right]$

- Complete graph of n vertices are denoted by K_{n}

Practice: write down the VVEEMAD

Summary

- $V,|V|, E,|E|, M, A, D$
- Direct, undirect, multiedge, self loop, simple
- Converting multigraph to simple graph
- Converting digraph to undigraph

From now on we focus mainly on simple undigraph.

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
Converting digraph to undigraph
Two extreme simple undigraph: null and complete
```


Special graphs

```
Subgraph
Null and complete graph
Walk, Trail, Path, Cycle, Circuit
Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks
Graph vertex coloring and chromatic polynomial
```


Subgraph

- Like subset in set, we can define subgraph of a graph

A subgraph of a graph $G(V)$, is a graph $S(U, F)$ that $U \subseteq V, F \subseteq E$.
Basically, S can be obtained from G by deleting edges and/or vertices.

- Trivial fact: every graph is a subgraph of itself.
- Example

- Other set operations also carry over to graph
- Intersection
- Union
- Complement

The two extreme simple graphs: null graph and complete graph

- Consider simple graph G with $|V|=n$.
- Null graph N_{n} is G with the smallest possible $|E|$

$$
|E|=0
$$

- Complete graph K_{n} is G with the largest possible $|E|$

$$
|E|=\frac{|V|(|V|-1)}{2}=\binom{|V|}{2}
$$

- A complete graph is a graph in which all pair of vertices is joined by an edge
- K_{n} for $n=1$ to 8

- All graphs with n nodes are between N_{n} and K_{n}, and we can define sparse and dense graph as
- A graph is sparse if $|E| \ll \mathcal{O}\left(\frac{|V|(|V|-1)}{2}\right)=\mathcal{O}\left(|V|^{2}\right)$
- A graph is dense if $|E| \approx \mathcal{O}\left(|V|^{2}\right)$
- Recall Big-O notation $f(x)=\mathcal{O}(g(x))$ if $f(x) \leq M g(x)$ for sufficiently large x

Walk, trail, path, cycle

- Definition A walk is a sequence $v_{0} \rightarrow v_{2} \rightarrow \ldots v_{m}$ in a graph.
- v_{0} : initial vertex/ source
- v_{m} : final vertex/ sink
- The number of edges in a walk, $m+1$, is called its length
- Example $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 5 \rightarrow 4 \rightarrow 2$ is a length- 7 walk.

Walk can also be expressed using sequence of edge

$$
W=\{(1,2),(2,3),(3,4),(4,5),(5,5),(5,4),(4,2)\}
$$

We say this walk traverses the edges in W

- Definition A trail is a walk if distinct edges.

$$
\text { e.g. }\{(1,2),(2,3),(3,4),(4,5),(5,5)\}
$$

Another definition of trail: a walk that traverse each edge at most once.

- Definition A path is a trail if distinct vertices except possibly source $=$ sink

	walk	trail	path
edge repeat	ok	no	no
vertex repeat	ok	ok	no

$$
\text { e.g. }\{(1,2),(2,3),(3,4),(4,5)\}
$$

Another definition of path: a trail that traverse each vertex at most once.

- Definition A cycle is a closed path (source $=$ sink)

$$
\text { e.g. }\{(1,3),(3,4),(4,1)\}
$$

Other structure: circuit, clique, line, ...

not in exam

- Circuit: a closed trial
- Circuit vs cycle: disregard starting and ending nodes
- Circuit allows repeated nodes
- Cycle does not allow repeated nodes
- Eulerian: a circuit consists of a closed path that visits every edge of a graph exactly once
- Hamiltonian: a circuit that visits every node of a graph exactly once.
- Clique: a set C of G that all pair of distinct nodes in C are adjacent.
- the subgraph induced by a clique is a complete graph
- Line graph

- Petersen graph
- Boundary of graph
- Surface area of graph

Connectivity, forest, tree and bipartite

not forest not tree
(there is a cycle 4-2-5-3-4) bipartite

tree
forest (1 tree)
bipartite

not tree forest bipartite

complete bipartite $K_{3,3}$

- A graph is connected if for any $i \in V, j \in V, i \neq j$, there is a path connecting i to j.
- Definition A forest is an acyclic graph.

$$
\begin{aligned}
& \text { Acyclic }=\text { no cycle } \\
& \text { Acyclic }=\text { no cycle }
\end{aligned}
$$

- Definition A tree is an acyclic connected graph.
- Definition A bipartite is graph that vertices can be divided into two parts such that there is no edges within each part.
- Theorems
- Every tree is bipartite
- A graph is bipartite if and only if it has no subgraph that has an odd-length cycle.

- Application of bipartite: assignment problem, stable marriage problem

Summary

	repeated nodes	repeated edge	open/closed
Walk	Y	Y	Both
Trail	Y	N	O
Path	N	N	O
Cycle	N	N	C
Circuit	Y	N	C

Term	definition
Connected	there is a path for any (i, j)
Forest	acyclic graph
Tree	acyclic connected graph
Bipartite	vertices can be divised into two parts with no edges within each part

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
Converting digraph to undigraph
Two extreme simple undigraph: null and complete
Special graphs
    Subgraph
    Null and complete graph
    Walk, Trail, Path, Cycle, Circuit
    Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks
Graph vertex coloring and chromatic polynomial
```

