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• These lecture notes are short summary of key points, not a substitution of a textbook

• These lecture notes focus on mathematical statistics at the level of undergraduate course for engineering/science degree

– The notes are not about manipulation of data at the level of business statistics

– The notes are not at the level of measure-theoretic statistics in pure mathematics

Prerequisite: sufficient knowledge of naive set theory and single variable calculus.

For COMP1215: Ch1 - Ch4, Ch 6.2.1 (only the formula of unbiased estimator of variance), Ch7.1-Ch7.2, Ch 10 and Ch 11.
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1 What is data science

• Data science process

Population Sample Modelsampling / measurement inference / learning

checking / verification

Three elements

– Population: collection of objects

– Sample: subset of population

– Model: a description of the population learned from the sample

Three operations

– sampling: select a subset of (finite) object (at random) from population

– inference: fitting a model to a sample

– checking: examining the goodness-of-fit, compatibility of a model to the sample

• Type of data

– Categorical
e.g., sex, country of birth

– Numeric-discrete: N
e.g., number of phones, number of days (in whole number)

– Numeric-continuous: R
e.g., weight, height

• Example of model

– Statistical distribution: describe observed data {x1, x2, . . . , xn} by p(x | θ).
– Classifier: given {(x1, y1), (x2, y2), . . . , (xn, yn)} where x is data attribute and y is class label, find a classifier that

give a new data x a label y

– Regression

– Clustering: given {x1, x2, . . . , xn}, divid them into subsets

• Random variable
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– we use the language of probability to describe data

– we treat them as realisations of random variables

– why probability / random variable

∗ randomness due to measurement error

∗ randomness due to unmeasured factors

∗ randomness due to sampling

2 Random variable

• Sample space := the set of possible value

• A random variable (RV) is a variable that takes on a value from a sample space with specific probabilities

• Example Let X = {1, 2, 3}, let X be a random variable over X with

(Split-function expression of RV) : X =


1 with probability 1/2

2 with probability 1/4

3 with probability 1/4

(1)

– X = {1, 2, 3} is the sample space: the possible outcome of X is 1, 2, 3

– X is the symbol that denotes the random variable here

– X = x for a particular value x is called a realisation of a random variable

– A sample is a realisation of a random variable

– Realisation = a fancier term for observed value

– Example of a 2-sample realisation: {3, 3}
– Example of a 4-sample realisation: {3, 3, 1, 2}

• Probability distribution P(X = x), x ∈ X is the mathematical notation of random variable, it means

the probability that the RV X takes the value x in X .

Using P(X = x), the split expression (1) can be expressed as a function

(Probability expression of RV) :
P(X = 1) = 1/2
P(X = 2) = 1/4
P(X = 3) = 1/4

• Compact shorthand p(x) := P(X = x), x ∈ X .

(Compact expression of RV) :
p(1) = 1/2
p(2) = 1/4
p(3) = 1/4

• Axiom of probability

1. p(x) ≥ 0, probability cannot be negative

2. p(X ) = 1, the sample space has probability 1

3. The probability of X ∈ A1 or X ∈ A2 with A1, A2 ⊂ X is

P(X ∈ A1 ∪A2) = P(X ∈ A1) + P(X ∈ A2)− P(X ∈ A1 ∩A2) (inclusion-exclusion principle)

and if A1 ∩A2 = ∅, then
P(X ∈ A1 ∪A2) = P(X ∈ A1) + P(X ∈ A2) (σ-additivity)

Note: saying p(x) ≤ 1 is a probability axiom is wrong. It can be derived from the 3 axioms above.

• Example Given P(X = 1) = a,P(X = 2) = b and P(X = 3) = c, find P(X ≥ 2)

P(X ≥ 2) = P(X ∈ {2} ∪ {3})
= P(X ∈ {2}) + P(X ∈ {3})− P(X ∈ {2} ∩ {3})
= b+ c− 0 = b+ c.
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• Product rule P(X ∈ A1 and X ∈ A2) = P(X ∈ A1)P(X ∈ A2)

• Complement rule P(X < x) = 1− P(X ≥ x).

– This is useful for continuous RV.

– Pay attention to the equality sign, it is X < x, not X ≤ x

– Similarly we have P(X > x) = 1− P(X ≤ x).

• Example P(a < X < b) = P(X > a AND X < b) = P(X > a)P(X < b) =
(
1− P(X ≤ a)

)(
1− P(X ≥ b)

)
• Two RVs

– We now consider (X,Y ) for two RVs X ∈ X and Y ∈ Y
∗ We now have two sample spaces: X and Y
∗ We have two RVs: X and Y

– Important: (X,Y ) is not the same as X + Y

∗ (X,Y ) ∈ X × Y
· (X,Y ) is an ordered pair, it has two numbers

· X × Y is the Cartesian product of X and Y
∗ X + Y ∈ X ⊕ Y

· X + Y gives a single number in the end, it is not a pair

· X ⊕ Y is the Minkowski sum of X and Y
– Example Toss a 2-sided dice X and a 4-sided dice Y , we have

X × Y = {1, 2} × {1, 2, 3, 4} = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)} = all possible outcome-pairs

X ⊕ Y = {1, 2} ⊕ {1, 2, 3, 4} = {2, 3, 4, 5, 6} = all possible sum

• The probability distribution of two RVs as a table For example

X = 1 X = 2 X = 3
Y = 1 0.05 0.15 0.1
Y = 2 0.25 0.15 0.3

– Each box represents a particular joint probability of X = x and Y = y, denoted as P(X = x, Y = y), which

means the probability of X = x AND Y = y .

– Example
P(X = 1, Y = 1) = 0.05
P(X = 1, Y = 2) = 0.25
P(X = 2, Y = 1) = 0.15

– Recall axiom of probability: probability of sample space is 1, so the sum of all boxes must be 1. So always
normalize the table such that the sum of all boxes is 1. Mathematically∑

x∈X ,y∈Y
P(X = x, Y = y) = 1.

• Sum rule and marginal probability

P(X = x) =
∑
y∈Y

P(X = x, Y = y). (marginal probability)

It means the probability of X = x ignoring Y .

• We get marginal probability from the table

X = 1 X = 2 X = 3
Y = 1 0.05 0.15 0.1 0.3 = P(Y = 1)
Y = 2 0.25 0.15 0.3 0.7 = P(Y = 2)

0.3 = P(X = 1) 0.3 = P(X = 2) 0.4 = P(X = 3)
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Make sure all probabilities have to follow the 3 axioms.

– The sum of all joint probability must be 1

– The sum of all marginal probability on X must be 1

– The sum of all marginal probability on Y must be 1

– All probabilities ≥ 0

– Inclusion-exclusion principle holds for any combinations

If any thing above is violated, that means you are wrong.

• Conditional probability

P(X = x|Y = y) :=
P(X = x, Y = y)

P(Y = y)
conditional =

joint

marginal
(Conditional probability)

It means the probability of X = x given Y = y

– P(X = x|Y = y) and P(X = x) are two different things

• Example X = {1, 2, 3},Y = {1, 2}

X = 1 X = 2 X = 3
Y = 1 0.05 0.15 0.1 0.3 = P(Y = 1)
Y = 2 0.25 0.15 0.3 0.7 = P(Y = 2)

0.3 = P(X = 1) 0.3 = P(X = 2) 0.4 = P(X = 3)

We have
P(X = 1|Y = 1) = P(X = 1, Y = 1)/P(Y = 1) = 0.05/0.3 = 1/6.

P(X = 1|Y = 2) = P(X = 1, Y = 2)/P(Y = 2) = 0.25/0.7 = 5/14.

• Independent RV If P(X = x, Y = y) = P(X = x)P(Y = y) for all x ∈ X , y ∈ Y then X,Y are independent

– This also implies P(X = x|Y = y) = P(X = x)
X,Y are independent, knowing Y tells nothing about X

• Independent and identically distributed (i.i.d.) X,Y are i.i.d. if

1. independent P(X = x, Y = y) = P(X = x)P(Y = y)

2. identically distributed P(X = x), P(Y = y) follow the same probability distribution function.

• Discrete vs continuous random variable

Discrete RV

– X is a finite set, discrete set

– we call distribution a probability mass function (PMF)

– Axiom of probability on x is nonnegative

p(x) ≥ 0 ∀x ∈ X

– Axiom of probability on sample space

p(X ) :=
∑
x∈X

p(x) = 1

– Axiom of interval

P(a ≤ X ≤ b) =
b∑
a

p(x)

– P(X = x) can be 0 or not 0

∗ P(X ≤ a) = P(X < a) + P(X = a)

Continuous RV

– X is an infinite set, an interval

– we call distribution a probability density function (PDF)

– Axiom of probability on x is nonnegative

p(x) ≥ 0 ∀x ∈ X

– Axiom of probability on sample space

p(X ) :=

∫
X
p(x)dx = 1

– Axiom of interval

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx

– P(X = x) is always 0, this confusing result is from real
analysis (advanced calculus)

∗ P(X ≤ a) = P(X < a)
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• Cumulative distribution function

P(X ≤ x) =


∑
t≤x

p(x) (discrete RV)

∫ x

−∞
p(t)dt (continuous RV)

• Quantile function / inverse CDF

Q(p) =
{
x ∈ X : P(X ≤ x) = p

}
It means the value x such that P(X ≤ x) is p

– Median is defined as p = 1/2, i.e.,

Q(0.5) =
{
x ∈ X : P(X ≤ x) = 0.5

}
3 Expectation and variance

• Notation: we write P(X = x) compactly as p(x)

• Expected value of a RV is E[X]

E[X] :=


∑
x∈X

xp(x) discrete RV∫
X
xp(x)dx continuous RV

For discrete RV in table form: if X is a RV with the distribution

x x1 x2 · · · xn

P(X = x) p1 p2 · · · pt

then E[X] = x1p1 + x2p2 + · · ·+ xnpn

In other words, expectation = weighted sum

– the weights are p(x), interpreted as “occurrence frequency”

The other name of expected value is mean

• Sample mean of an observed dataset x = (x1, x2, ..., xn) is

x :=
1

n

n∑
i=1

xi.

