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Some “old” terminology

Notation used by Nesterov, Mordukhovich, or any classical real analysis textbooks:

v

fecC® : f(x)is continuous

> feC' : f(x) and Vf(x) are continuous

> fcC? : f(x), Vf(x) and V2 f(x) are continuous

> fecC"' . f(x)and Vf(x) are continuous, V f(x) is L-Lipschitz with L < 400
> fe C’f’p . fis k times continuously differentiable and pth derivative is L-Lipschitz
> feFr . fisCF and convex

> fe S]]fLL : fis FF and M-strongly convex
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Real-valued convex function: A function f(x) : domf — R is convex if
» domf is a convex set!

» Vx,y € domf, we have any one of the following

1. Jensen's inequality: f(Ax + (1 —A)y) < Af(m) + (1 — \)f(y). chord description
2. epi f is a convex set. epigraph description
3. 1st-order Taylor series at x is a global support: f(y) > f(x) + (Vf(z),y —x) support description
4. Gradient is monotone: (x —y,Vf(z) — Vf(y)) > 0. gradient description

(For 3,4, if f is not differentiable, we replace gradient by subgradient.)

» The 4 definitions are equivalent / if and only if. See optimization books for the proofs. is a proof of
1 < 3.
> If f is twice differentiable, it is convex iff V2 f(z) > 0. Hessian description

» f is strictly convex if <,> became <, > (i.e. strict inequality).

ldomf can be open set. However, in optimization usually domf is closed because optimization over open set has
no solution. For example, maximizing x over the open set x < 3 has no solution.
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https://angms.science/doc/CVX/CVX_Bregman.pdf

Convexity: the geometry of Jensen's inequality (chord description)

f :domf — R is convex IF

(1) domf is a convex set and
(2) Ve, y € domf,

SAM(=) + (1 -Nf(y)

—F—

f
A+ (1- Ny
fOz+ (1= Ny)
—E-Af(z) + (1= N f(y)
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Convexity: epigraph is a convex set

f :domf — R is a convex function <= epigraph of f is a convex set proof in p.10

Visualization of graphf and epi f
» cpi f = all the points of R"*! lying on or above graphf.
» Example: f(z) = 22

» n =1 (1-dimensional)

» graphf = {(m,y) ERXR:y= f(m)} is a 1d curve in a 2d space.

> epif = {(xa) ERXR:a> f(:L)} is a 2d set in a 2d space.

s/ | Detalls.
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https://angms.science/doc/CVX/Epigraph.pdf
https://angms.science/doc/CVX/Epigraph.pdf

Convexity: epif is a convex set

» f:domf — R is a convex function <= epi f is a convex set.

» What's the big deal: we connected the function language to the set language
» Suppose epi [ is a closed set for a function f

» If f is a convex function, then epi f is a convex set

» Fact: “any closed convex sets can be written as an intersection of half space” (not go to the details here)

» In other words, if epi f is convex, then

epif = ﬂ H = Q{z : <ai,a:>2bi}.

HeH

Figure: An illustrative example: two hyperplane hi, ho
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Convexity: the geometry of 1st-order Taylor series

f
» The halfspace description of epi f can be translated to —5— f(=1) + V(=) (y — (-1))

an inequality on function 20 +

» f:domf — R is convex if :

1. domf is a convex set
2. Vx,y € domf, we have
f@) +(Vf(=),y —=). (+)

i.e. a tangent supports f at a fixed point =

10 +

f(y)

» (%) assumes f is differentiable at . If f is not
differentiable at @, we generalize gradient to subgradient:

fy) > f(2) + (g, vy — ). (#) : : :
l.e., we replace V f(x) by any vector g that (#) holds. y

> In fact, subgradient is defined using (#) » The gap between f and the 1st-order Taylor series is
known as the
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https://angms.science/doc/CVX/CVX_Bregman.pdf

Convexity: the geometry of supporting hyperplane

» f:domf — R is convex if :

fy) > f(®) + (g, y —z). (#) 7
—E- D+ VD - (-D)

— <|::1J , [f(y?; : ?(w)]> < Ofor all (y,t) € epi f 20 | o [_qJ

el

where [—ql} is the normal of the supporting hyperplane.