How many k-cycles are there in a simple complete graph K_{n} ?
Question: how many triangles are there in K_{8} ?
Theorem There are $\frac{1}{2 k} \frac{n!}{(n-k)!}$ length- k cycles in K_{n}.

Proof

$\binom{n}{k} \quad$ number of ways to choose k node among n vertices
$(k-1)$! the number of orderings in the selected k-set
2 number of orientation of the cycle (clockwise and anticlockwise)
$\frac{\binom{n}{k}(k-1)!}{2}$ by product rule and division rule

$$
\frac{\binom{n}{k}(k-1)!}{2}=\frac{\frac{n!}{(n-k)!k!}(k-1)!}{2}=\frac{1}{2 k} \frac{n!}{(n-k)!}
$$

There are $\frac{1}{2 \cdot 3} \frac{8!}{(8-3)!}=56$ triangles in K_{8}. Similarly, there are $\frac{1}{2 \cdot 3} \frac{4!}{(4-3)!}=4$ triangles in K_{4}.

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
Converting digraph to undigraph
Two extreme simple undigraph: null and complete
Special graphs
    Subgraph
    Null and complete graph
    Walk, Trail, Path, Cycle, Circuit
    Connectivity, forest, tree and bipartite
Combinatorics and graph theory
```

Combinatorics, graph and linear algebra: number of walks
Graph vertex coloring and chromatic polynomial

Combinatorics, graph theory and matrix walk into a bar ...

- Theorem Given the adjacent matrix of a graph $G(V, E)$. The number of length- k walks starting from vertex i to vertex j is $\left(A^{k}\right)_{i j}$.

- Proof by mathematical induction

- Base case: for $k=1, A_{i j}^{k}=A_{i j}$ is the number of length- 1 walk from i to j
- Hypothesis case: assume the statement is true at case $k=n$. I.e., the number of length- k walks starting from vertex i to vertex j is $\left(A^{k}\right)_{i j}$.
- Inductive step: consider the case $k=n+1$.
- Consider $A^{n+1}=A^{n} A$.
- Now the number of length- $(n+1)$ walks between i to j equals the number of length- n walks from i to v that is adjacent to j, which is the (i, j) entry of $A^{n} A=A^{n+1}$ the non-zero entries of the column of A corresponding to v are precisely the first neighbours of v.

Example: How walks from 5 to 3 that is length-3?

All the walks from 5 to 3 with length 3

1. $5 \rightarrow 1 \rightarrow_{\text {top }} 2 \rightarrow_{\text {right }} 3$
2. $5 \rightarrow 1 \rightarrow_{\text {top }} 2 \rightarrow_{\text {middle }} 3$
3. $5 \rightarrow 1 \rightarrow_{\text {top }} 2 \rightarrow_{\text {left }} 3$
4. $5 \rightarrow 1 \rightarrow_{\text {bottom }} 2 \rightarrow_{\text {right }} 3$
5. $5 \rightarrow 1 \rightarrow_{\text {bottom }} 2 \rightarrow_{\text {middle }} 3$
6. $5 \rightarrow 1 \rightarrow_{\text {bottom }} 2 \rightarrow_{\text {left }} 3$
7. $5 \rightarrow 1 \rightarrow 4 \rightarrow_{\text {top }} 3$
8. $5 \rightarrow 1 \rightarrow 4 \rightarrow_{\text {bottom }} 3$

$$
M=\left[\begin{array}{lllll}
0 & 2 & 0 & 1 & 1 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad M^{2}=\left[\begin{array}{lllll}
1 & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 & 1
\end{array}\right] \quad M^{3}=\left[\begin{array}{lllll}
0 & 2 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 8 & 0 & 0
\end{array}\right]
$$

Table of Contents