– Expected value ̸= sample mean

– We may never know what is the exact value of E[X]

– We are using sample mean to estimate the population expected value

– Sample mean is depending on the data we obtain, while population mean does not

• Expected value of a function of a RV is E[f(X)]

E[f(X)] :=


∑
x∈X

f(x)p(x) discrete RV∫
X
f(x)p(x)dx continuous RV

• Variance: When f(·) = ( · − E[ · ])2, we have the variance

V[X] = E[(X − E[X])2] =


∑
x∈X

(x− E[X])2p(x) discrete RV∫
X
(x− E[X])2p(x)dx continuous RV

For discrete RV in table form: if X is a RV with the distribution

x x1 x2 · · · xn

P(X = x) p1 p2 · · · pt

then V[X] = (x1 − x)2p1 + (x2 − x)2p2 + · · ·+ (xn − x)2pn
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• Example For X = {1, 2, 3} with p(1) = 0.5, p(2) = 0.4 and p(3) = 0.1, let f(x) = x2, then

E[X] = 1 · 0.5 + 2 · 0.4 + 3 · 0.1 = 1.6

E[f(X)] = 12 · 0.5 + 22 · 0.4 + 32 · 0.1 ≈ 3

V[X] = (1− 1.6)2 · 0.5 + (2− 1.6)2 · 0.4 + (3− 1.6)2 · 0.1 = 0.44

• Standard deviation is
√

V[X]

– Variance is denoted as σ2

– Standard deviation is denoted as σ

– Why we have variance and standard deviation: mean has unit1, variance has the unit2, to make variance comparable
to mean, we take squared-root to get standard deviation, with the unit1

• V[X] = E[X2]− (E[X])2, useful
From the above example, E[X2] = 3 and E[X] = 1.6, we have V[X] = E[X2]− (E[X])2 = 3− 1.62 = 0.44

• Some non-trivial facts

– If X is a discrete RV, it is possible that E[X] /∈ X

∗ Example is coin flip: X = {0, 1}, but the expected value of a fair coin is
1

2
· 0 + 1

2
· 1 = 0.5 /∈ X

– For some RV, expectation does not exist. E.g., for Cauchy distribution, expectation is undefined.

– For some RV, expectation exists, but it is infinite

– Same for variance: it can be undefined or infinite.

• Sample variance / Unbiased estimator of variance of an observed dataset x = (x1, ..., xn) is

s2x :=
1

n− 1

n∑
i=1

(
xi − x

)2
.

– s2x means “the sample variance from observed data x”

– Note that we are dividing by n− 1, NOT n

– The sample standard deviation sx is just the squared-root of s2x

3.1 Advanced topics on expectation and variance

• Expectation of function of two RVs

E[f(X,Y )] =


∑
x∈X

∑
y∈Y

f(x, y)p(x, y) discrete RV

∫
X

∫
Y
f(x, y)p(x, y)dxdy continuous RV

• Example Suppose X = {1, 2, 3},Y = {1, 2}

X = 1 X = 2 X = 3
Y = 1 0.05 0.15 0.1 0.3 = P(Y = 1)
Y = 2 0.25 0.15 0.3 0.7 = P(Y = 2)

0.3 = P(X = 1) 0.3 = P(X = 2) 0.4 = P(X = 3)

Then

– For f(x, y) = xy, we have E[XY ] =
∑

x∈X ,y∈Y
xyp(x, y)

E[XY ] = (1× 1)0.05 + (1× 2)0.25 + (2× 1)0.15 + (2× 2)0.15 + (3× 1)0.1 + (3× 2)0.3

= 0.05 + 0.5 + 0.3 + 0.6 + 0.3 + 1.8

= 3.55
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– For f(x, y) = x+ y, we have E[X + Y ] =
∑

x∈X ,y∈Y
(x+ y)p(x, y)

E[X + Y ] = (1 + 1)0.05 + (1 + 2)0.25 + (2 + 1)0.15 + (2 + 2)0.15 + (3 + 1)0.1 + (3 + 2)0.3

= 0.1 + 0.75 + 0.45 + 0.6 + 0.4 + 1.5

= 3.8

– For f(x, y) = (x, y), we have E[(X,Y )] =
∑

x∈X ,y∈Y
(x, y)p(x, y)

E[(X,Y )] = (1, 1)0.05 + (1, 2)0.25 + (2, 1)0.15 + (2, 2)0.15 + (3, 1)0.1 + (3, 2)0.3

= (0.05, 0.05) + (0.25, 0.5) + (0.3, 0.15) + (0.3, 0.3) + (0.3, 0.1) + (0.9, 0.6)

= (2.1, 1.7)

• Expectation is linear
E[f(X) + g(Y )] = E[f(X)] + E[g(Y )].

This implies the following useful equality: for any a, b, c,

E[aX + bY + c] = aE[X] + bE[Y ] + c.

• Expectation of independent RVs
E[f(X)g(Y )] = E[f(X)] · E[g(Y )].

Proof
E[f(X)g(Y )] =

∑
x∈X ,y∈Y

f(x)g(y)p(x, y)

=
∑

x∈X ,y∈Y
f(x)g(y)p(x)p(y) X,Y independent so p(x, y) = p(x)p(y)

=
∑
x∈X

f(x)p(x)
∑
y∈Y

g(y)p(y)

= E[f(X)]E[g(Y )]

• Variance quadratic formula

V[aX ± bY + c] = a2V[X]± 2abcov(X,Y ) + b2V[Y ].

This implies that if X and Y are independent (so cov(X,Y ) = 0)

V[aX ± bY + c] = a2V[X] + b2V[Y ].

• Taylor series approximation We want to find E[f(X)],V[f(X)] for a complicated f .
Assume

1. f(x) is twice differentiable in x

2. µ = E[X] and σ2 = V[X] are finite

Then by Taylor series,

E[f(X)] ≈ f(µ) +
σ2

2

d2

dx2
f(x)

∣∣∣
x=µ

, V[f(X)] ≈ σ2 d

dx
f(x)

∣∣∣
x=µ

.

• Weak law of large numbers

– Given n samples x = {x1, . . . , xn} of a RV X with population mean µ

– Sample mean: x̄ :=
1

n

n∑
i=1

xi

– x̄ → µ in probability when n → ∞,
I.e., for any ϵ > 0 we have lim

n→∞
P(|x̄− µ| ≤ ϵ) = 1

In words: the more samples (bigger n), the higher chance x̄ is the same as population mean
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3.2 Covariance and correlation

• Covariance cov(X,Y ) tells how much X,Y varies together

cov(X,Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

– The range of covariance is from −∞ to +∞, it depends on the scale of the variable

– Positive cov: if X > E[X] then likely Y > E[Y ]

– Negative cov: if X > E[X] then likely Y < E[Y ]

– If X,Y are independent, cov(X,Y ) = 0

– Given two data vectors x = {x1, x2, ...}, y = {y1, y2, ...}, the empirical covariance can be written in vector form

cov(X,Y ) :=
1

n
(x− µX1)⊤(y − µY 1). (empirical covariance)

where 1 is vector of all one.
Here

∗ We only have access to the data x,y

∗ We do not have access to the joint probability P(X = x, Y = y)

∗ Here we are assuming P(X = x1, Y = y1) = P(X = x2, Y = y2) = ... = P(X = xn, Y = yn) and this gives

the term
1

n
.

∗ The assumption P(X = x1, Y = y1) = P(X = x2, Y = y2) = ... = P(X = xn, Y = yn) is empirical, meaning
that it may not be true, so strictly speaking we have

cov(X,Y ) ≈ covempirical(x,y) :=
1

n
(x− µX1)⊤(y − µY 1). (empirical covariance)

Most people don’t care and don’t distinguish between cov and covempirical.

∗ Furthermore, in practise we do not know the value of (µX , µY ), we take the approximation µx ≈ x and µy ≈ y,
and we call

cov(X,Y ) =
1

n
(x− x1)⊤(y − y1)︸ ︷︷ ︸

empirical covariance with sample means

.

∗ Strictly speaking covariance ̸= empirical covariance, however many people don’t care.

Example Suppose there are n = 5 students, who spent {3, 5, 2, 7, 4} hours to study before the exam, and got grades
{70, 80, 60, 90, 75}. Find the covariance between X = {the number of hours of study} and Y = {grade}.

Solution Let x = {3, 5, 2, 7, 4} and y = {70, 80, 60, 90, 75}. The sample mean (average) of x, denoted as x, is

1

n

n∑
i=1

xi =
1

5

(
3 + 5 + 2 + 7 + 4

)
= 4.2. The sample mean of y, is y =

1

n

n∑
i=1

yi =
1

5

(
70 + 80 + 60 + 90 + 75

)
= 75.

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] =
1

n
(x− x1)⊤(y − y1) =

1

n

x1 − x
x2 − x

...


⊤ y1 − x

y2 − x
...



=
1

5


3− 4.2
5− 4.2
2− 4.2
7− 4.2
4− 4.2


⊤ 

70− 75
80− 75
60− 75
90− 75
75− 75

 =
85

5
= 21.25.

The positive covariance suggest a positive association between the number of hours studied and grade.

– It is only an association result

– It is not a causation result: it didn’t say that “if you study longer, you get higher grade”

Remark Can we calculate cov(X,Y ) := E[XY ] − E[X]E[Y ] here? The answer is no because E[XY ] requires the
information of the joint distribution p(x, y) = P(X = x, Y = y), which is NOT provided here.
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• Correlation (normalized covariance)

corr(X,Y ) :=
cov(X,Y )√
V[X]

√
V[Y ]

=
cov(X,Y )

σXσY
.

In practise we do not know the value of (σX , σY ), we take the approximation σX ≈ sx and σY ≈ sy, and we call

corr(X,Y ) :=
cov(X,Y )

sxsy
.

empirical correlation. Again correlation ̸= empirical correlation.

– The range of covariance is from −1 to +1, it is independent of the scale of the variable

– Positive corr: if X > E[X] then likely Y > E[Y ]

– Negative corr: if X > E[X] then likely Y < E[Y ]

• Example For x = {3, 5, 2, 7, 4} and y = {70, 80, 60, 90, 75}, we have V[X] = 3.7 and V[Y ] = 125 The correlation is

corr(X,Y ) :=
cov(X,Y )√
V[X]

√
V[Y ]

=
21.25√
3.7

√
125

= 0.988.

This value is close to 1, indicating there is a strong positive association between the number of hours studied and grade.
In fact, if we plot the points, we can see a clear positive trend between x and y.

• Theorem If X,Y are independent, cov(X,Y ) = corr(X,Y ) = 0.