10 +

f(y)

» Example. Te figure to the right show a

» Here f is a single variable function, so q is a scalar.

» The slop of f at x = —1 is shown by the red line

» The slop of f at x = —1 is a negative value, say
-0.5

» Therefore the normal {_ql = |:7_015} points

towards the lower left corner, and this arrow is the 4 9 0 9
normal to the supporting hyperplane y

» The term “support” here means the hyperplane
just touch epi f
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Why convex and differentiable f is lower-bounded by their own 1st-order Taylor series?

» Consider a pedagogical case: f is (twice) differentiable of single variable, then

I () flz) + f(z)(y —z) + 0(/%/ —x) Taylor series
= f@+f@y-—a)+ Ly -2)?  seel
> f(@)+ f'(=)(y — =) see 2
1. Lagrange remainder theorem: using mean-value theorem, the remainder term
oly—x) = fT@)(y — x)? for some £ in the interval [z, y].
2.

As f is convex, which means f” > 0 so the last term is nonnegative.
» The arguments above generalize to multi-variable f.

» This is not a proof but an illustration, because

» apart from assuming f is differentiable, we assumed f is twice differentiable,
» we didn't show that f is convex <= its Hessian is positive semi-definite.
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Convexity: gradient is monotone

> A differentiable f : domf — R is a convex function <= (x —y,Vf(x) — Vf(y)) > 0.

> A possibly non-differentiable f : domf — R is a convex function < (x —y,df(x) — 0f(y)) > 0.

» Proof f is convex, so f@) > fy)+Ofy),z—y) (1)
fy) = fl@)+0f(=)y—=) (2)
0 > (0f(y)—of(x),z—y) (1+2)
0 < (Of(x)—0f(y),=z—y) flip the sign of (1+2)

» What is monotone: a scalar-valued function g : R — R is monotone if a > b implies g(a) > g(b).
» a>band g(a) > g(b) mean a — b > 0 implies g(a) — g(b) > 0, so we have two non-negative things.
P These two non-negative things can be captured by a single inequality (a — b)(g(a) — g(b)) > 0.
P For vector-valued function V f, we replace multiplication by inner product, thus <m -y, Vf(z) — Vf(y)> >0

» Kachurovskii’'s theorem: a convex function has monotonic operators as their derivatives.

» Some histroy

» Kachurovskii, R. I. (1960). “On monotone operators and convex functionals”.
P> Minty, G. J. (1964). “On the monotonicity of the gradient of a convex function”.
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Convexity: a big picture
Function language

Set language

“Jansen inequality / inner chord description”

__ inner chord as an inner line in the epi f

““epigraph is a convex set”

convex set is

intersection of halfspaces

~— __atangential hyperplane is support h2

5 — f
s e+ (1- Ay
4 FOa+ (1= V)
5 Af(@) + (1 - NF()
N N
) «
2 \
\
1 \
0l = S~
-2 -1 0
-
- f
—&— f(-1) + V(1) (y — (1))
20
2 o,
N - «
0 A -
T
—4 -2 0 2

Y
“Taylor series is a global support / under estimator”’

»

hq

““epigraph is intersection of halfspaces”
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Strong convexity: A function f : domf — R is a-strongly convex if

» domf is a convex set.

» Va,y € domf, we have any one of the following

1. Jensen's inequality with an additional quadratic term with o > 0
@+ (1= Ny) <Mf(x)+ (1N f(y) —%A(l Nz -yl
2. gradf is monotonic with an additional quadratic term with o > 0
(z—y.Vf(x) - Vf(y) = ollz—yl3=0.
3. lst-order Taylor series at « is global under-estimator with an additional quadratic term with o > 0
f) 2 f(@) + (VI(@),y - 2)+5 e~ yl3,

or we say f is lower bounded by a quadratic function.
4. With a > 0, the function f(z) — £||z||3 is convex.

» These definitions are equivalent.

> If f is twice differentiable, it is a-strongly convex iff V2 f(x) = al.
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[llustrating equivalence between definitions of strong convexity

For o > 0 and f twice differentiable, V2 f(z) = ol => (x—y,Vf(z) — Vf(y)) > |z —yl3.

