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Some “old” terminology

Notation used by Nesterov, Mordukhovich, or any classical real analysis textbooks:

▶ f ∈ C0 : f(x) is continuous

▶ f ∈ C1 : f(x) and ∇f(x) are continuous

▶ f ∈ C2 : f(x), ∇f(x) and ∇2f(x) are continuous

▶ f ∈ C1,1 : f(x) and ∇f(x) are continuous, ∇f(x) is L-Lipschitz with L < +∞

▶ f ∈ Ck,p
L : f is k times continuously differentiable and pth derivative is L-Lipschitz

▶ f ∈ Fk
L : f is Ck

L and convex

▶ f ∈ Sk
M,L : f is Fk

L and M -strongly convex

2 / 43



Table of Contents

Convex
α-strongly convex
ρ-weakly convex

Lipschitz
Smooth / Lipschitz gradient
Relatively-smooth
Lipschitz continuous Hessian

Strongly convex & smooth

Other properties
Lower semicontinuous
Closed, proper, level bounded
argmin
Polyak- Lojasiewicz & Kurdyka- Lojasiewicz

3 / 43



Real-valued convex function: A function f(x) : domf → R is convex if

▶ domf is a convex set1

▶ ∀x,y ∈ domf , we have any one of the following

1. Jensen’s inequality: f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y). chord description

2. epi f is a convex set. epigraph description

3. 1st-order Taylor series at x is a global support: f(y) ≥ f(x) +
〈
∇f(x),y − x

〉
support description

4. Gradient is monotone:
〈
x− y,∇f(x)−∇f(y)

〉
≥ 0. gradient description

(For 3,4, if f is not differentiable, we replace gradient by subgradient.)

▶ The 4 definitions are equivalent / if and only if. See optimization books for the proofs. here is a proof of
1 ⇐⇒ 3.

▶ If f is twice differentiable, it is convex iff ∇2f(x) ⪰ 0. Hessian description

▶ f is strictly convex if ≤,≥ became <,> (i.e. strict inequality).

1domf can be open set. However, in optimization usually domf is closed because optimization over open set has
no solution. For example, maximizing x over the open set x < 3 has no solution.
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Convexity: the geometry of Jensen’s inequality (chord description)

f : domf → R is convex IF
(1) domf is a convex set and
(2) ∀x,y ∈ domf, f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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f(λx+ (1− λ)y)

λf(x) + (1− λ)f(y)
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Convexity: epigraph is a convex set

f : domf → R is a convex function ⇐⇒ epigraph of f is a convex set proof in p.10

Visualization of graphf and epi f

I epi f = all the points of Rn+1 lying on or above graphf .

I Example: f(x) = x2

I n = 1 (1-dimensional)

I graphf :=
n

(x, y) 2 R ⇥ R : y = f(x)
o

is a 1d curve in a 2d space.

I epi f :=
n

(x, ↵) 2 R ⇥ R : ↵ � f(x)
o

is a 2d set in a 2d space.

5 / 28 Details.
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Convexity: epif is a convex set
▶ f : domf → R is a convex function ⇐⇒ epi f is a convex set.

▶ What’s the big deal: we connected the function language to the set language

▶ Suppose epi f is a closed set for a function f

▶ If f is a convex function, then epi f is a convex set

▶ Fact: “any closed convex sets can be written as an intersection of half space” (not go to the details here)

▶ In other words, if epi f is convex, then

epi f =
⋂

H∈H
H =

⋂
i=1

{
x :

〈
ai,x

〉
≥ bi

}
.

Figure: An illustrative example: two hyperplane h1,h2
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Convexity: the geometry of 1st-order Taylor series

▶ The halfspace description of epi f can be translated to
an inequality on function

▶ f : domf → R is convex if :

1. domf is a convex set
2. ∀x,y ∈ domf , we have

f(y) ≥ f(x) +
〈
∇f(x),y − x

〉
. (∗)

i.e. a tangent supports f at a fixed point x

▶ (∗) assumes f is differentiable at x. If f is not
differentiable at x, we generalize gradient to subgradient:

f(y) ≥ f(x) +
〈
q,y − x

〉
. (#)

I.e., we replace ∇f(x) by any vector q that (#) holds.