Proof cov(X,Y ) = E[XY ]− E[X]E[Y ]
independent

= E[X]E[Y ]− E[X]E[Y ] = 0. □

– Converse not true: corr(X,Y ) = 0 does not mean X,Y are independent

– If X,Y independent, “Variance quadratic formula” becomes V[aX ± bY + c] = a2V[X] + b2V[Y ]
Or V[X ± Y ] = V[X] + V[Y ]

• Linkage between covariance and linear algebra
Given two data vectors x = {x1, x2, ...}, y = {y1, y2, ...}, the empirical covariance and the empirical correlation

cov(X,Y ) =
1

n
(x− x1)⊤(y − y1), corr(X,Y ) =

1

n

(x− x1)⊤(y − y1)

sxsy
,

If the sample mean are zero, then

corr(X,Y ) =
1

n

x⊤y

sxsy
=

1

n

x⊤y√√√√ 1

n− 1

n∑
i=1

x2
i

√√√√ 1

n− 1

n∑
i=1

y2i

=
n− 1

n

x⊤y

∥x∥2∥y∥2

=
n− 1

n

∥x∥2∥y∥2 cos θ(x,y)
∥x∥2∥y∥2

=
n− 1

n
cos θ(x,y)

When n increase, the factor
n− 1

n
→ 1.

Hence, what covariance means: it is the cosine angle between two data vectors x,y.

4 The normal distribution

4.1 Normal distribution

• Normal distribution is also called Gaussian distribution

• The sample space X = R is the whole real line

• X ∼ N (µ, σ2) means X is a RV under normal distribution with mean µ and variance σ2
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• P(X = x;µ, σ2) =: p(x|µ, σ2) =
1√
2πσ2

exp
(−(x− µ)2

2σ2

)
• Probability of an interval = the area under the curve

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx

=

∫ b

a

1√
2πσ2

exp
(−(x− µ)2

2σ2

)
dx.

We do not compute

∫
e−cx2

dx by hand. People solve it

by table lookup or by computer.

For example: µ = 0, σ = 1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

x

p(x)

• E[X] = µ

• V[X] = σ2

• Normal distribution is symmetric around µ

– mean = median = mode = µ

– 68.27% of probability falls within (µ− σ, µ+ σ) approx. 1 in 3 / thrice a week

– 95.45% of probability falls within (µ− 2σ, µ+ 2σ) approx. 1 in 22 / every three weeks

– 99.73% of probability falls within (µ− 3σ, µ+ 3σ) approx. 1 in 370 / once a year

– 99.99994% of probability falls within (µ− 5σ, µ+ 5σ) approx. 1 in 1744278 / once every 4776 years

• Scaling of normal variable
If X ∼ N (µ, σ2), then for α > 0 and Y = αX, then Y ∼ N (αµ, (ασ)2).
Proof: by the variance quadratic formula, if σ2 = V[X] and α > 0 then V[cX] = α2V[X]

• Shifting of normal variable
If X ∼ N (µ, σ2), then for any c and Y = X − c, then Y ∼ N (µ− c, σ2).
Proof: by expectation is linear, E[X − c] = E[X]− c

• Example: if X ∼ N
(
µ, σ2

)
, then

– Y =
X

2
, then Y ∼ N

(1
2
µ,

1

4
σ2
)
.

– Y =
X

σ
, then Y ∼ N

( 1
σ
µ, 1

)
.

– Y = X − µ, then Y ∼ N
(
0, σ2

)
.

– Y =
X − µ

σ
, then Y ∼ N

(
0, 1

)
, this process is also called standardization.

• Property of normal sum
X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2). If X1, X2 are independent, then X1 +X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2)
The proof is out of the scope of this course.

• Theorem For i = 1, 2, ..., n, if Xi ∼ N (µ1, σ
2
1), i = 1, 2, ..., n are independent, then

Y =
∑

ciXi ∼ N
(∑

ciµi,
∑

ciσ
2
i

)
The proof is out of the scope of this course.

• (Chi-square) If X ∼ N (µ, σ2), then Y = X2 is not a normal variable but a chi-square variable. We write X2 ∼ χ2(ν).
We do not talk about chi-square in this course.
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4.2 Standard normal distribution

• Standard norm distribution is when µ = 0 and σ = 1

All normal distribution is a translated and scaled version of N (0, 1)

If Z ∼ N (0, 1) then X = σZ + µ ∼ N (µ, σ2)

If X ∼ N (µ, σ2) then Z =
X − µ

σ
∼ N (0, 1)

The process
X − µ

σ
is called standardization

If Z ∼ N (0, 1) then we call the random variable standard z score

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

z

z

• Calculation of z-score: recall that probability of an interval = the area under the PDF curve

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx =
1√
2π

∫ b

a

e−x2/2dx.

We can solve this integral by the error function

erf(z) :=
2√
π

∫ z

0

e−t2dt.

Note that

– erf(−z) = erf(z)

−4 −2 0 2 4
−1

−0.5

0

0.5

1

z

erf(z)

The details: we perform change of variable t =
x√
2

1√
2π

∫ b

a

e−x2/2dx =
1√
2π

∫ b

a

e−(x/
√
2)2dx =

1√
π

∫ b

a

e−(x/
√
2)2 dx√

2

=
1√
π

∫ b

a

e−t2dt

=
1√
π

∫ b

0

e−t2dt− 1√
π

∫ a

0

e−t2dt

=
1

2

(
2√
π

∫ b

0

e−t2dt− 2√
π

∫ a

0

e−t2dt

)
=

1

2

(
erf(b)− erf(a)

)

How do we calculate the error function: in the old days, people use the z-table. Nowadays, use computer!

• Using WolframAlpha https://www.wolframalpha.com/

– Example:

integrate 1/(sqrt(2 pi)) exp( -x^2/2 ) dx for x = - infinity to x = 3

will compute ∫ 3

−∞

1√
2π

exp
{
− x2

2

}
dx.

• We compute normal distribution by using standard normal distribution

https://www.wolframalpha.com/
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– We calculate everything on z ∼ Z using error function

– We translate and scale back to the RV X we want to study

– Example If Z ∼ N (0, 1), find P(−1 ≤ z ≤ 1)

P(−1 ≤ z ≤ 1) =
1

2

(
erf(1)− erf(−1)

)
=

1

2

(
erf(1) + erf(1)

)
= erf(1) = 0.84270079295

5 Other common distributions

5.1 Bernoulli distribution

• X = {0, 1} and x ∈ X represents success or fail, any binary event

– Coin flip (H=0, T=1)

– Manufacturing: defects, not defects

– Medicine: disease, no disease

– Sport: win, lose, assume there is no draw

• X ∼ Ber(θ) means X is a RV under Bernoulli distribution with probability of success θ

• θ ∈ [0, 1] represent the probability of success

– in coin flip, a coin is fair if θ = 0.5

– in medicine, you want θ as close to 0 as possible (low chance to have disease)

• P(X = x|θ) =: p(x|θ) = θx(1− θ)1−x

– It may seems wrong we have to multiply θ with (1 − θ), but note that for their power x and 1 − x, only one of
them is nonzero.

– If x = 1 then p(1) = θ

– If x = 0 then p(0) = 1− θ

• E[X] = θ

• V[X] = θ(1− θ)

Rademacher distribution If X ∼ Ber(0.5), then Y = 2X − 1 is follows Rademacher distribution, which is useful to model
Y = {−1,+1}, which is very useful for modelling random walk (you either move forward (x = +1) or backward (x = −1),
not moving (x = 0) is not allowed)

5.2 Binomial distribution

• n binary RV X = (X1, X2, ..., Xn) where all Xi ∼ Ber(θ)

• We now counts the number of success in this n binary event.

number of success = m =

n∑
i=1

xi

• The sample space of m is then the set of integers {0, 1, 2, ..., n} =: M

• p(m|θ) =
(
n

m

)
θm(1− θ)n−m is the probability that M takes a particular m success of n binary RV

• E[X] = nθ

• V[X] = nθ(1− θ)

• Property of binomial sum

– M1 ∼ Bin(θ, n1) and M2 ∼ Bin(θ, n2) then M1 +M2 ∼ Bin(θ, n1 + n2)
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5.3 Multinomial distribution

• Multinomial distribution generalizes the binomial distribution to independent random experiments with more than two
outcomes

• x = (x1, ..., xm) is the random vector, the θ = (θ1, θ2, ..., θm) is the success probability vector, then the multinomial
probability of x achieving k1-success, k2-success, ..., km-success is then

P
(
x = (k1, k2, ..., km)

)
=

(
n

k1, k2, ..., km

) m∏
i=1

θki
i =

n!

k1!k2! . . . km!
θk1
1 θk2

2 ...θkm
m

where k1 + k2 + ...+ km = n.

5.4 Discrete uniform distribution

• X = {a, ..., b}, the sample space is an integer interval from a to b

• X ∼ U(a, b) means X is a RV under discrete uniform distribution

• p(X = k; a, b) =
1

b− a+ 1
represent the probability X takes the value k in X

• E[X] =
a+ b

2
, possibly not an integer

• V[X] =
(b− a+ 1)2 − 1

12
, possibly not an integer

5.5 Poisson distribution

• Z+ = {0, 1, 2, ..}, the sample space is all nonnegative integers (from 0 to ∞)

• X ∼ Poi(λ) means X is a RV under discrete Poisson distribution

• p(X = k|λ) = λke−λ

k!
represent the probability k events occurred under rate λ

• E[X] = λ

• V[X] = λ

• Property of Poisson sum

– X1 ∼ Poi(λ1) and M2 ∼ Poi(λ2) then X1 +X2 ∼ Poi(λ1 + λ2)

5.6 Negative binomial distribution

• Binomial variable Bin(θ, n) then p(m|θ) refers to probability of within n trial, there are exactly m success

• Negative binomial refers to the probability until the rth success

• X ∼ NB(r|θ, n) has p(r) =
(
n+ r − 1

n

)
(1− θ)nθr

Geometric distribution When r = 1, we have the geometric distribution

5.7 Special thing on continuous distribution: zero point-wise probability

• If a RV X follows a continuous distribution, then the probability P(x|θ) for a particular x is always zero

• Example: p(1) = p(0) = p(−2) = p(e) = p(π) = 0

• This is because the sample space of a continuous distribution has infinitely many elements, so the chance of randomly
picking a particular element is zero
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• An important consequence: strict inequality is the same as non-strict inequality.
That is, P(X ≤ a) = P(X < a)

P(X ≤ a) = P(X < a OR X = a)
= P(X < a) + P(X = a) inclusion-exclusion principle / sum rule / σ-additivity
= P(X < a) + 0 P(X = a) ≡ 0 for any a
= P(X < a)

• A crazy fact. For continuous random variable, p(a) ≡ 0 but it doesn’t mean event X = a is impossible.