» Proof. Recall from calculus G(b) — G(a) = f; g(0)df. Next, a smart step, let § = y + 7(x — y), then
df = (x — y)dr. Consider integral range from 0 to 1 for 7 we let G be Vf and g be V2§, this gives

1
V() — Vi) = /0 V2 (y + (@ — v)) (@ — y)dr.

(left hand side is a vector, right hand side is matrix-vector product, also a vector)

» Take dot product with & — y on the whole equation on both sides

1
(v Vi@ -VIw) = (e-v. [ Vy+r@—v)@-vir)

1
R
0
= afz-yl3,
where the inequality is due to V2f(x) = oI for all z: we have V2f(y + 7(z — y)) = ol. ]
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a-strongly convex: the geometry of the lower bounded

f(z) : domf — R is a-strongly convex if
(1) domf is a convex and (2) Va,y € domf: f®)+ Vi) (y—=x) + %Hw -yli3

)

Meaning: [ is lower bounded by a quadratic curve with some curvature, which is also lower bounded by the 1st
order Taylor series (zero curvature)
= fis not “too flat” / at least “as curved as” the lower bound

In other words: f is at least a-amount of “bumpy”.
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p-weakly convex

@
» Recall about strong-convexity. For oo > 0, a function f is a-strongly convex <— f — 5||acH§ is convex
» Weak = the opposite of strong. For p > 0, a function is p-weakly convex <= f + g||m||§ is convex

» Va,y € domf, we have any one of the following

1. fis p-weakly convex

1st-order Taylor series at @ is global under-estimator with an additional quadratic term with p > 0

2.
F@+ Ll i3 = f(@) + (Vi @),y - @),

or we say f plus a quadratic is lower bounded by a linear function.

3. Jensen’s inequality with an additional quadratic term with p > 0

FO@+ (1= Ny) < M(@) + (1= NF @) +5A0 = V] - yl3-
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Remarks on convexity ... 1/2
» Strongly convex = strictly convex = convex =—> weakly convex.
The opposite is false.

» eg., z* is strictly convex but not strongly convex.

Why: 2* is not globally lower-bounded by 2. (recall if f is strongly convex than there exists a u such
that f — %xQ is convex, for f = x*, there is no such )

» Convexity function needs not to be differentiable.

» That's why we have epigraph and Jansen’s definition

fOz+ (1= Ny) <Af(z) + (1= N)f(y),
which does not involve V f.

» Strongly convex functions are coercive.

» Other convexity
» log-convex
» invex
» pseudoconvex
» quasiconvex
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https://angms.science/doc/CVX/coercive.pdf

Remarks on convexity ... 2/2

» Convexity is only about “all local minima are global minima”.

» Q: If a function f is convex, is f differentiable?
A: Differentiability of f has nothing to do with convexity.

» Q: If a function f is convex, does min f has a solution?
A: The existence of solution of min f has nothing to do with convexity.

» Q: If a function f is convex, is the solution min f unique?
A: The uniqueness of the solution of min f has nothing to do with convexity, but it has something to do with strict
convexity

» Strict convexity: f has no more than 1 minimum

» can be none (no minimum)
» can be 1 (one minimum)
» no more than 1 (minimum is unique)
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Global Lipschitz continuity

A function f(x) : domf — R is globally Lipschitz if for any @,y € domf, there exists a constant L > 0 (the
Lipschitz constant) such that

|f (@) — F(y)| < Lz - yl|.
» Re-arrange gives

W@ ZTWl _f v2® e of vi(a) < L
llz — yll

—> f is Lipschitz means the “slope” (rate of change) of f is bounded above globally by L.

» Removing the absolute value sign:
f() < f(y) + Lz — y
f(x) > f(y) — Lz — y

means that f for all « is bounded above and below by a linear function constructed at y.
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The geometry of global Lipschitz continuity

f is globally Lipschitz <= f has no sharp change everywhere

<=  Vx the curve f is entirely outside a | cone generated by
the two linear functions in the previous page.