▶ In fact, subgradient is defined using (#)
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f(−1) +∇f(−1)(y − (−1))

▶ The gap between f and the 1st-order Taylor series is
known as the Bregman Divergence.
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Convexity: the geometry of supporting hyperplane

▶ f : domf → R is convex if :

f(y) ≥ f(x) +
〈
q,y − x

〉
. (#)

⇐⇒
〈[

q
−1

]
,

[
y − x

f(y)− f(x)

]〉
≤ 0 for all (y, t) ∈ epi f

where

[
q
−1

]
is the normal of the supporting hyperplane.

▶ Example. Te figure to the right show a f : R → R.

▶ Here f is a single variable function, so q is a scalar.
▶ The slop of f at x = −1 is shown by the red line
▶ The slop of f at x = −1 is a negative value, say

−0.5

▶ Therefore the normal

[
q
−1

]
=

[
−0.5
−1

]
points

towards the lower left corner, and this arrow is the
normal to the supporting hyperplane

▶ The term “support” here means the hyperplane
just touch epi f

−4 −2 0 2

0

10

20

y

f
(y

)

f
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Why convex and differentiable f is lower-bounded by their own 1st-order Taylor series?

▶ Consider a pedagogical case: f is (twice) differentiable of single variable, then

f(y) = f(x) + f ′(x)(y − x) + o(y − x) Taylor series

= f(x) + f ′(x)(y − x) +
f ′′(ξ)

2
(y − x)2 see 1

≥ f(x) + f ′(x)(y − x) see 2

1. Lagrange remainder theorem: using mean-value theorem, the remainder term

o(y − x) = f ′′(ξ)
2

(y − x)2 for some ξ in the interval [x, y].
2. As f is convex, which means f ′′ ≥ 0 so the last term is nonnegative.

▶ The arguments above generalize to multi-variable f .

▶ This is not a proof but an illustration, because

▶ apart from assuming f is differentiable, we assumed f is twice differentiable,
▶ we didn’t show that f is convex ⇐⇒ its Hessian is positive semi-definite.
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Convexity: gradient is monotone

▶ A differentiable f : domf → R is a convex function ⇐⇒
〈
x− y,∇f(x)−∇f(y)

〉
≥ 0.

▶ A possibly non-differentiable f : domf → R is a convex function ⇐⇒
〈
x− y, ∂f(x)− ∂f(y)

〉
≥ 0.

▶ Proof f is convex, so f(x) ≥ f(y) +
〈
∂f(y),x− y

〉
(1)

f(y) ≥ f(x) +
〈
∂f(x),y − x

〉
(2)

0 ≥
〈
∂f(y)− ∂f(x),x− y

〉
(1 + 2)

0 ≤
〈
∂f(x)− ∂f(y),x− y

〉
flip the sign of (1 + 2)

▶ What is monotone: a scalar-valued function g : R → R is monotone if a ≥ b implies g(a) ≥ g(b).

▶ a ≥ b and g(a) ≥ g(b) mean a − b ≥ 0 implies g(a) − g(b) ≥ 0, so we have two non-negative things.

▶ These two non-negative things can be captured by a single inequality (a − b)(g(a) − g(b)) ≥ 0.

▶ For vector-valued function ∇f , we replace multiplication by inner product, thus
〈
x − y,∇f(x) − ∇f(y)

〉
≥ 0

▶ Kachurovskii’s theorem: a convex function has monotonic operators as their derivatives.

▶ Some histroy

▶ Kachurovskii, R. I. (1960). “On monotone operators and convex functionals”.
▶ Minty, G. J. (1964). “On the monotonicity of the gradient of a convex function”.
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Convexity: a big picture
Function language Set language

``Jansen inequality / inner chord description’’

``Taylor series is a global support / under estimator’’

``epigraph is a convex set’’

``epigraph is intersection of halfspaces’’

convex set is 

intersection of halfspaces

inner chord as an inner line in the epi f 

a tangential hyperplane is support
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Strong convexity: A function f : domf → R is α-strongly convex if

▶ domf is a convex set.

▶ ∀x,y ∈ domf , we have any one of the following

1. Jensen’s inequality with an additional quadratic term with α > 0

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)−α

2
λ(1− λ)∥x− y∥22.