5.8 Continuous uniform distribution

• X = [a, ..., b], the sample space is an interval of real number from a to b

• X ∼ U(a, b) means X is a RV under continuous uniform distribution

• p(x; a, b) =


0 x < a
1

b− a
a ≤ x ≤ b

0 x > b

represent the probability X takes the value k in X

• E[X] =
a+ b

2

• V[X] =
(b− a)2

12
,

5.9 Exponential distribution

• X = [0,+∞), the sample space is the positive real number

• X ∼ exp(λ) means X is a RV under exponential distribution with rate λ

• p(x|λ) = λe−λx

• E[X] =
1

λ

• V[X] =
1

λ2

5.10 Other advanced distributions

• Hyper-geometric

• Gamma distribution

• Cauchy

• Beta

• Chi-squared

6 Point estimation: maximum likelihood estimator

• The motivation: suppose we have observed data y = (y1, y2, ..., yn). Now we would like to model these using a normal
distribution p(y|µ, σ2), where the population µ, σ2 are unknown. The process of point estimation is to estimate these
population parameter.

• There are several approaches here

1. Minimum Sum of Squared Errors

2. Maximum likelihood estimator

3. Unbiased estimator

• Notation: θ denotes the ground truth population parameter, θ̂ denotes the estimator
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6.1 Minimum Sum of Squared Errors

• In this approach we find θ̂ that “close” to all data point

• Suppose we want to learn µ in p(y|µ, σ2).

• The notion of “closeness” here is SSE(µ) :=
n∑

i=1

(yi − µ)2

• We find µ̂ as the minimizer of SSE(µ)

µ̂ = argmin
µ

n∑
i=1

(yi − µ)2

If we take the derivative to zero, it gives

dSSE(µ)

dµ
= −2

n∑
i=1

yi + 2nµ = 0. =⇒ µ̂ =
1

n

n∑
i=1

yi = ȳ =: sample mean

6.2 Maximum likelihood

• Maximum likelihood is a popular method in parameter estimation

• In this approach we find θ̂ that has the highest probability given the data

• We are given y, we want to find θ that maximize p(y|θ), called likelihood

θ̂ = argmax
θ

p(θ|y)

Note that

– here it is p(θ|y) not p(y|θ)
– Likelihood is also a probability

– The term “likelihood” is just a probability that “given the observed data y, how likely it is to give parameter θ”

• Due to mathematically more convenient, we sometimes work with negative log-likelihood

θ̂ = argmin
θ

{
− log p(θ|y)

}
Why do this: probability is a number between 0 and 1. The log “magnifies” such number from 0 to negative infinity.
We multiply -1 to make the range from 0 to positive infinity.

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0 log(x)

0 0.2 0.4 0.6 0.8 1

0

2

4

6

− log(x)
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6.2.1 Maximum Likelihood Estimation (MLE) of normal distribution

• Suppose you are given a set of observed data y = (y1, y2, . . . , yn) that contains n data points yi, i ∈ {1, 2, . . . , n}. You
believe that this dataset y follows a normal distribution N (µ, σ2) under the following assumption.

IID assumption

– You assume that data points y1, . . . , yn are i.i.d. (Independent and identically distributed) under a normal
distribution N (µ, σ2). I.e., each data point yi is an realization of a random variable Y ∼ N (µ, σ2)

– In other words, each y1, . . . , yn are random sample from a population that is normally distributed with
mean µ and variance σ2

• You don’t know the population parameter µ, σ and you want to estimate µ and σ from data y. There are many
approaches to estimate µ, σ, now you choose to use MLE

• The MLE process starts with the likelihood function. The likelihood of yi sampled from N (µ, σ2) is p(µ, σ|yi). We have

p(µ1, σ1|y1) =
1√
2πσ2

1

exp
(
− (y1 − µ1)

2

2σ2
1

)
...

p(µn, σn|yn) =
1√
2πσ2

n

exp
(
− (yn − µn)

2

2σ2
n

)
By the IID assumption, we have µ1 = · · · = µn = µ and σ1 = · · · = σn and therefore

p(µ, σ|y1) =
1√
2πσ2

exp
(
− (y1 − µ)2

2σ2

)
...

p(µ, σ|yn) =
1√
2πσ2

exp
(
− (yn − µ)2

2σ2

)
By product rule, the likelihood of observing data y from Y ∼ N (µ, σ2) is thus

p(µ, σ|y) = p(µ, σ|y1) · · · p(µ, σ|yn) =
1√
2πσ2

exp
(
− (y1 − µ)2

2σ2

)
· · · 1√

2πσ2
exp

(
− (yn − µ)2

2σ2

)
=

1√
2πσ2

· · · 1√
2πσ2︸ ︷︷ ︸

n of them

exp
(
− (y1 − µ)2

2σ2

)
· · · exp

(
− (yn − µ)2

2σ2

)

=
( 1

2πσ2

)n
2

exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2
)
, recall e−ae−b = e−a−b.

• The negative log-likelihood

L(µ, σ|y) := − log p(µ, σ|y) = − log

{( 1

2πσ2

)n
2

exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2
)}

=
n

2
log(2πσ2) +

1

2σ2

n∑
i=1

(yi − µ)2, recall log
(1
a
e−b
)
= log a+ b.

• We now find the optimal µ by MLE with negative log-likelihood as θ̂ = argmin
θ

{
− log p(θ|y)

}
, so

µ̂MLE = argmin
µ

L(µ, σ|y) = argmin
µ

n

2
log(2πσ2) +

1

2σ2

n∑
i=1

(yi − µ)2.
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The minimizer of L with respect to µ, denoted as µ̂MLE, is at where
∂L
∂µ

∣∣∣∣∣
µ=µ̂MLE

= 0, which is

∂L
∂µ

∣∣∣∣∣
µ=µ̂MLE

= − 1

σ2

n∑
i=1

(yi − µ̂MLE) = 0 ⇐⇒
n∑

i=1

(yi − µ̂MLE) = 0

⇐⇒
n∑

i=1

yi −
n∑

i=1

µ̂MLE = 0

⇐⇒
n∑

i=1

yi − nµ̂MLE = 0

⇐⇒ µ̂MLE =
1

n

n∑
i=1

yi =: y = sample mean

Thus, when estimating normal distribution from a data, the maximum likelihood estimator of the population mean

µ̂MLE =
1

n

n∑
i=1

yi is the sample mean.

• We now find the optimal σ2 by MLE with negative log-likelihood as θ̂ = argmin
θ

{
− log p(θ|y)

}
, so

σ̂2
MLE = argmin

σ2

L(µ, σ|y) = argmin
σ2

n

2
log(2πσ2) +

1

2σ2

n∑
i=1

(yi − µ)2

= argmin
σ2

n

2
log 2π +

n

2
log σ2 +

1

2

n∑
i=1

(yi − µ)2
1

σ2
.

Note that variance is σ2 so we are considering the symbol σ2 instead of σ (which is standard deviation).

The minimizer of L with respect to σ2, denoted as σ̂2
MLE, is at where

∂L
∂σ2

∣∣∣∣∣
σ=σ̂MLE

= 0, which is

∂L
∂σ2

∣∣∣∣∣
σ=σ̂MLE

=
n

σ̂2
MLE

−
n∑

i=1

(yi − µ)2
1

σ̂4
MLE

= 0 ⇐⇒ 1

σ̂2
MLE

(
n−

n∑
i=1

(yi − µ)2
1

σ̂2
MLE

)
= 0

⇐⇒ 1

σ̂2
MLE

= 0︸ ︷︷ ︸
impossible

or n−
n∑

i=1

(yi − µ)2
1

σ̂2
MLE

= 0

⇐⇒ σ̂2
MLE − 1

n

n∑
i=1

(yi − µ)2 = 0

⇐⇒ σ̂2
MLE =

1

n

n∑
i=1

(yi − µ)2

Thus, when estimating normal distribution from a data, the maximum likelihood estimator of the population variance

σ̂2
MLE(µ) =

1

n

n∑
i=1

(yi − µ)2 is a function of µ.

– If we do not know the population µ and we estimate it by µ̂MLE, then the MLE of σ is the sample variance

σ̂2
MLE(µ̂MLE) =

1

n

n∑
i=1

(yi − µ̂MLE)
2, where µ̂MLE =

1

n

n∑
i=1

yi

– If we know the population µ, then the MLE of σ is the sample variance

σ̂2
MLE(µ) =

1

n

n∑
i=1

(yi − µ)2.

• Knowing µ vs not knowing µ has a big difference.
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– If µ is known: we have σ̂2
MLE(µ). Now consider itself as a random variable. Consider the E

[
σ̂2
MLE(µ)

]
E
[
σ̂2
MLE(µ)

]
= E

[ 1
n

n∑
i=1

(yi − µ)2
]
. (#)

Now because both E and
∑

are linear operator, so we can swap their position and get

E
[ 1
n

n∑
i=1

(yi − µ)2
]

=
1

n

n∑
i=1

E
[
(yi − µ)2

]
. (##)

Now we focus on the term E
[
(yi − µ)2

]
. By the IID assumption, all yi are realization of a random variable

Y ∼ N (µ, σ2), hence the expected value E[yi] is like E[Y ] and E
[
(yi − µ)2

]
is like E

[
(Y − µ)2

]
. Recall that

E
[
(Y − µ)2

]
is the definition of variance of Y , and therefore

1

n

n∑
i=1

E
[
(yi − µ)2

]
=

1

n

n∑
i=1

σ2 =
1

n
· nσ2 = σ2. (###)

Now combine the three Equations (#), (##) and (###) we have

E
[
σ̂2
MLE(µ)

]
(#)
= E

[ 1
n

n∑
i=1

(yi − µ)2
]

(##)
=

1

n

n∑
i=1

E
[
(yi − µ)2

]
(###)
= σ2.

This equation means that if we treat σ̂2
MLE(µ) itself as an random variable, then the expected value of σ̂2

MLE(µ) is
exactly the population variance σ2.

Recall that in Section 3 that E is linear: E[aX + c] = aE[X] + c, so for E[σ̂2
MLE(µ)] = σ2

∗ The E is taken with respect to σ̂MLE,

∗ σ2 is a constant for the E,
thus we have

E[σ̂2
MLE(µ)] = σ2 ⇐⇒ E[σ̂2

MLE(µ)]− σ2 = 0 ⇐⇒ E
[
σ̂2
MLE(µ)− σ2

]
= 0.

The expression E
[
θ̂ − θ

]
is known as the bias of an estimator.

In other words, we call that, when estimating the unknown population variance σ2 of a normal distribution using
observed data y, the maximum likelihood estimator σ̂2

MLE(µ) is an unbiased estimator.

– If µ is unknown and we use µ̂MLE to estimate σ2, we will have

E[σ̂2
MLE(µ̂MLE)] =

n− 1

n
σ2 = σ2 − 1

n
σ2.