10 +

—4 -2 0 2 4
x

Important note: such property is global, such cone exists for all points on f. i.e. the cone can “slide” along the

curve and the argument still holds.
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The importance of “global” Lipschitz

» L is defined in the least-upper-bound sense

Lo sup M@ I

a2y T —yll
» Since L is “global”, so it holds for any x,y
» Including derivative case € — y

df ()
dx

» In this case

-
» So L is like "the largest slope you can have”

» holds for any x,y = L is a pessimistic global constant

» Not adaptive to local structure
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Lipschitz continuity and differentiability

» Q: If f is Lipschitz continuous, is f differentiable?
A: No.

» Rademacher’s theorem: Lipschitz function is almost everywhere differentiable.
Almost everywhere # everywhere.

> Example. |z
» |z| is 1-Lipschitz but not differentiable at = = 0.

» However, the single point z = 0 has a measure zero® on R, this is what “almost everywhere” means in
Rademacher's theorem.

» Global Lipschitz vs local Lipschitz

» fis locally Lipschitz at x there exists a neighborhood of x such that f is Lipschitz continuous in thus
neighborhood
» For example, v/z in [0, 1] is not globally Lipschitz

2The probability of getting this number in a random guess on the real line is zero, because there are infinitely
many real numbers.
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Composition of (globoally) Lipschitz functions

» Suppose f1 is Li-Lipschitz and fs is La-Lipschitz. Then f1 o fo is Lj Lo-Lipschitz.
» f1 o fa means the composition of f1 and fa, i.e., f1(f2)

» The proof: direct proof
[(frof2)(@) = (frof2)@I < Ilfi(f2(2) — fr(f2(¥)]l
< Li||fa(z) — f2()ll f1is Li-Lipschitz
< LiLs|lx — y|| fa is Lo-Lipschitz
(The proof holds for any norm, not only for £2 norm)
» This result is commutative: f1 o fo and f2 o f1 are both L La-Lipschitz

» A small detail: in Euclidean space f; o fo assumes the output dimension of fa match the input dimension of f;

» Corollary: f1 0 foo---0 fpis L1Lg--- Ln-Lipschitz
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Sum of Lipschitz functions

» Suppose f1 is Li-Lipschitz and f2 is Lo-Lipschitz. Then o f1 + a2 f2 is |a1|L1 + |a2|Le-Lipschitz.

» Proof First we group the terms

o1 /1(@) + azfa(@) — a1 fi(w) + a2fo@)| < o1 (@) = 1 @) + a2 (H1(w) — o) |
Use triangle inequality3

Hoq (fl(w) - fl(y)) H + HO@ (f1(y) - f2(y)) H

x| [|f1 () = fr(@)]l + || [1f1(y) — f2(¥)l
lar| Lifje — yl| + |oz| L2z — |

(laal L1 + Jaz|L2 ) = -yl

Halfl(w) + oz fo(x) — an f1(y) + a2f2(y)H

ININ A

*First for the squared term [|a + b||* < [la||* + [|b]|* + 2{a, b)| < [|al* + [[b]I* + 2lla][|[bl]l = (llal| + [b])>.

Remove the square we have ||a + b|| < ||a]| + ||b]|
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Max of Lipschitz functions
P Suppose f1 is Li-Lipschitz and f2 is La-Lipschitz. Then max{ f1, f2} is max{L1, La}-Lipschitz.
P> Tools we need

b< M

<M
a < la| a < max{a, b} { w= < max{a,b} <M a < M and —a < M imply |a| < M

P> Proof f; is Lipschitz so |f1(x) — fi1(y)| < Lillz — y||. By == fi(®) — f1(y) < Li||@ — y||, which gives

fil®) < fily) + Lille -yl <= fi(e) < max{f1(y), f2(y)} + max{Li1, Lo} ||z — yl|

Similarly,
fa(z) < max{fi(y), f2(¥)} + max{Li, La}llz -yl  (2)

By -, (1) and (2) gives

max{fi(z), f2(z)} < max{f1(y), f2(y)} + max{L1, L2}|lz — y|
(3) holds by swapping (x,y) as (y, x), we have

max{f1(y), f2(y)} < max{fi(x), f2(x)} + max{L1, L2 }|lz — y|

(3

4

(B) = max{fi(®), f2(2)} — max{f1(y), f2(y)} < max{Li, L2}z -yl

@) = max{/1(y), ()} — max{fi(@), fa(@)} < max{Li,La}|z - y|

—a

By
max{fi(x), f2(x)} — max{fi1(y), f2(y)}| < max{Ly, La}|lz — yl.