2. gradf is monotonic with an additional quadratic term with α > 0〈
x− y,∇f(x)−∇f(y)

〉
≥ α∥x− y∥22 ≥ 0.

3. 1st-order Taylor series at x is global under-estimator with an additional quadratic term with α > 0

f(y) ≥ f(x) +
〈
∇f(x),y − x

〉
+
α

2
∥x− y∥22,

or we say f is lower bounded by a quadratic function.
4. With α > 0, the function f(x)− α

2
∥x∥22 is convex.

▶ These definitions are equivalent.

▶ If f is twice differentiable, it is α-strongly convex iff ∇2f(x) ⪰ αI.
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Illustrating equivalence between definitions of strong convexity

For α > 0 and f twice differentiable, ∇2f(x) ⪰ αI =⇒
〈
x− y,∇f(x)−∇f(y)

〉
≥ α∥x− y∥22.

▶ Proof. Recall from calculus G(b)−G(a) =
∫ b
a g(θ)dθ. Next, a smart step, let θ = y + τ(x− y), then

dθ = (x− y)dτ . Consider integral range from 0 to 1 for τ we let G be ∇f and g be ∇2f , this gives

∇f(x)−∇f(y) =

∫ 1

0
∇2f

(
y + τ(x− y)

)
(x− y)dτ.

(left hand side is a vector, right hand side is matrix-vector product, also a vector)

▶ Take dot product with x− y on the whole equation on both sides〈
x− y, ∇f(x)−∇f(y)

〉
=

〈
x− y,

∫ 1

0
∇2f

(
y + τ(x− y)

)
(x− y)dτ

〉
≥

〈
x− y,

∫ 1

0
α(x− y)dτ

〉
= α∥x− y∥22,

where the inequality is due to ∇2f(x) ⪰ αI for all x: we have ∇2f
(
y + τ(x− y)

)
⪰ αI. ■
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α-strongly convex: the geometry of the lower bounded

f(x) : domf → R is α-strongly convex if

(1) domf is a convex and (2) ∀x,y ∈ domf : f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥x− y∥22
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f(−1) +∇f(−1)(y − (−1)) +
α

2
∥y − (−1)∥22

f(−1) +∇f(−1)(y − (−1))

Meaning: f is lower bounded by a quadratic curve with some curvature, which is also lower bounded by the 1st
order Taylor series (zero curvature)
=⇒ f is not “too flat” / at least “as curved as” the lower bound

In other words: f is at least α-amount of “bumpy”.
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ρ-weakly convex

▶ Recall about strong-convexity. For α > 0, a function f is α-strongly convex ⇐⇒ f −
α

2
∥x∥22 is convex

▶ Weak = the opposite of strong. For ρ > 0, a function is ρ-weakly convex ⇐⇒ f +
ρ

2
∥x∥22 is convex

▶ ∀x,y ∈ domf , we have any one of the following

1. f is ρ-weakly convex

2. 1st-order Taylor series at x is global under-estimator with an additional quadratic term with ρ > 0

f(y)+
ρ

2
∥x− y∥22 ≥ f(x) +

〈
∇f(x),y − x

〉
,

or we say f plus a quadratic is lower bounded by a linear function.

3. Jensen’s inequality with an additional quadratic term with ρ > 0

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)+

ρ

2
λ(1− λ)∥x− y∥22.

16 / 43



Remarks on convexity ... 1/2
▶ Strongly convex =⇒ strictly convex =⇒ convex =⇒ weakly convex.

The opposite is false.

▶ e.g., x4 is strictly convex but not strongly convex.
Why: x4 is not globally lower-bounded by x2. (recall if f is strongly convex than there exists a µ such
that f − µ

2
x2 is convex, for f = x4, there is no such µ)

▶ Convexity function needs not to be differentiable.

▶ That’s why we have epigraph and Jansen’s definition

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

which does not involve ∇f .

▶ Strongly convex functions are coercive.

▶ Other convexity

▶ log-convex
▶ invex
▶ pseudoconvex
▶ quasiconvex
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Remarks on convexity ... 2/2

▶ Convexity is only about “all local minima are global minima”.

▶ Q: If a function f is convex, is f differentiable?
A: Differentiability of f has nothing to do with convexity.