∗ The proof is not mathematically hard but very long and is out of the scope here.

∗ The above expression means that the maximum likelihood estimator of variance, which is the sample variance

sample variance =
1

n

n∑
i=1

(
yi − y

)2
is always under-estimating the population variance.

∗ The unbiased estimator of population variance is actually

1

n− 1

n∑
i=1

(
yi − y

)2
That is, when computing the sample variance, if you count one data point less in the term n, the result is
unbiased.
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6.2.2 Maximum Likelihood Estimation (MLE) of Poisson distribution

• Suppose you are given a set of observed data y = (y1, . . . , yn) that contains n data points yi, i ∈ {1, 2, . . . , n}. You
believe that this dataset y follows a Poisson distribution Poi(λ)

under the following assumption.

IID assumption

– You assume that data points y1, . . . , yn are i.i.d. (Independent and identically distributed) under a Poisson
distribution Poi(λ). I.e., each data point yi is an realization of a random variable Y ∼ Poi(λ)

– I.e., each y1, . . . , yn are random sample from a population that is Poisson distributed with rate λ

• You don’t know the population parameter λ and you want to estimate λ from the data y by MLE.

• The MLE process starts with the likelihood function. The likelihood of yi sampled from Poi(λ) is p(λ|yi). We have

p(λ|y1) =
λy1e−λ

y1!
...

p(λ|yn) =
λyne−λ

yn!

Note that we have make use of the IID assumption that all yi is sampled from the same Poi(λ) under the same rate λ.

• By product rule, the likelihood of observing data y from Y ∼ Poi(λ) is thus

p(µ, σ|y) = p(µ, σ|y1) · · · p(µ, σ|yn) =
λy1e−λ

y1!
· · · λ

yne−λ

yn!

= e−λ · · · e−λ︸ ︷︷ ︸
n of them

λy1

y1!
· · · λ

yn

yn!

= e−nλ λy1+···+yn

y1!y2! . . . yn!
.

• The negative log-likelihood

L(µ, σ|y) := − log p(µ, σ|y) = − log

{
e−nλ λy1+···+yn

y1!y2! . . . yn!

}

= − log

{
e−nλ

}
− log

{
λ
∑n

i=1 yi

}
+ log

{
n∏

i=1

yi!

}

= nλ−
( n∑

i=1

yi

)
log λ+

n∑
i=1

log yi!

• We now find the optimal λ by MLE with negative log-likelihood as θ̂ = argmin
θ

{
− log p(θ|y)

}
, so

λ̂MLE = argmin
λ

L(λ|y) = argmin
λ

nλ−
( n∑

i=1

yi

)
log λ+

n∑
i=1

log yi!

= argmin
λ

nλ−
( n∑

i=1

yi

)
log λ

It is in the form of argmin
x

f(x) = ax− b log x. Taking the derivative of f with respect to x to zero gives a− b

x
= 0,

which is x =
b

a
. Hence

λ̂MLE =
1

n

n∑
i=1

yi = y =: sample mean

Thus, when estimating Poisson distribution from a dataset, the maximum likelihood estimator of the population rate

λ̂MLE =
1

n

∑n
i=1 yi is the sample mean.
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6.2.3 Maximum Likelihood Estimation (MLE) of Bernoulli distribution

• After illustrating the MLE process for normal distribution and Poisson distribution, we now repeat the same procedure
for Bernoulli distribution but with a faster pace.

• Suppose we have a dataset y = (y1, . . . , yn) that are iid under a Bernoulli distribution Ber(θ). For example, you are
tossing a coin n times and you want to know is the coin a fair coin. The likelihood for one particular tossing result is
p(θ|yi) = θyi(1− θ)1−yi , and the likelihood for the n tossing result is

p(θ|y) =
n∏

i=1

θyi(1− θ)1−yi .

The negative log-likelihood is then

L(θ|y) = − log

n∏
i=1

θyi(1− θ)1−yi = −
( n∑

i=1

yi

)
log θ −

( n∑
i=1

(1− yi)

)
log(1− θ)

Take the derivative with respect to θ to zero gives −
∑n

i=1 yi
θ

+

∑n
i=1(1− yi)

1− θ
= 0, that is

θ

n∑
i=1

(1− yi) = (1− θ)

n∑
i=1

yi ⇐⇒ θ
(
n−

n∑
i=1

yi

)
=

n∑
i=1

yi − θ

n∑
i=1

yi ⇐⇒ θ =
1

n

n∑
i=1

yi = y =: sample mean

That is, the maximum likelihood estimator of Bernoulli distribution is the sample mean.

• Thus, by MLE, to tell a coin is fair, you toss it n times and take the sample mean, if the result is close to 0.5 then the
coin is fair.

6.2.4 Maximum Likelihood Estimation (MLE) of Binomial distribution

• Suppose we have a dataset y = (y1, . . . , yn) of n iid trial under a binomial distribution Bin(θ,N). The likelihood is

p(θ|y) =
n∏

i=1

(
N

yi

)
θyi(1− θ)N−yi =

( n∏
i=1

(
N

yi

))
θ
∑n

i=1 yi(1− θ)nN−
∑n

i=1 yi

The negative log-likelihood is then

L(θ|y) = −
n∑

i=1

(
N

yi

)
−
( n∑

i=1

yi

)
log θ −

(
nN −

n∑
i=1

yi

)
log(1− θ).

Take the derivative with respect to θ to zero gives −
∑n

i=1 yi
θ

+
nN −

∑n
i=1 yi

1− θ
= 0, that is

θnN − θ

n∑
i=1

yi = (1− θ)

n∑
i=1

yi ⇐⇒ θnN − θ

n∑
i=1

yi =

n∑
i=1

yi − θ

n∑
i=1

yi ⇐⇒ θ =
1

N

1

n

n∑
i=1

yi =
1

N
y

6.2.5 Maximum Likelihood Estimation (MLE) of exponential distribution

• Suppose we have a dataset y = (y1, . . . , yn) of n iid trial under a exponential distribution exp(λ). The likelihood is

p(λ|y) =
n∏

i=1

(
λe−λyi

)
= λne−λ

∑n
i=1 yi

The negative log-likelihood is then

L(λ|y) = −n log λ+ λ

n∑
i=1

yi

Take the derivative with respect to θ to zero gives −n

λ
+
∑n

i=1 yi = 0, that is λ = y−1.
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7 Finite-sample statistics

7.1 The what and why of finite-sample statistics

• Finite-sample statistics refers to the behaviour of the estimator under repeated sampling.

• Finite-sample statistics is also called sampling statistics (a confusing name!)

• Why finite-sample statistics: it has three applications

– Comparing the quality of estimators: bias and variance

– Quantifying the accuracy of an estimator: confidence interval

– Determine how unlikely a statistics is: hypothesis testing

In this section we only focus on what is finite-sample statistics

7.2 Finite-sample statistics of sample mean

• Suppose we draw 5 samples from a random variable Y ∼ N (µ, σ2) three times.

The draw Data observed sample mean
First draw y1 = (1.62, 1.65, 1.62, 1.47, 1.62) y1 = 1.596

Second draw y2 = (1.72, 1.51, 1.41, 1.50, 1.68) y2 = 1.564
Third draw y3 = (1.68, 1.69, 1.63, 1.66, 1.60) y3 = 1.652

• Finite-sample statistics is asking the following question:

what is the distribution of these y1, y2, y3?

That is, we are now treating y1, y2, y3 as a realization of a random variable y, and ask what is the statistics of y.

• Now suppose we draw n sample y1, y2, . . . , yn from the population Y ∼ N (µ, σ2).

• The sample mean y =
1

n

n∑
i=1

yi.

• Now under iid assumption, all yi comes from the same random variable Y ∼ N (µ, σ2), so if we treat the sample mean
y itself as a random variable, the distribution of the sample mean y can be obtained by the property of Gaussian sum:

y :=
1

n

n∑
i=1

yi =
y1
n

+
y2
n

+ · · ·+ yn
n

• We recall two facts

1. property of Gaussian sum: if X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) then X1 +X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2)

2. Scaling of normal random variable: if X ∼ N (µ, σ2), then
X

n
∼ N

(µ
n
,
(σ
n

)2)
.

• Then, if we treat y as a random variable, it will be

y =
y1
n

+
y2
n

+ · · ·+ yn
n

∼ N
(

µ

n
+ · · ·+ µ

n︸ ︷︷ ︸
n of them

,
(σ
n

)2
+ · · ·+

(σ
n

)2
︸ ︷︷ ︸

n of them

)
= N

(
µ,

σ2

n

)
.

(Distribution of sampling mean)

That means, the sample mean itself follows a normal distribution, with a mean equal to the (unknown) population mean,
and a variance equal to the (unknown) population variance divided by the sample size. This means the more we take
our samples, the lower the variance is y.

In other words,
The more sample set yi we use, the more “accurate” y in estimating µ,

where the term “accurate” refers to

{
E[y] → µ

V[y] → 0
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7.3 Finite-sample statistics of sample variance and chi-squared distribution

• This part is an advanced topic and not our focus / not in exam.

• Consider the unbiased estimator of population variance as

s2 =
1

n− 1

n∑
i=1

(yi − y)2

where y is the sample mean.

• Then by Cochrans’s theorem,

(n− 1)s2

σ2
=

n∑
i=1

(yi − y

σ

)2
∼ χ2

n−1

where χ2
n−1 denotes the chi-squared distribution with degree of freedom n− 1

• The message here is that, unlike sample mean having a normal distribution, the sample variance s2 is chi-squared
distributed.

• We will skip Cochrans’s theorem, chi-squared distribution and analysis of variance here.

8 Comparing estimator

Why we need to compare estimators

• Consider the following case

– Suppose we are given dataset y = (y1, . . . , yn) and we believe the data are drawn from a normal distribution
N (µ, σ2) where µ, σ2 are unknown.

– From last section, we know that

∗ the maximum likelihood estimator for µ is the sample mean
1

n

n∑
i=1

yi

∗ the maximum likelihood estimator for σ2 is the sample variance
1

n

n∑
i=1

(yi − y)2

– We also know that the unbiased estimator for σ2 is
1

n− 1

n∑
i=1

(yi − y)2

This means we now have two estimators. How do we compare estimator: we use sampling statistics / finite-sample
statistics.

