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Normal cone

NS(s) :=


{
v ∈ Rn

∣∣ 〈v,x− s
〉

≤ 0 ∀x ∈ S
}

s ∈ bdS

{0} s ∈ intS

∅ s /∈ S

Given convex differentiable f : Rn → R and a convex set X ⊂ Rn,

x∗ ∈ argmin
x∈X

f(x) ⇐⇒ −∇f(x∗) ∈ NX (x∗)

x∗ ∈ argmin
x∈Rn

f(x) ⇐⇒ −∇f(x∗) = 0
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Setup
▶ Given f : Rn → Rn is convex with domf = Rn is a convex set

▶ Unconstrained problem
(U) : argmin

x∈Rn
f(x)

▶ Constrained problem
(C) : argmin

x∈X
f(x)

where X ⊂ Rn is a convex set.

▶ FoC: First-order optimality Condition
▶ For (U) : argmin

x∈Rn
f(x)

if x∗ is a minimizer of f, then −∇f(x∗) = 0 (∗)
▶ FoC is also called Fermat’s rule by French optimizers.
▶ What about (C) : argmin

x∈X
f(x)? We have a constraint x ∈ X , so (∗) does not hold.

▶ This PDF: answer such question using the notation of normal cone.

Remark: we only assume f is convex but not strictly convex so it is possible U , C have multiple solution.
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FoC for (C) : argmin
x∈X

f(x)

▶ If x∗ is solution of C, then
−∇f(x∗) = 0 and x∗ ∈ C (WRONG)

−∇f(x∗) ∈ NX (x∗)

where NX is the normal cone of X at x∗

▶ Definition The normal cone of a set S ⊂ Rn at the point s is defined as

NS(s) :=


{
v ∈ Rn

∣∣ 〈v,x− s
〉

≤ 0 ∀x ∈ S
}

s ∈ S

∅ s /∈ S

You are given two mathematical objects
▶ a set S S can be convex or nonconvex
▶ a point s s can be inside S or outside S

3 / 9



Normal cone NS(s) :=


{
v ∈ Rn

∣∣ 〈v,x− s
〉

≤ 0 ∀x ∈ S
}

s ∈ S

∅ s /∈ S

Explanation

1. Given a set S, a point x ∈ S and a point s ∈ bdS
2. The vector x− s

3. A vector v that
〈
v,x− s

〉
< 0, the angle between is larger than 90◦

4. The normal cone at s = the set of all possible v
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Properties of normal cone
▶ It is a cone: v ∈ NS(s) =⇒ λv ∈ NS(s) for all λ ≥ 0.

▶ Proof Fix v ∈ NS(s), by definition of normal cone

v ∈ NS(s) ⇐⇒
〈
v,x− s

〉
≤ 0

⇐⇒ λ
〈
v,x− s

〉
≤ 0

⇐⇒
〈
λv,x− s

〉
≤ 0

⇐⇒ λv ∈ NS(s)

▶ It is a convex set: v1 ∈ NS(s) and v2 ∈ NS(s) =⇒ λv1 + (1− λ)v2 ∈ NS(s) for all λ ∈ (0, 1).
▶ Proof Fix v1 ∈ NS(s) and v2 ∈ NS(s, by definition of normal cone

v1 ∈ NS(s), v2 ∈ NS(s) ⇐⇒
〈
v1,x− s

〉
≤ 0 and

〈
v2,x− s

〉
≤ 0

⇐⇒ λ
〈
v1,x− s

〉
≤ 0 and (1− λ)

〈
v2,x− s

〉
≤ 0

⇐⇒
〈
λv1,x− s

〉
≤ 0 and

〈
(1− λ)v2,x− s

〉
≤ 0

⇐⇒
〈
λv1,x− s

〉
+

〈
(1− λ)v2,x− s

〉
≤ 0

⇐⇒
〈
λv1 + (1− λ)v2,x− s

〉
≤ 0

⇐⇒ λv1 + (1− λ)v2 ∈ NS(s)
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The “full” formula NS(s) :=


{
v ∈ Rn

∣∣ 〈v,x− s
〉

≤ 0 ∀x ∈ S
}

s ∈ bdS

{0} s ∈ intS

∅ s /∈ S
▶ If s inside S, there are two sub-cases

▶ s ∈ intS: the point s is inside the interior of S
▶ s ∈ bdS: the point s is on the boundary of S

▶ Proving NS(s)
s∈intS
= {0}

▶ s ∈ intS =⇒ ∃δ > 0 s.t.B(s; δ) ⊂ S. interior implies existence of internal enclosing ball

▶ Let v ∈ NS(s). v is the normal cone of s

Then ⟨v,x − s⟩ ≤ 0 ∀x ∈ S . by definition of normal cone

▶ Let x ∈ S and t > 0 sufficiently small s.t. s + tv ∈ B(s; δ). move s slightly along v will still stay in B

▶ By and , s + tv is inside S so we can make use of , which gives

⟨v, s + tv︸ ︷︷ ︸
x in

−s⟩ ≤ 0 ∀x ∈ S

⇐⇒ t⟨v,v⟩ ≤ 0

As t > 0, so ∥v∥2 ≤ 0 which implies v = 0
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FoC of constrained minimization

▶ For (C) : argmin
x∈X

f(x) with a convex differentiable function f : Rn → R and a convex set X ⊂ Rn,

x∗ ∈ argmin
x∈X

f ⇐⇒ −∇f(x∗) ∈ NX (x∗)

▶ Remark: we assume f is convex but not strictly convex so C may have multiple solutions, thus the
set argmin f is possibly not a singleton, so we write x∗ ∈ argmin f but not x∗ = argmin f .

▶ Proof by contradiction
▶ Assume x∗ ∈ argmin f and −∇f(x∗) /∈ NX (x∗).
▶ By definition of normal cone, if −∇f(x∗) /∈ NX (x∗), it means there exists a direction d ∈ X that is

positively correlates with −∇f(x∗)
▶ Moving along d will decrease the objective function, therefore x∗ cannot be a minimizer, contradiction.
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Corollary: FoC of unconstrained mininization

▶ For (U) : argmin

x ∈ Rn

f(x) with a convex differentiable function f : Rn → R

x∗ ∈ argmin

x ∈ Rn

f ⇐⇒ −∇f(x∗) = 0.

▶ Remark: we assume f is convex but not strictly convex so C may have multiple solutions, thus the
set argmin f is possibly not a singleton, so we write x∗ ∈ argmin f but not x∗ = argmin f .

▶ Proof
▶ −∇f(x∗) ∈ NRn(x∗)
▶ By , x∗ ∈ Rn so x∗ is an interior point of Rn

▶ By “normal cone at interior point is singleton of zero”, so NRn(x∗) = {0}
▶ We now have −∇f(x∗) ∈ {0} =⇒ −∇f(x∗) = 0
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Last page - summary

Suppose f : Rn → R is differentiable

1. x∗ ∈ argmin
x∈Rn

f(x) ⇐⇒ −∇f(x∗) = 0 unconstrained minimization

2. x∗ ∈ argmin
x∈C

f(x) ⇐⇒ −∇f(x∗) ∈ NC(x
∗) constrained minimization

3. Normal cone

NS(s) :=


{
v ∈ Rn

∣∣ 〈v,x− s
〉

≤ 0 ∀x ∈ S
}

s ∈ S

∅ s /∈ S

4. NS(s) = {0} if s ∈ intS

5. {3 =⇒ 2}+ 4 =⇒ 1
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