▶ Q: If a function f is convex, does min f has a solution?
A: The existence of solution of min f has nothing to do with convexity.

▶ Q: If a function f is convex, is the solution min f unique?
A: The uniqueness of the solution of min f has nothing to do with convexity, but it has something to do with strict
convexity

▶ Strict convexity: f has no more than 1 minimum

▶ can be none (no minimum)
▶ can be 1 (one minimum)
▶ no more than 1 (minimum is unique)
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Global Lipschitz continuity

A function f(x) : domf → R is globally Lipschitz if for any x,y ∈ domf , there exists a constant L ≥ 0 (the
Lipschitz constant) such that

|f(x)− f(y)| ≤ L∥x− y∥.

▶ Re-arrange gives
|f(x)− f(y)|

∥x− y∥
≤ L

y→x
≈ size of ∇f(x) ≤ L

=⇒ f is Lipschitz means the “slope” (rate of change) of f is bounded above globally by L.

▶ Removing the absolute value sign: f(x) ≤ f(y) + L∥x− y∥

f(x) ≥ f(y)− L∥x− y∥

means that f for all x is bounded above and below by a linear function constructed at y.
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The geometry of global Lipschitz continuity

f is globally Lipschitz ⇐⇒ f has no sharp change everywhere

⇐⇒ ∀x the curve f is entirely outside a cone generated by
the two linear functions in the previous page.
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Important note: such property is global, such cone exists for all points on f . i.e. the cone can “slide” along the
curve and the argument still holds.
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The importance of “global” Lipschitz

▶ L is defined in the least-upper-bound sense

L := sup
x̸=y

|f(x)− f(y)|
∥x− y∥

< +∞

▶ Since L is “global”, so it holds for any x,y

▶ Including derivative case x → y

▶ In this case

∣∣∣∣df(x)dx

∣∣∣∣ ≤ L

▶ So L is like ”the largest slope you can have”

▶ holds for any x,y =⇒ L is a pessimistic global constant

▶ Not adaptive to local structure
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Lipschitz continuity and differentiability

▶ Q: If f is Lipschitz continuous, is f differentiable?
A: No.

▶ Rademacher’s theorem: Lipschitz function is almost everywhere differentiable.
Almost everywhere ̸= everywhere.

▶ Example. |x|
▶ |x| is 1-Lipschitz but not differentiable at x = 0.
▶ However, the single point x = 0 has a measure zero2 on R, this is what “almost everywhere” means in

Rademacher’s theorem.

▶ Global Lipschitz vs local Lipschitz

▶ f is locally Lipschitz at x there exists a neighborhood of x such that f is Lipschitz continuous in thus
neighborhood

▶ For example,
√
x in [0, 1] is not globally Lipschitz

2The probability of getting this number in a random guess on the real line is zero, because there are infinitely
many real numbers.
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Composition of (globoally) Lipschitz functions

▶ Suppose f1 is L1-Lipschitz and f2 is L2-Lipschitz. Then f1 ◦ f2 is L1L2-Lipschitz.

▶ f1 ◦ f2 means the composition of f1 and f2, i.e., f1(f2)

▶ The proof: direct proof

∥(f1 ◦ f2)(x)− (f1 ◦ f2)(y)∥ ≤ ∥f1
(
f2(x)

)
− f1

(
f2(y)

)
∥

≤ L1∥f2(x)− f2(y)∥ f1 is L1-Lipschitz

≤ L1L2∥x− y∥ f2 is L2-Lipschitz

(The proof holds for any norm, not only for ℓ2 norm)

▶ This result is commutative: f1 ◦ f2 and f2 ◦ f1 are both L1L2-Lipschitz

▶ A small detail: in Euclidean space f1 ◦ f2 assumes the output dimension of f2 match the input dimension of f1

▶ Corollary: f1 ◦ f2 ◦ · · · ◦ fn is L1L2 · · ·Ln-Lipschitz
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Sum of Lipschitz functions

▶ Suppose f1 is L1-Lipschitz and f2 is L2-Lipschitz. Then α1f1 + α2f2 is |α1|L1 + |α2|L2-Lipschitz.