How we compare estimators

• Suppose we estimate a parameter θ using two estimators θ̂1 and θ̂2

• There are two things we can compare “how good are θ̂1 and θ̂2 on estimating θ”

1. Bias: how large is the systematic error

2. Variance: how large is the random error

8.1 Bias of an estimator

• Suppose we estimator a parameter θ using an estimator θ̂

• The bias of θ̂ is
bθ(θ̂) := E[θ̂]− θ. (Bias)

• Definition (Unbiased estimator) If bθ(θ̂) = 0 we call θ̂ an unbiased estimator of θ

• What bias means: it tells that, on average, how θ̂ over-estimate / under-estimate θ
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8.1.1 Example: bias of sample mean on the population mean of normal distribution

• Consider that:

– given dataset y = (y1, . . . , yn), we believe the data are drawn from N (µ, σ2) where µ, σ2 are unknown.

– the maximum likelihood estimator for µ is the sample mean y =
1

n

n∑
i=1

yi

So what is the bias of y on estimating µ?

• From Equation (Distribution of sampling mean), we see that y ∼ N (µ, σ2

n ), therefore

bµ(y) := E[y]− µ
E[y]
= µ− µ = 0

Hence the maximum likelihood estimator for µ / sampling mean, is an unbiased estimator of the population mean µ.

8.1.2 Example: bias of maximum likelihood estimator of population variance of normal distribution

• Consider that:

– given dataset y = (y1, . . . , yn), we believe the data are drawn from N (µ, σ2) where µ, σ2 are unknown.

– the maximum likelihood estimator for σ2 is σ2
MLE =

1

n

n∑
i=1

(yi − y)2 where y =
1

n

n∑
i=1

yi is the sample mean

So what is the bias of σ2
MLE on estimating σ2?

• The bias of σ2
MLE on estimating σ2 is

bσ2(σ2
MLE) = E[σ2

MLE]− σ2 =
n− 1

n
σ2 − σ2 = −σ2

n
.

In other words, we have E[σ2
MLE] =

n− 1

n
σ2, we haven’t prove this one and we will not prove this one in the course.

• Instead we usually use the unbiased estimator

σ̂2
unbiased =

1

n− 1

n∑
i=1

(yi − y)2.

That is, instead of
1

n
in σ2

MLE, here we use
1

n− 1
.

8.2 Variance of an estimator

• Suppose we estimator a parameter θ using an estimator θ̂

• The variance of θ̂ is
V[θ̂] = E

[
(θ̂ − E[θ̂])2

]
. (Var)

I.e., we are treating θ̂ as a random variable and find the variance of θ̂.

• What variance means: it tells that, on average, how θ̂ varies around θ if we re-sampled from the population.

8.2.1 Example: variance of sample mean on the population mean of normal distribution

• Consider that:

– given dataset y = (y1, . . . , yn), we believe the data are drawn from N (µ, σ2) where µ, σ2 are unknown.

– the maximum likelihood estimator for µ is the sample mean y =
1

n

n∑
i=1

yi

So what is the variance of y on estimating µ?

• From Equation (Distribution of sampling mean), we see that y ∼ N (µ, σ2

n ), therefore

V[y] =
σ2

n

Hence the maximum likelihood estimator for µ / sampling mean, has a non-zero variance, and such variance decreases
as n increases.
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8.3 Consistency

• Suppose we estimate a parameter θ using estimator θ̂

• θ̂ is called consistent if bθ(θ̂) → 0 and V[θ̂] → 0 as n increases

• The maximum likelihood estimator / sampling mean y is a consistent estimator (from the discussion above)

8.4 Mean Squared Errors

• MSEθ(θ̂) = E
[
(θ̂ − θ)2

]
– Compared to variance of estimator V[θ̂] = E

[
(θ̂ − E[θ̂])2

]
, the MSE is variance with IE[θ̂] replaced by θ

• What is MSE: it tells, on average, how the estimator is awayfrom the population parameter θ

• MSE has a nice property known as bias-varaince decomposition:
Theorem MSEθ(θ̂) can be expressed as

MSEθ(θ̂) = b2θ(θ̂) + V[θ̂] (MLE bias-varaince decomposition)

Proof We prove right hand side of (MLE bias-varaince decomposition) gives left hand side of (MLE bias-varaince decomposition)

b2θ(θ̂) + V[θ̂] =
(
E[θ̂]− θ

)2
+ E

[
(θ̂ − E[θ̂])2

]
=

(
E[θ̂]

)2
− 2E[θ̂]θ + θ2 + E

[
θ̂2 − 2θ̂E[θ̂] + (E[θ̂])2

]
=

(
E[θ̂]

)2
− 2E[θ̂]θ + θ2 + E

[
θ̂2
]
− 2E

[
θ̂E[θ̂]

]
+ E

[
(E[θ̂])2

]
=

(
E[θ̂]

)2
− 2E[θ̂]θ + θ2 + E

[
θ̂2
]
− (E[θ̂])2

= −2E[θ̂]θ + θ2 + E
[
θ̂2
]

= E
[
(θ̂ − θ)2

]
= MSEθ(θ̂)

Remark that we have make use of the fact that E[aX] = aE[X] and E[a] = a

– If the estimator is unbiased, then MSE reduecs to the variance

9 Central Limit Theorem

9.1 What is the Central Limit Theorem

• “At the limit, all random variables are normally distributed”
This is the reason why

– normal distribution is the most important distribution in statistics.

– many phenomena seem to be normally distributed

• Central Limit Theorem Let Y1, Y2, ..., Yn be i.i.d. RV with E[Yi] = µ and V[Yi] = σ2, then

S =

n∑
i=1

Yi
d−→ N (nµ, nσ2) as n → ∞

where
d−→ means converges in distribution.

• De Moivre-Laplace Limit Theorem

– A special case of central limit theorem

– In short, it said “we can approximate binomial distribution using normal distribution”

– X ∼ Bin(θ, n), then the standardization
X − nθ√
nθ(1− θ)

has the following property

lim
n→∞

P

(
a ≤ X − nθ√

nθ(1− θ)
≤ b

)
=

1√
2π

∫ b

a

e−z2/2dz
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9.2 Application of CLT: approximating other distributions using normal distribution

9.2.1 Approximating binomial distribution using normal distribution

9.2.2 Approximating Poisson distribution using normal distribution

10 Interval estimation: confidence interval

• The motivation: suppose we have observed data y = (y1, y2, ..., yn). Now we would like to model these using a
distribution with the population parameter θ.

• In point estimation, we estimate the population parameter θ using an estimator θ̂.

• In interval estimation, we quantify how uncertain about the population parameter θ.

• In point estimation (e.g., maximum likelihood estimator), we get a single value from a given dataset y. That is, we get

a single value θ̂.

• In interval estimation (e.g., confidence interval), we get a range of value from a given dataset y

T (y) = (θ−, θ+) ⊂ R

which says the population parameter θ is somewhere between θ− and θ+.

– θ−: the lower bound of the interval

– θ+: the upper bound of the interval

– θ− ≤ θ+ and possibly θ− = θ+

– Narrow interval: low uncertainty

∗ zero interval: θ− = θ+, in this case we have no uncertainty

– Wide interval: high uncertainty

• Daily life example You want to guess how tall (in cm) your friend is

– Say your friend true height is 173 cm.

– Point estimation: “it is estimated as 170 cm”

– Interval estimation: “it is somewhere between 160 and 180 cm”

• How to obtain an interval: confidence interval from the frequentist statistics.

10.1 Frequentist 95% confidence interval

• Tα(y) is a 100(1− α)% confidence interval for α ∈ (0, 1) if

P(θ ∈ Tα(y)) = 1− α

⇐⇒ P(θ− ≤ θ ≤ θ+) = 1− α

The probability is with respect to the population distribution over all the possible data samples.

• α ∈ [0, 1] is a number telling the degree of uncertainty

α 1− α 100(1− α)%

0.01 0.99 99%
0.025 0.975 97.5%
0.05 0.95 95%
0.1 0.9 90%

• If α = 0.05 we call T0.05 the 95% confidence interval

– It means: the probability of θ ∈ T0.05(y) is 95%.

– We say “we are 95% confident that θ is somewhere in T0.05(y)

• Confidence interval is confusing

– Confidence interval means before we draw the sample y, we know that there is a 95% chance we will draw a
dataset that gives an interval that covers the true θ

– Confidence interval does not means after we draw the sample y, the true θ has a 95% chance with the interval
we obtained

– The population parameter θ is not random, it is fixed
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10.2 Confidence interval for normal mean, known variance

• We are given observed dataset y = (y1, . . . , yn)

• We assume that data points y1, . . . , yn are i.i.d. (Independent and identically distributed) under a normal distribution
N (µ, σ2). I.e., each data point yi is an realization of a random variable Y ∼ N (µ, σ2)

• We assume σ2 is known but µ is unknown

• We estimate µ by maximum likelihood estimator / sample mean y =

n∑
i=1

yi

• From the finite-sample statistics of y is that y ∼ N
(
µ,

σ2

n

)
.

That is, y is a realization of a random variable Y (here the notation Y denotes a random variable, not the sample mean

of Y ) where Y follows a normal distribution with mean µ and variance
σ2

n

• We recall that every normal distribution is a translated and scaled version of N (0, 1), hence

y − µ√
σ2/n

=
y − µ

σ/
√
n
∼ N (0, 1)

σ/
√
n has a special name called standard error

• Now we consider 95% conference interval

– α = 0.05

– P(θ− ≤ θ ≤ θ+) = 0.95 = 95%

– Put θ here as the
y − µ

σ/
√
n
, gives

P
(
θ− ≤ y − µ

σ/
√
n

≤ θ+
)
= 0.95

– Now we get the values θ−, θ+. Since
y − µ

σ/
√
n

∼ N (0, 1), that means the above probability is to find the interval

where the area under the curve is 0.95

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

z

z

95% probability

We have θ−, θ+ as −1.96,+1.96.