€]
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L-smooth function / Lipschitz continuous gradient

A function f : domf — R is L-smooth if for any two points ¢,y € domf, there exists a constant L. < 400 such that
V() = Vil < Lile — yll.
» This assume f is differentiable.
» “fis L-smooth” is also called L-Lipschitz gradient, or C]{"l.

» “fis L-smooth” is equivalent to

) - (&)~ (V@) y— )| < 1y - =l
Removing the absolute value sign gives
{f(y) < f@)+ (V@) y—=z) + 5y — =3
f) > f@) +(Vf(@),y —2) - 5y — |3
meaning that f is bounded above and below by a quadratic function.

» The word “smooth” (C!) in machine learning is different from the one used in analysis / manifold, in which smooth
means C*° (infinitely differentiable), although all C! functions are C°° (2nd/higher-order derivative s all equal to
zero)
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Equivalent definitions of L-smoothness: A function f(z) is L-smooth if

» gradf is L-Lipschitz with L > 0. l.e. Va,y € domf we have L >0
IVf(@) - Vil < Lilz - yll.
» f is bounded by a quadratic function with L > 0:
7w) ~ f(@) ~ (Vi) y — )| < 5y~ =l
» the gradient of f is monotonic with additional term with L > 0:
(@~ y,Vi(2) - Vi) > 1 IVi@) - Vw3
» the norm of the slope of V f (which is V2 f) is bounded above.

> If f is twice differentiable, V2 f(x) < LI, or all the eigenvalue of V2f(x) is below L.

These definitions are equivalent. See for more about the 2nd definition.
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https://angms.science/doc/CVX/CVX_betasmoothsandwich.pdf

Proof of equivalence

WHMWbﬂDWJWﬂ@*VﬂwHSMM*MWm%ﬂﬂw*f@%%Vﬂ@wfwﬂSgwfmﬁ

Recall calculus G(b) — G(a) = f: 9(0)d0. Next, a smart step, let g(7) = (Vf(x +7(y — x)),y — x) be a function
in 7 and df = dr. Consider the definite integral of g(7) from 0 to 1, let G(b) = f(y) and G(a) = f(x), hence

fw) - @ = [ (Vi -2y o)ir

/<Vf Tty — @) V(@) + Vf(x),y - o )dr

As V f(x) is independent of 7, can take out from the integral

1
(y) = f(@) = (Vf(@),y - @) + /0 (Vi@+rly—2) - Vi@)y-z)dr

The idea is to create the term (V f(x), y — «) so that we can move it to the left and get

|f(y) = f(@) = (Vf(z),y — )]
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Proof of equivalence - continue

1f(y) = f(z) = (Vf(2),y — z)|

)/01 (Vix+1y—z) - Vfx),y—x dr‘

IN

1
/0 (Vi +(y - x) - Vi@),y - ) |dr

Cauchy - Schwarz

1
< / IVf(x+7(y — ) - V@) -y —=|dr.
0

Look at ||V f(x + 7(y — x)) — Vf(x)]|, this is exactly where we can apply the Lipschitz gradient inequality
IVf(®+7(y — =) = Vi@ < Lliv(y —2)|| < Li7|lly — z|| = L7|ly — =

where ||7(y — «)|| = |7]|ly — «|| as norm is non-negative. Note that the integral range is from 0 to 1 so the absolute
sign in 7 can be removed. Lastly

1
1)~ f@) = (VS@hy—2)| < [ Lrar-y—al® = Sy —al® O
0
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L-smoothness: the geometry of the upper bound

f is L-smooth if Va,y € domf, f@) +{(Vf(z),y—x)+ %Hy —x||3
20 { f
— D+ VD - (D) + Sy = (<)l
=
= 104
O £4
4 5 0 )
Yy

Meaning: f is globally bounded above by a quadratic function.
i.e. f cannot be “too sharp” (f is flatter than the upper bound), or f cannot grow “too fast”.
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Relatively-smooth function

» fis L-smooth
1 .
Fy) < f@) +(Vf@)y — ) + L |ly — =l

» fis L-smooth relative to the distance kernel h

f(y) S f(w) + <Vf(m)’y - m> + LD;I,(m,y),

where Dy, is the on the distance kernel h.