▶ Proof First we group the terms∥∥∥α1f1(x) + α2f2(x)− α1f1(y) + α2f2(y)
∥∥∥ ≤

∥∥∥α1

(
f1(x)− f1(y)

)
+ α2

(
f1(y)− f2(y)

)∥∥∥
Use triangle inequality3∥∥∥α1f1(x) + α2f2(x)− α1f1(y) + α2f2(y)

∥∥∥ ≤
∥∥∥α1

(
f1(x)− f1(y)

)∥∥∥+
∥∥∥α2

(
f1(y)− f2(y)

)∥∥∥
≤ |α1| ∥f1(x)− f1(y)∥+ |α2| ∥f1(y)− f2(y)∥
≤ |α1|L1∥x− y∥+ |α2|L2∥x− y∥
=

(
|α1|L1 + |α2|L2

)
∥x− y∥

3First for the squared term ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2 + 2|⟨a, b⟩| ≤ ∥a∥2 + ∥b∥2 + 2∥a∥∥b∥ = (∥a∥+ ∥b∥)2.
Remove the square we have ∥a+ b∥ ≤ ∥a∥+ ∥b∥
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Max of Lipschitz functions
▶ Suppose f1 is L1-Lipschitz and f2 is L2-Lipschitz. Then max{f1, f2} is max{L1, L2}-Lipschitz.
▶ Tools we need

a ≤ |a| a ≤ max{a, b}
{

a ≤ M

b ≤ M
⇐⇒ max{a, b} ≤ M a ≤ M and −a ≤ M imply |a| ≤ M

▶ Proof f1 is Lipschitz so |f1(x) − f1(y)| ≤ L1∥x − y∥. By f1(x) − f1(y) ≤ L1∥x − y∥, which gives

f1(x) ≤ f1(y) + L1∥x − y∥ ⇐⇒ f1(x) ≤ max{f1(y), f2(y)} + max{L1, L2}∥x − y∥ (1)

Similarly,
f2(x) ≤ max{f1(y), f2(y)} + max{L1, L2}∥x − y∥ (2)

By , (1) and (2) gives

max{f1(x), f2(x)} ≤ max{f1(y), f2(y)} + max{L1, L2}∥x − y∥ (3)

(3) holds by swapping (x,y) as (y,x), we have

max{f1(y), f2(y)} ≤ max{f1(x), f2(x)} + max{L1, L2}∥x − y∥ (4)

(3) ⇐⇒ max{f1(x), f2(x)} − max{f1(y), f2(y)}︸ ︷︷ ︸
a

≤ max{L1, L2}∥x − y∥

(4) ⇐⇒ max{f1(y), f2(y)} − max{f1(x), f2(x)}︸ ︷︷ ︸
−a

≤ max{L1, L2}∥x − y∥

By , ∣∣∣ max{f1(x), f2(x)} − max{f1(y), f2(y)}
∣∣∣ ≤ max{L1, L2}∥x − y∥. ■
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L-smooth function / Lipschitz continuous gradient

A function f : domf → R is L-smooth if for any two points x,y ∈ domf , there exists a constant L < +∞ such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.
▶ This assume f is differentiable.

▶ “f is L-smooth” is also called L-Lipschitz gradient, or C1,1
L .

▶ “f is L-smooth” is equivalent to ∣∣f(y)− f(x)−
〈
∇f(x),y − x

〉∣∣ ≤ L

2
∥y − x∥22.

Removing the absolute value sign gives{
f(y) ≤ f(x) +

〈
∇f(x),y − x

〉
+ L

2
∥y − x∥22

f(y) ≥ f(x) +
〈
∇f(x),y − x

〉
− L

2
∥y − x∥22

meaning that f is bounded above and below by a quadratic function.

▶ The word “smooth” (C1) in machine learning is different from the one used in analysis / manifold, in which smooth
means C∞ (infinitely differentiable), although all C1 functions are C∞ (2nd/higher-order derivative s all equal to
zero)
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Equivalent definitions of L-smoothness: A function f(x) is L-smooth if

▶ gradf is L-Lipschitz with L ≥ 0. I.e. ∀x,y ∈ domf we have L ≥ 0

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

▶ f is bounded by a quadratic function with L > 0:∣∣f(y)− f(x)−
〈
∇f(x),y − x

〉∣∣ ≤ L

2
∥y − x∥22.