– How we find the value of θ−, θ+: we solve P
(
θ− ≤ y − µ

σ/
√
n

≤ θ+
)
= 0.95 and use the fact that z =

y − µ

σ/
√
n

has

the density function
1√
2π

exp
{
− z2

2

}
. Then we solve a difficult integral to find the unknonw.
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P
(
θ− ≤ y − µ

σ/
√
n

≤ θ+
)

= 0.95

⇐⇒
∫ θ+

θ−
p(z|0, 1)dz = 0.95 probability = area under the curve of PDF

⇐⇒ 2

∫ θ+

0

p(z|0, 1)dz = 0.95 normal distribution is symmetric

⇐⇒ 2

∫ θ+

0

1√
2π

exp
{
− z2

2

}
dz = 0.95 the PDF of standard distribution

⇐⇒
√

2

π

∫ θ+

0

exp
{
− z2

2

}
dz = 0.95

⇐⇒ erf
( z√

2

)∣∣∣∣∣
z=θ+

z=0

= 0.95 erf is known as the error function

⇐⇒ erf
( θ+√

2

)
= 0.95 note that erf(0) = 0

⇐⇒ θ+ ≈ 1.95996398454005

In the derivation we make use of a non-trivial fact

d

dx
erf
( x√

x

)
=

√
2

π
exp

{
− x2

2

}
– In summary,

P
(
− 1.96 ≤ y − µ

σ/
√
n

≤ 1.96
)
= 0.95

– Recall our goal here is to obtain an interval of µ, hence we perform the following

P
(
− 1.96 ≤ y − µ

σ/
√
n

≤ 1.96
)
= 0.95

⇐⇒ P
(
− 1.96

σ√
n
≤ y − µ ≤ 1.96

σ√
n

)
= 0.95

⇐⇒ P
(
− 1.96

σ√
n
≤ µ− y ≤ 1.96

σ√
n

)
= 0.95

⇐⇒ P
(
y − 1.96

σ√
n
≤ µ ≤ y + 1.96

σ√
n

)
= 0.95

– Therefore, the 95% confidence interval for µ

T0.05 =
[
y − 1.96

σ√
n
, y + 1.96

σ√
n

]
.

In other words, for 95% of the possible samples, the true population mean will be within 1.96
σ√
n

of the sample

mean y.

• 100(1− α)% confidence interval for general α
In general, you solve

P
(
θ− ≤ y − µ

σ/
√
n

≤ θ+
)
= 1− α

which ultimately reduce to solving

erf
(zα/2√

2

)
= 1− α

with the confidence interval
Tα =

[
y − zα/2

σ√
n
, y + zα/2

σ√
n

]
.

where zα/2 is the 100(1− α
2 ) percentile of the unit normal

α 1− α
2 zα/2

0.01 0.995 2.576
0.025 0.9875 2.251
0.05 0.975 1.959
0.1 0.95 1.644
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Example (Computing a confidence interval) You are a farmer. You grow watermelon. This season you have 8 watermelon
with the following mass (in kg)

y = (27.2, 7.6, 10.6, 16, 7.3, 11.8, 5.2, 17.4)

A watermelon biologist told you the population variance of the mass of the watermelon is 12. Find the 95% confidence interval
of the population mean of the mass of the watermelon.

Solution Here we have n = 8 (number of data points)

The sample mean y =
27.2 + 7.6 + 10.6 + 16 + 7.3 + 11.8 + 5.2 + 17.4

8
= 12.89.

The variance σ2 = 12 (given) and thus σ =
√
12

For α = 0.05, the value zα/2 such that erf
(zα/2√

2

)
= 1− α is 1.959 (or 1.96).

Therefore, the 95% confidence interval for µ

T0.05 =
[
y − 1.96

σ√
n
, y + 1.96

σ√
n

]
=

[
12.89− 1.96 ·

√
12√
8
, 12.89 + 1.96 ·

√
12√
8

]
= [10.48, 15.29]

That is, the estimated mean of the mass of watermelon from your farm is 12.89 kg/melon. We are 95% confident that the
population mean mass for the watermelon in your farm is between 10.48kg and 15.29kg.

Two things to note

• Confidence interval is for estimating the population mean, it is possible that the data points are not within the interval.
For examples the 27.2 watermelon is not within this interval.

• Notice that the variance (=12) is large here.

Example (What does “95% confidence” mean) Suppose you obtain 5 sets of dataset draw from a random variable
N (µ = 1.65, σ2 = 0.1). Here σ2 = 0.1 is known and µ = 1.65 is unknown and you construct 95% CI from each dataset. In
each dataset, there are 4 data points, i.e., each y contains four points y1, y2, y3, y4.

Dataset The values Sample mean 95% CI from y 1.65 ∈ CI?

y1 1.62, 1.80, 1.39, 1.16 y1 = 1.493 [1.182, 1.802] yes
y2 1.64, 1.71, 2.02, 1.64 y2 = 1.753 [1.442, 2.062] yes
y3 1.70, 1.10, 1.53, 0.90 y3 = 1.308 [0.997, 1.617] no
y4 1.52, 1.14, 1.46, 1.45 y4 = 1.393 [1.082, 1.702] yes
y5 1.55, 1.89, 1.63, 2.07 y5 = 1.785 [1.475, 2.209] yes
...

The “95%” means 5% of the time when you draw data from a population, µ /∈CI
In this example, all yi ̸= µ, and the mean of the sample mean

Avg(y) =
y1 + y2 + y3 + y4 + y5

5
= 1.564

is still not quite 1.65. Also,

Var
(
y
)
=

5∑
i=1

(
yi − Avg(y)

)2
5

= 0.0368

Well, by the fact that sample mean is a random variable following N
(
µ,

σ2

n

)
, it tells that in this case, 5 datasets is just not

enough, and if we take more datasets, then eventually Avg(y) will approach µ = 1.65 and Var
(
y
)
will approach 0.

10.3 Confidence interval for normal mean, unknown variance

• We are given observed dataset y = (y1, . . . , yn)

• We assume that data points y1, . . . , yn are i.i.d. (Independent and identically distributed) under a normal distribution
N (µ, σ2). I.e., each data point yi is an realization of a random variable Y ∼ N (µ, σ2)

• Unlike 10.2, now we assume both µ, σ2 are unknown

• Since both µ, σ2 are unknown, we need to propose two estimators to estimate them
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• Like 10.2, we estimate µ by maximum likelihood estimator / sample mean y =

n∑
i=1

yi

• For estimating σ2, things are getting complicated

– We cannot use the maximum likelihood estimator for σ2
MLE =

1

n

n∑
i=1

(yi − y)2 due to its bias −σ2

n

– We use the unbiased estimator σ̂2
unbiased =

1

n− 1

n∑
i=1

(yi − y)2.

– Now using the unbiased estimator σ̂2
unbiased, you may think that the interval is now

Tα =
[
y − zα/2

σ̂unbiased√
n

, y + zα/2
σ̂unbiased√

n

]
.

However this does not work due to the issue that we are now estimating the variance.

Technically, the random variable
y − µ

σ̂unbiased/
√
n

is no longer normally distributed. In other words, zα/2, which comes

from N (0, 1), cannot be used.

– Instead, the random variable
y − µ

σ̂unbiased/
√
n

follows Student-t distribution with n− 1 degree-of-freedom

– Student-t distribution has a very complicated density function involving Gamma function, so we are not going to
talk about it here.

• The Student-t distribution

– “looks similar” to normal distribution

– is also symmetric and self-similar

• The confidence interval using Student-t distribution is now

Tα =
[
y − tα/2,n−1

σ̂unbiased√
n

, y + tα/2,n−1
σ̂unbiased√

n

]
.

which achieves 100(1− α)% converge if the population is a normal random varaible.

• The value tα/2,n−1 is the 100(1− α
2 )th percentile of the standard Student-t distribution with n− 1 degree-of-freedom.

Unlike the error function, it is even more complicated to compute the tα/2,n−1

• Usually tα/2,n−1 is obtained by checking table or software (in R you run qt( p= 1 - a/2, df = n-1) to get it.

– For n = 3, α = 0.05, then t0.025,2 = 4.3

– For n = 6, α = 0.05, then t0.025,5 = 2.57

– For n = 11, α = 0.05, then t0.025,10 = 2.22

Example (Same watermelon example) Recall the watermelon example with

y = (27.2, 7.6, 10.6, 16, 7.3, 11.8, 5.2, 17.4)

Find the 95% confidence interval of the population mean of the mass of the watermelon. This time we do not have the
population variance.

Solution Here we have n = 8 (number of data points)

The sample mean y =
27.2 + 7.6 + 10.6 + 16 + 7.3 + 11.8 + 5.2 + 17.4

8
= 12.89.

The unbiased estimator of variance σ̂2
unbiased =

∑8
i=1(yi − 12.89)2

8− 1
= 51.36

For α = 0.05, the value tα/2,n−1 is t0.025,7 = 2.36.

Therefore, the 95% confidence interval for µ

T0.05 =
[
y − tα/2,n−1

σ̂unbiased√
n

, y + tα/2,n−1
σ̂unbiased√

n

]
=

[
12.89− 2.36 ·

√
51.36√
8

, 12.89 + 2.36 ·
√
51.36√
8

]
= [6.91, 18.86]

That is, the estimated mean of the mass of watermelon from your farm is 12.89 kg/melon, the sample variance is 51.36
(sample standard deviation is 7.166). We are 95% confident that the population mean mass for the watermelon in your farm
is between 6.91kg and 18.86kg. Compared with the case with known variance, we can see now the interval is wider, because
we have less information for the information (knowing σ2 tells some information about the population and hence can be used
to reduce the interval).
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10.4 Confidence interval for difference of normal means

• We are given two set of data yA and yB , where yA is a realization of a RV YA and yB is a realization of a RV YB .

• We believe YA ∼ N (µA, σ
2
A), YB ∼ N (µB , σ

2
B)

• We assume µA, µB are unknown and σ2
A, σ

2
B are known

• We assume yA has nA data size and yB has nB data size

• We now want to know is there difference between the two samples.

• We build a confidence interval for population mean difference µA − µB

How we build the confidence interval, the analysis

• We estimate µA by µ̂A and estimate µB by µ̂B

• We can use maximum likelihood estimator, i.e., we have sample mean µ̂A = yA, µ̂B = yB

• By finite-sample statistics of mean, we have

µ̂A ∼ N (µA,
σ2
A

nA
), µ̂B ∼ N (µB ,

σ2
B

nB
)

• Assuming the samples are independent
V[µ̂A − µ̂B ] = V[µ̂A] + V[µ̂B ]

(Recall V[aX + bY + c] = a2V[X] + b2V[Y ])

• The difference µ̂A − µ̂B staisfies

µ̂A − µ̂B ∼ N
(
µA − µB ,

σ2
A

nA
+

σ2
B

nB

)
• By X ∼ N (µ, σ2) ⇐⇒ Z =

X − µ

σ
∼ N (0, 1) we have

µ̂A − µ̂B ∼ N
(
µA − µB ,

σ2
A

nA
+

σ2
B

nB

)
⇐⇒ (µ̂A − µ̂B)− (µA − µB)√

σ2
A

nA
+

σ2
B

nB

∼ N (0, 1)

• Therefore we have the following 100(1− α)% confidence interval

Tα =

[
µ̂A − µ̂B − zα/2

√
σ2
A

nA
+

σ2
B

nB
, µ̂A − µ̂B + zα/2

√
σ2
A

nA
+

σ2
B

nB

]

Steps in computing CI for difference of normal means

1. Compute yA from yA and compute yB from yB

2. Compute zα/2 by solving erf
(zα/2√

2

)
= 1− α

3. Compute

√
σ2
A

nA
+

σ2
B

nB

4. Compute Tα =

[
µ̂A − µ̂B − zα/2

√
σ2
A

nA
+

σ2
B

nB
, µ̂A − µ̂B + zα/2

√
σ2
A

nA
+

σ2
B

nB

]

Interpretation the result

• If Tα is entirely negative, it suggest a negative difference at population level

• If Tα is entirely positive, it suggest a positive difference at population level

• If Tα is contains zero, it suggest possibly no difference at population level
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10.5 Confidence interval for difference of normal means with unknown variance

We use the same formula to approximate the CI.
What about using student-t distribution? Nah that is too much for this course. Go study yourself.