» Why relative smoothness

» for proving convergence of gradient descent on non-Euclidean geometry
» for function that is not uniformly smooth,

e.g. the slope of z? — log(x) approaches to co as © — 0, the value L change dramatically as  moves.

> application in minimizing 1| Az — b|1.
>
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https://angms.science/doc/CVX/CVX_Bregman.pdf
https://angms.science/doc/CVX/MD_algo.pdf

Lipschitz continuous Hessian

A function f(x) : domf — R has L-Lipschitz Hessian, if Va,y € domf, 3L < co such that
V2 f(z) = V2 f ()|l < Lljz - y]|.
» This assumes f is twice differentiable.

» This means the norm of V3 f(z) is bounded above by L.

» f has L-Lipschitz Hessian is equivalent to

F@) ~ 1)~ (Vi@),y — @) — (V2 @)y — @)y —2)| < Clly ol

see for the proof.
Removing the absolute value sign, and make y the subject:

{f(y) > f(x) = (Vf(@),y —a) —(Vf(z)(y — ),y —x) — §lly — [
fy) < f(@) = (Vf(@),y —z) = (V2 f(2)(y — =),y —2) + §lly — =

which means f(y) is bounded above and below by two cubic functions parameterized at the point « for all y.
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https://angms.science/doc/CVX/CVX_HessianMLipschitz.pdf
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Strongly convex & smooth function

» A function f: dom — R is a-strongly convex and SB-smooth if

» fis B-smooth, which means f is differentiable and V f is monotone
1
(x—y, V(@) -Vi(y) > 3IVi@) - Vi)l
» f is a-strongly convex, which means gradient is strongly monotone

(x—y,Vf(z) - Vi) > alz—yl3.

» As f satisfies both monotone inequalities, so we have

_ _ B o2y L _ 2
(z -y, Vf(®)-Vf(y) > a+5\\w y||2+a+6||vf($) Vil

Details
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https://angms.science/doc/CVX/CVX_alphastronglyconvex.pdf
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Epigraph: many properties of f can be translated to the language of epigraph

Visualization of graphf and epi f

» epi f = all the points of R™*! lying on or above graphf.
» Example: f(z) = 22

» n =1 (1-dimensional)

» graphf := {(x,y) eRxR:y= f(m)} is a 1d curve in a 2d space.

> epif = {(x,a) ERxR:a> f(x)} is a 2d set in a 2d space.

s/28 | Details.

37/43


https://angms.science/doc/CVX/Epigraph.pdf

Lower semicontinuity (l.s.c.)
» R:=RU {400} is the extended real line.

» A function is continuous means it has no “jump”.
fislsc.at@ <= liminf f(x) = f(&)
T—T
<= f allows jump but still continuous if viewed from below

<= f has a closed epigraph

L.S.C. (epi f is closed) Not L.S.C. (epi f is open)

» Why care about l.s.c.: indicator function of a closed convex set are all l.s.c..
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Closed, proper function & lower level-bounded

» A function f is proper if it never takes the value —co and domf # &

i.e.,, f(x) > —oo Ve and f(x) < 4oo for at least one x

OR equivalently, epif # @ | without a vertical line *.

» A proper function f is closed if domf is closed and f is lower semicontinuous at each z € domf

OR equivalently, epi f is closed.