▶ the gradient of f is monotonic with additional term with L > 0:〈
x− y,∇f(x)−∇f(y)

〉
≥

1

L
∥∇f(x)−∇f(y)∥22.

▶ the norm of the slope of ∇f (which is ∇2f) is bounded above.

▶ If f is twice differentiable, ∇2f(x) ⪯ LI, or all the eigenvalue of ∇2f(x) is below L.

These definitions are equivalent. See here for more about the 2nd definition.
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Proof of equivalence

We show for L > 0, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ implies
∣∣f(y)− f(x)−

〈
∇f(x),y − x

〉∣∣ ≤ L

2
∥y − x∥22.

Recall calculus G(b)−G(a) =
∫ b
a g(θ)dθ. Next, a smart step, let g(τ) = ⟨∇f(x+ τ(y − x)),y − x⟩ be a function

in τ and dθ = dτ . Consider the definite integral of g(τ) from 0 to 1, let G(b) = f(y) and G(a) = f(x), hence

f(y)− f(x) =

∫ 1

0

〈
∇f(x+ τ(y − x)),y − x

〉
dτ

=

∫ 1

0

〈
∇f(x+ τ(y − x))−∇f(x) +∇f(x),y − x

〉
dτ.

As ∇f(x) is independent of τ , can take out from the integral

f(y)− f(x) = ⟨∇f(x),y − x⟩+
∫ 1

0

〈
∇f(x+ τ(y − x))−∇f(x),y − x

〉
dτ.

The idea is to create the term ⟨∇f(x),y − x⟩ so that we can move it to the left and get∣∣f(y)− f(x)−
〈
∇f(x),y − x

〉∣∣
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Proof of equivalence - continue

|f(y)− f(x)− ⟨∇f(x),y − x⟩| =
∣∣∣ ∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩ dτ

∣∣∣
≤

∫ 1

0

∣∣ ⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩
∣∣dτ

Cauchy - Schwarz
≤

∫ 1

0
∥∇f(x+ τ(y − x))−∇f(x)∥ · ∥y − x∥dτ.

Look at ∥∇f(x+ τ(y − x))−∇f(x)∥, this is exactly where we can apply the Lipschitz gradient inequality

∥∇f(x+ τ(y − x))−∇f(x)∥ ≤ L∥τ(y − x)∥ ≤ L|τ |∥y − x∥ = Lτ∥y − x∥

where ∥τ(y − x)∥ = |τ |∥y − x∥ as norm is non-negative. Note that the integral range is from 0 to 1 so the absolute
sign in τ can be removed. Lastly∣∣f(y)− f(x)−

〈
∇f(x),y − x

〉∣∣ ≤
∫ 1

0
Lτdτ · ∥y − x∥2 =

L

2
∥y − x∥2.

30 / 43



L-smoothness: the geometry of the upper bound

f is L-smooth if ∀x,y ∈ domf , f(y) ≤ f(x) +
〈
∇f(x),y − x

〉
+ L

2
∥y − x∥22

−4 −2 0 2

0

10

20

y

f
(y
)

f

f(−1) +∇f(−1)(y − (−1)) + L
2
∥y − (−1)∥

Meaning: f is globally bounded above by a quadratic function.
i.e. f cannot be “too sharp” (f is flatter than the upper bound), or f cannot grow “too fast”.
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Relatively-smooth function

▶ f is L-smooth

f(y) ≤ f(x) +
〈
∇f(x),y − x

〉
+ L

1

2
∥y − x∥22.

▶ f is L-smooth relative to the distance kernel h

f(y) ≤ f(x) +
〈
∇f(x),y − x

〉
+ LDh(x,y),

where Dh is the Bregman divergence on the distance kernel h.

▶ Why relative smoothness

▶ for proving convergence of gradient descent on non-Euclidean geometry
▶ for function that is not uniformly smooth,

e.g. the slope of x2 − log(x) approaches to ∞ as x → 0, the value L change dramatically as x moves.
▶ application in minimizing 1

4
∥Ax− b∥44.

▶ mirror descent
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Lipschitz continuous Hessian

A function f(x) : domf → R has L-Lipschitz Hessian, if ∀x,y ∈ domf, ∃L < ∞ such that

∥∇2f(x)−∇2f(y)∥ ≤ L∥x− y∥.