Example (stock) Two group of values are provided

yA = (yA1 , y
A
2 , ..., y

A
7 ) = 34, 28.9, 45.4, 53.2, 29.0, 36.5, 32.9

yB = (yB1 , yB2 , ..., yB8 ) = 53.2, 33.6, 36.6, 42, 33.3, 37.8, 31.2, 43.4

If we want to know “on average, is there any difference between the two groups”, we construct a confidence interval of µA−µB .

Solution

1. Compute yA (the maximum likelihood estimator of µA)

yA =
34 + 28.9 + 45.4 + 53.2 + 29.0 + 36.5 + 32.9

7
= 37.1286

Compute yB (the maximum likelihood estimator of µB)

yB =
53.2 + 33.6 + 36.6 + 42 + 33.3 + 37.8 + 31.2 + 43.4

8
= 38.8875

Compute µ̂A − µ̂B as yA − yB = 37.1286− 38.8875

2. For α = 0.05, compute zα/2 by solving erf
(zα/2√

2

)
= 1− α gives zα/2 = 1.96

3. We estimate σ2
A, σ

2
B by unbiased estimator of variance

σ̂unbiased
A =

1

nA − 1

nA∑
i=1

(yAi − yA)
2 = 81.4257

σ̂unbiased
B =

1

nB − 1

nB∑
i=1

(yBi − yB)
2 = 51.3698

Therefore √
σ2
A

nA
+

σ2
B

nB
=

√
81.4257

7
+

51.3698

8
= 4.2489

4. The 95% confidence interval of µA − µB is

[−1.7589− 1.96(4.2489), −1.7589− 1.96(4.2489)] = [−10.0867, 6.5689]

As the interval contains zero, we cannot rule out the possibility of there being no difference at a population level.

11 Hypothesis testing

Motivation / background

• Point estimation (estimator), confidence interval and hypothesis testing are all doing the same job: telling something
from an observed dataset

– Point estimation / estimator: output a single number to describe the dataset (such as estimator of the mean)

– Confidence interval: give a range of plausible values for the unknown population parameter

– Hypothesis testing: gives the probability that the data satisfy certain hypothesis
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11.1 Null hypothesis and alternative hypothesis

• In a crime scene, you are a detective, you collect information (data) and your job is to prove someone is a murderer
(alternative hypothesis).

• We take the null hypothesis (innocent) as the default position: “Presumed innocent until proven guilty”

• Mathematically, we write
H0 : null hypothesis
HA : alternative hypothesis

• What we are doing here: based on the observed data y, we ask how much evidence the data carries against the null
hypothesis

– This is called Neyman-Pearson theory of statistical testing

– We are asking “what is the probability of seeing y given the null hypothesis is true”

– The smaller is this probability, the stronger the evidence against null hypothesis

In the detective story, we have

Hypothesis In English In English (simplified) Conditional probability Conditional probability

H0 He is innocent He is good P(y | he is good) P(y |H0)
HA He is the murderer He is bad P(y | he is bad) P(y |HA)

What is hypothesis testing = find the value of the probability P(y | he is good)

– This probability P(y | he is good) is known as the p-value

– If P(y | he is good) is small ⇐⇒ improbable (y | he is good) occur ⇐= he is bad ⇐⇒ HA is true

– If P(y | he is good) is large ⇐⇒ likely (y | he is good) occur ⇐= he is good ⇐⇒ H0 is true

– It is important to note the direction of the arrow ⇐= and understand what it means

∗ A ⇐= B means “if B then A”, it says something of A from B

∗ A ⇐= B says nothing of B from A

– In hypothesis testing,

∗ small p-value means we have lots of evidence against the null

∗ large p-value means we have little evidence against the null

· “little evidence against the null” does not mean null is true

· we can only say “it is inconclusive” / “no conclusion”

· why we have to say “this is inconclusive”: possibly due to small sample size

11.2 p-value of testing normal mean with known variance: two-sided test

• We are given dataset y = (y1, ..., yn)

• We believe data are drawn from Y ∼ N (µ, σ2)

• We assume σ2 known and µ unknown

• We have a guess µguess, we want to test whether µ = µguess is true

H0 : µ = µguess

HA : µ ̸= µguess

• What we do: we get the information (µ̂ here) and ask “how unlikely is the estimate µ̂ we have observed if the population
mean was µ = µguess?

• In other words, we are asking
How small is the probability P(µ̂ | µ = µguess)

• We use maximum likelihood estimator (i.e., sample mean) for the mean

µ̂ = y = average(y1, y2, . . . , yn)
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– Because we assumed data are drawn from Y ∼ N (µ, σ2), so by the finite-sample statistics of sample mean,

y ∼ N
(
µ,

σ2

n

)
– The null hypothesis H0 is that µ = µguess, hence finite-sample statistics of sample mean if H0 is true gives

y ∼ N
(
µguess,

σ2

n

)
By the fact that X ∼ N (µ, σ2) ⇐⇒ X − µ

σ
∼ N (0, 1), we have

y ∼ N
(
µguess,

σ2

n

)
⇐⇒ y − µguess√

σ2

n

=
y − µguess

σ/
√
n

∼ N (0, 1) (#)

– Now let zy =
y − µguess

σ/
√
n

. As we are looking for evidence against the null, we look for the probability

P

(
NOT

{
y ∼ N

(
µguess,

σ2

n

)})
(#)
= P

(
NOT

{
y − µguess

σ/
√
n

∼ N (0, 1)

})

zy=
y−µguess
σ/

√
n

= P
(
NOT

{
zy ∼ N (0, 1)

})
– By complementary rule in probability

P
(
NOT

{
zy ∼ N (0, 1)

})
= 1− P

(
zy ∼ N (0, 1)

)
P(not E) = 1− P(E)

= 1− P
(
− |zy| ≤ Z ≤ |zy|

)
= P

(
Z ≤ −|zy|

)
+ P

(
Z ≥ |zy|

)
= 2P

(
Z ≤ −|zy|

)
normal distribution is symmetric

– p-value in this case is defined as
p = 2P

(
Z ≤ −|zy|

)
∗ In this case we are asking how close are y, µguess to each other, measured as |y − µguess|.

· We are using absolute value here, so it doesn’t matter

{
y is larger than µguess

y is smaller than µguess

∗ if p < 0.01, we have strong evidence against the null

∗ otherwise, we have no conclusion.

– Graphically, we are doing the following

∗ We turn the null hypothesis into a standard normal distribution variable zy
∗ If H0 is true, then zy is likely to be within the standard normal distribution N (0, 1)

∗ We look for the probability that zy is NOT within N (0, 1),
i.e., we look for the area of the two tails of the z-curve

∗ These are represent how likely zy is NOT within N (0, 1)

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

z

z

p/2
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11.3 p-value of testing normal mean with known variance: one-sided test

• We are given dataset y = (y1, ..., yn)

• We believe data are drawn from Y ∼ N (µ, σ2)

• We assume σ2 known and µ unknown

• We have a guess µguess, we want to test whether µ ≤ µguess is true

H0 : µ ≤ µguess

HA : µ > µguess

• Under similar analysis as before, this time we look for p = P(Z > zy), where zy =
y − µguess

σ/
√
n

.

11.4 The p-value for hypothesis testing of normal mean with known variance

• We are given dataset y = (y1, ..., yn)

• We believe data are drawn from Y ∼ N (µ, σ2)

• We assume σ2 known and µ unknown

• We have a guess µguess

• The steps for calculating p-values are

1. Calculate the maximum likelihood estimator of mean / sample mean y =
1

n

n∑
i=1

yi

2. Perform standardization to get the standard z-score zy =
y − µguess

σ/
√
n

3. Calculate the p-value:

p =


2P(Z − |zy|) H0 : µ = µguess vs HA : µ ̸= µguess

1− P(Z < zy) H0 : µ ≤ µguess vs HA : µ > µguess

P(Z < zy) H0 : µ ≥ µguess vs HA : µ < µguess

where Z ∼ N (0, 1)

11.5 The p-value for hypothesis testing of normal mean with unknown variance

• We are given dataset y = (y1, ..., yn)

• We believe data are drawn from Y ∼ N (µ, σ2)

• We assume both σ2 and µ unknown

• We have a guess µguess

• The steps for calculating p-values are

1. Calculate the maximum likelihood estimator of mean / sample mean y =
1

n

n∑
i=1

yi

2. Calculate the unbiased estimator of variance

σ̂2
unbiased =

1

n− 1

n∑
i=1

(yi − y)2

3. Perform standardization to get the t-score ty =
y − µguess

hatσunbiased/
√
n

4. Calculate the p-value:

p =


2P(T − |ty|) H0 : µ = µguess vs HA : µ ̸= µguess

1− P(T < ty) H0 : µ ≤ µguess vs HA : µ > µguess

P(T < ty) H0 : µ ≥ µguess vs HA : µ < µguess

where T ∼ T (n− 1) is the standard student-t distribution with degree-of-freedom n− 1.
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11.6 The p-value for hypothesis testing of difference of normal mean, known variance

Two-sided test

• The hypothesis testing is
H0 : µA = µB

vs
HA : µA ̸= µB

• If null is true

yA − yB ∼ N
(
0,

σ2
A

nA
+

σ2
B

nB

)
• The z-score

zyA−yB
=

yA − yB√
σ2
A

nA
+

σ2
B

nB

• The p-value

p = 2P
(
Z < −|zyA−yB

|
)

One-sided test

• The hypothesis testing is
H0 : µA ≥ µB

vs
HA : µA < µB

Then
p = P

(
Z < zyA−yB

)
11.7 The p-value for hypothesis testing of difference of normal mean, unknown variance

Nah too complicated for this course.
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