» A function f is lower level-bounded if if all its level sets are bounded

“4a vertical line in the graph of f can move downward and touch —oo
39/43



argmin (argument of minimum = set of minimizer)

» Given a function f, its argmin is the set of minimizer defined as

argmin f = {a: € domf | f(x) = inf f(z)}

zcdomf

Such set can be

> empty no minimizer for f
» singleton has minimizer for f, unique
> set-valued (multiple elements) has minimizers for f, not unique

» IF f is closed convex proper
THEN argmin f is closed convex and possibly empty®

» IF f is proper, Isc, level bounded
THEN argmin f is nonempty and compact. See Theorem 1.9 (attainment of a minimum)®

Sargmin f = @ that means there is no minimizer for f
6Rockafella and Wets, Variational Analysis
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Polyak-tojasiewicz and Kurdyka-tojasiewicz

> f is Polyak-tojasiewicz (PL) if 3u > 0 such that ||V f(z)||3 > u(f(x) — f*) for all & € domf.
> PL is weaker than strong convexity.
» If f is u-strongly convex, then f is u-PL.
> PL can be used as a tool to prove convergence of gradient descent, see for more.

» Kurdyka-tojasiewicz

» Generalized PL : it can handles nonsmooth function

> KL is a tool for proving convergence of gradient method on nonsmooth optimization.

» Very technical. The original full definition is long, so we give a simplified one here.
f is KL at a point & if there exists ¢ > 0 and p € [0,1) such that ||0f(x)|]2 > ﬁ(f(:c) — f(@)"
holds for all & within a neighbourhood of &. For df(x), we use the norm of the subgradient with
smallest £2 norm to define ||0f(x)]|2.

» If f is a semi-algebraic function, the f is KL

» Semi-algebraic function

» A function is semi-algebraic if epi f is a semialgebraic set.
> A set is semialgebraic if it is defined by polynomial equations and polynomial inequalities
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Cheat Sheet £ is proper if epi f is non-empty and has no vertical line
proper £ is closed if epi f is closed
fis ls.c. if epi f is closed.
argmin f is closed convex if f is closed convex proper
argmin f nonempty compact if f is proper, Isc, level bounded
f is convex if dom f is convex and
L fOa+ (1 — Ny) < M) + (1 - N F(w)
(x =y, Vf(x) = Vf(y)) >0
S F (W) 2 f(2) +(Vf(x),y — =)
V2f(m) > 0, if f is twice differentiable
epi f is convex
is a-strongly convex if dom f is convex and
FOE 4+ (1= Ny) S Af@) (1= NF) — A0 = Nz -yl
Aw =y, V(@) = V(W) > allz — yl3
F@W) 2 F@) (V@) y— )+ Sl — vl
Cf(@) = S 2113 is convex
. V2f(x) = al,if f is twice differentiable
is p-weak convex if dom f is convex and
PO 4 (L= Ny) S Af@) + (1= NFW) + 520 = Nlle - yl3
CF@) A+ Blle — w3 > F2) + (V) y — =)
L f(x) + ‘S—HIH% is convex
is L-Lipschitz gradient (L-smooth) if f is differentiable and
V@) = VW < Lz =yl
@) = £@) = (Vi@ Y - o) < Ky - I3
e =y, V(@) = VW) > EIVFE) = VI3
. V2 f(x) < LI, if f is twice differentiable
f is L-Lipschitz Hessian if f is twice differentiable and
LIV2 i) = V2F @)l < Lz - y|

2 L 3

2 |f(2) = f(y) —(V (@), y —z) —(VEf(a)(y — @),y —x)| < glly —zll3
afB

+ 8

w N

RN B NN CHE SR N

[N

A w N o=

f is a-strongly convex and [3-smooth <m — vy, Vf(ze) — Vf(’y)> >

proper
closedness of proper f

Lower semicontinuous

argmin f closed convex
argmin f nonempty compact

Jansen
Gradient is monotone
1st-order Taylor series is global support

Hessian argument

epigraph is convex set
Jansen

Strongly monotone

Global quadratic lower bound
Convexity

Hessian argument

Jansen
1st-order Taylor series is global support

Convexity

Definition of Lipschitz
Quadratic inequality
monotone

Hessian argument
Definition of Lipschitz

Cubic inequality

le —yli3 + o35 IVi(@) ~ Vi3
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