▶ This assumes f is twice differentiable.

▶ This means the norm of ∇3f(x) is bounded above by L.

▶ f has L-Lipschitz Hessian is equivalent to∣∣∣∣f(x)− f(y)−
〈
∇f(x),y − x

〉
−

〈
∇2f(x)(y − x),y − x

〉∣∣∣∣ ≤ L

6
∥y − x∥32

see here for the proof.

Removing the absolute value sign, and make y the subject:f(y) ≥ f(x)−
〈
∇f(x),y − x

〉
−

〈
∇2f(x)(y − x),y − x

〉
− L

6
∥y − x∥32

f(y) ≤ f(x)−
〈
∇f(x),y − x

〉
−

〈
∇2f(x)(y − x),y − x

〉
+ L

6
∥y − x∥32

which means f(y) is bounded above and below by two cubic functions parameterized at the point x for all y.
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Strongly convex & smooth function

▶ A function f : dom → R is α-strongly convex and β-smooth if

▶ f is β-smooth, which means f is differentiable and ∇f is monotone〈
x− y,∇f(x)−∇f(y)

〉
≥ 1

β
∥∇f(x)−∇f(y)∥22.

▶ f is α-strongly convex, which means gradient is strongly monotone〈
x− y,∇f(x)−∇f(y)

〉
≥ α∥x− y∥22.

▶ As f satisfies both monotone inequalities, so we have〈
x− y,∇f(x)−∇f(y)

〉
≥

αβ

α+ β
∥x− y∥22 +

1

α+ β
∥∇f(x)−∇f(y)∥22.

Details here.

35 / 43

https://angms.science/doc/CVX/CVX_alphastronglyconvex.pdf


Table of Contents

Convex
α-strongly convex
ρ-weakly convex

Lipschitz
Smooth / Lipschitz gradient
Relatively-smooth
Lipschitz continuous Hessian

Strongly convex & smooth

Other properties
Lower semicontinuous
Closed, proper, level bounded
argmin
Polyak- Lojasiewicz & Kurdyka- Lojasiewicz

36 / 43



Epigraph: many properties of f can be translated to the language of epigraph

Visualization of graphf and epi f

I epi f = all the points of Rn+1 lying on or above graphf .

I Example: f(x) = x2

I n = 1 (1-dimensional)

I graphf :=
n

(x, y) 2 R ⇥ R : y = f(x)
o

is a 1d curve in a 2d space.

I epi f :=
n

(x, ↵) 2 R ⇥ R : ↵ � f(x)
o

is a 2d set in a 2d space.

5 / 28 Details.
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Lower semicontinuity (l.s.c.)

▶ R := R ∪ {+∞} is the extended real line.

▶ A function is continuous means it has no “jump”.

f is l.s.c. at x̄ ⇐⇒ lim inf
x→x̄

f(x) = f(x̄)

⇐⇒ f allows jump but still continuous if viewed from below

⇐⇒ f has a closed epigraph

▶ Why care about l.s.c.: indicator function of a closed convex set are all l.s.c..

38 / 43



Closed, proper function & lower level-bounded

▶ A function f is proper if it never takes the value −∞ and domf ̸= ∅

i.e., f(x) > −∞ ∀x and f(x) < +∞ for at least one x

OR equivalently, epi f ̸= ∅ without a vertical line 4.

▶ A proper function f is closed if domf is closed and f is lower semicontinuous at each x ∈ domf

OR equivalently, epi f is closed.

▶ A function f is lower level-bounded if if all its level sets are bounded

4a vertical line in the graph of f can move downward and touch −∞
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argmin (argument of minimum = set of minimizer)

▶ Given a function f , its argmin is the set of minimizer defined as

argmin f :=
{
x ∈ domf | f(x) = inf

z∈domf
f(z)

}
.

Such set can be

▶ empty no minimizer for f
▶ singleton has minimizer for f , unique
▶ set-valued (multiple elements) has minimizers for f , not unique

▶ IF f is closed convex proper
THEN argmin f is closed convex and possibly empty5

▶ IF f is proper, lsc, level bounded
THEN argmin f is nonempty and compact. See Theorem 1.9 (attainment of a minimum)6

5argmin f = ∅ that means there is no minimizer for f
6Rockafella and Wets, Variational Analysis
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Polyak- Lojasiewicz and Kurdyka- Lojasiewicz

▶ f is Polyak- Lojasiewicz (P L) if ∃µ > 0 such that ∥∇f(x)∥22 ≥ µ
(
f(x)− f∗) for all x ∈ domf .