```
Basic concepts of graph: VVEEMAD (only this part will be examed 2023)
Converting multigraph to simple graph
Converting digraph to undigraph
Two extreme simple undigraph: null and complete
Special graphs
    Subgraph
    Null and complete graph
    Walk, Trail, Path, Cycle, Circuit
    Connectivity, forest, tree and bipartite
Combinatorics and graph theory
Combinatorics, graph and linear algebra: number of walks
```

Graph vertex coloring and chromatic polynomial

Graph vertex coloring and chromatic polynomial

- Proper coloring: two adjacent nodes with different color
- Chromatic polynomial: the number of ways a graph can be properly colored
- Notation: $\chi_{G}(t)$ is the chromatic polynomial of a graph G, here t is the number of color you can use
- Line $L_{2}, \chi_{L_{2}}(t)=t(t-1)=t^{2}-t$
- Line $L_{3}, \chi_{L_{3}}(t)=t(t-1)^{2}=t^{3}-2 t^{2}+t$
- Line $L_{n}, \chi_{L_{n}}(t)=t(t-1)^{n-1}$
- Triangle $K_{3}, \chi_{K_{3}}(t)=t(t-1)(t-2)=t^{3}-3 t^{2}+2 t$
- Square $\chi_{\text {square }}(t)=t^{4}-4 t^{3}+6 t^{2}-3 t=t(t-1)^{2}+t(t-1)(t-2)^{2}$
- For node a, you have t ways to color

- For nodes b and d, you have $t-1$ ways to color
case 1 . color of $b=$ color of d
Then for c you have $t-1$ ways to color case 2. color of $b \neq$ color of d
Then for c you have $t-2$ ways to color

$$
\chi_{\text {square }}(t)=\underbrace{t}_{a} \underbrace{(t-1)}_{b} \cdot \underbrace{1}_{d} \cdot \underbrace{(t-1)}_{c}+\underbrace{t}_{a} \underbrace{(t-1)}_{b} \underbrace{(t-2)}_{d} \underbrace{(t-2)}_{c}
$$

- What's the big deal: you can use a polynomial to represent a graph !!!!

Other topics

- Graph complement, graph disjoint, graph intersection, graph union
- Weighted graph, Graph cut, graph flow
- Eulerian Graph, Hamiltonian path, Petersen graph, Ramanujan graph
- Graph Laplacian $L=D-A$
- Graph theory + Linear algebra gives
- Spectral graph theory
- Matroid

Graph algorithms you will learn in the future

- Dijkstra's alg.
- Bellman-Ford alg.
- Floyd-Warshall alg.
- Prim's alg.
- Kruskal's alg.
- Ford-Fulkerson alg.
view graph as matrix, use eigendecomposition to study graph abstraction based on the notion of linear independence
dynamic programming for finding shortest path of weighted graph node-based, finding min. spanning tree edge-based, finding min. spanning tree max-flow

Summary

- $V,|V|, E,|E|, M, A, D$
- Direct, undirect, multiedge, self loop, simple
- Converting multigraph to simple graph
- Walk, trail, path, circuit, cycle, forest, tree, bipartite
- Number of walks
- Coloring and chromatic polynomial