▶ P L is weaker than strong convexity.
▶ If f is µ-strongly convex, then f is µ-P L.
▶ P L can be used as a tool to prove convergence of gradient descent, see here for more.

▶ Kurdyka- Lojasiewicz

▶ Generalized P L : it can handles nonsmooth function
▶ K L is a tool for proving convergence of gradient method on nonsmooth optimization.
▶ Very technical. The original full definition is long, so we give a simplified one here.

f is K L at a point x̄ if there exists c > 0 and µ ∈ [0, 1) such that ∥∂f(x)∥2 ≥ 1
c(1−µ)

(
f(x)− f(x̄)

)µ
holds for all x within a neighbourhood of x̄. For ∂f(x), we use the norm of the subgradient with
smallest ℓ2 norm to define ∥∂f(x)∥2.

▶ If f is a semi-algebraic function, the f is K L

▶ Semi-algebraic function

▶ A function is semi-algebraic if epi f is a semialgebraic set.
▶ A set is semialgebraic if it is defined by polynomial equations and polynomial inequalities
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Cheat sheet f is proper if epi f is non-empty and has no vertical line proper
proper f is closed if epi f is closed closedness of proper f
f is l.s.c. if epi f is closed. Lower semicontinuous
argmin f is closed convex if f is closed convex proper argmin f closed convex
argmin f nonempty compact if f is proper, lsc, level bounded argmin f nonempty compact
f is convex if domf is convex and
1. f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) Jansen
2.

〈
x − y,∇f(x) − ∇f(y)

〉
≥ 0 Gradient is monotone

3. f(y) ≥ f(x) +
〈
∇f(x), y − x

〉
1st-order Taylor series is global support

4. ∇2f(x) ⪰ 0, if f is twice differentiable Hessian argument
5. epi f is convex epigraph is convex set
f is α-strongly convex if domf is convex and

1. f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) − α
2

λ(1 − λ)∥x − y∥22 Jansen

2.
〈
x − y,∇f(x) − ∇f(y)

〉
≥ α∥x − y∥22 Strongly monotone

3. f(y) ≥ f(x) +
〈
∇f(x), y − x

〉
+ α

2
∥x − y∥22 Global quadratic lower bound

4. f(x) − α
2

∥x∥22 is convex Convexity

5. ∇2f(x) ⪰ αI, if f is twice differentiable Hessian argument
f is ρ-weak convex if domf is convex and

1. f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) +
ρ
2
λ(1 − λ)∥x − y∥22 Jansen

3. f(y) +
ρ
2
∥x − y∥22 ≥ f(x) +

〈
∇f(x), y − x

〉
1st-order Taylor series is global support

4. f(x) +
ρ
2
∥x∥22 is convex Convexity

f is L-Lipschitz gradient (L-smooth) if f is differentiable and
1. ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ Definition of Lipschitz

2.
∣∣∣f(y) − f(x) −

〈
∇f(x), y − x

〉∣∣∣ ≤ L
2

∥y − x∥22 Quadratic inequality

3.
〈
x − y,∇f(x) − ∇f(y)

〉
≥ 1

L
∥∇f(x) − ∇f(y)∥22 monotone

4. ∇2f(x) ⪯ LI, if f is twice differentiable Hessian argument
f is L-Lipschitz Hessian if f is twice differentiable and

1. ∥∇2f(x) − ∇2f(y)∥ ≤ L∥x − y∥ Definition of Lipschitz

2.
∣∣f(x) − f(y) −

〈
∇f(x), y − x

〉
−

〈
∇2f(x)(y − x), y − x

〉∣∣ ≤
L

6
∥y − x∥32 Cubic inequality

f is α-strongly convex and β-smooth
〈
x − y,∇f(x) − ∇f(y)

〉
≥

αβ

α + β
∥x − y∥22 + 1

α+β
∥∇f(x) − ∇f(y)∥22
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