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Constrained optimization problem

▶ Given f : Rn → R.

▶ Unconstrained optimization argmin
x

f(x) all x feasible

▶ Constrained problem argmin
x∈C

f(x) not all x feasible

▶ If we can characterize C by a set of inequalities and equalities

C =
{
x
∣∣∣ gi(x) = 0, hi(x) = 0

}
,

we arrive at the a textbook formulation

argmin
x

f(x) s.t. gi(x) = 0 equality constraints

hi(x) ≤ 0 inequality constraints
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Solution approach for constrained problem

▶ Modern approach: projection / proximal gradient.

▶ Traditional approach: reformulation
▶ Lagrangian and Augmented Lagrangian Method
▶ Penalty method
▶ Barrier method

▶ Being old doesn’t means it is always bad, being modern doesn’t mean it is always good.
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Reformulation approach

▶ Idea
▶ Reformulate the constrained problem into an unconstrained problem.
▶ Solve the unconstrained problem.
▶ The sol. of the unconstrained problem is then an approximation of the sol. of the constrained

problem.

▶ Reformulation: add a transformed constraint to the cost

argmin
x

f(x) s.t. g(x) = 0 −→ argmin
x

f(x) + αΦ
(
g(x)

)︸ ︷︷ ︸
F

.

▶ f : cost function / objective function
▶ g: equality constraint
▶ Φ: a specially designed function
▶ α ≥ 0: controlling the trade-off between f and Φ ◦ g
▶ F : the augmented cost function
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Why and how of reformulation

▶ Why reformulate
The reformulated problem is easier to solve than the original one

▶ How to reformulate
Formulate a new problem that is easier to solve than the original one

▶ What did you paid
▶ Introduce more variable.

The weighting parameter α need to be chosen properly.
▶ Accuracy of solution.

The sol. of the reformulated problem may only be an approximation sol. of the original one.
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Example: penalty method

▶ Original problem

argmin
x

1

2
∥x∥22 s.t. Ax = b.

▶ A penalty formulation

argmin
x

F (x) :=
1

2
∥x∥22 +

α

2
∥Ax− b∥22

here 1
2∥ · ∥ is the Φ in the previous slide.

▶ This approach is called regularization in machine learning, α is the regularization
parameter.

▶ Minimizing F means we find x while penalyzing the violation of Ax ̸= b, because
α
2 ∥Ax− b∥22 > 0 if Ax ̸= b will increase F , and we want F small.

▶ Penalty method is (very) old1 but still useful.
1As old as in the 1940s
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Many regularized problems in machine learning are instances of penalty method

▶ A machine learning problem

(P0) : min
x

∥Ax− b∥22 s.t. ∥x∥1 ≤ ϵ.

▶ A regularized form
(P1) : min

x
F (x) := ∥Ax− b∥22 + λ∥x∥1.

▶ For each ϵ in (P0), there will be a λ in (P1) that their sol. are equal.

▶ Another approach (less intuitive)

(P2) : min
x

G(x) := ∥Ax− b∥22 + i∥·∥1≤ϵ(x).

Solving P2 involves the proximal operator, duality, conjugate and Moreau decomposition,
which is less intuitive.
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Example: barrier method

▶ Consider minimizing a scalar quadratic function over nonnegative constraint

argmin
x

ax2 + bx+ c s.t.x ≥ 0.

▶ A log-barrier formulation

min
x

F (x) := ax2 + bx+ c− α log x

here − log x is the log-barrier: as lim
x→0+

− log x = ∞.
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Example: Lagrangian method

▶ Suppose the problem is

argmin
x

f(x) s.t. gi(x) = 0 equality constraints

hi(x) ≤ 0 inequality constraints

▶ Lagrangian method / KKT method

L(x, λ1, λ2, . . . , ν1, ν2, . . . ) = f(x) +
∑
i

λigi(x) +
∑
j

νihi(x)

= f(x) + ⟨λ, g(x)⟩+ ⟨ν,h(x)⟩
▶ λi: Lagrangian multipliers
▶ νi: KKT multipliers
▶ λ = [λ1, . . . ]

⊤, ν = [ν1, . . . ]
⊤, g(x) = [g1(x), . . . ] , h(x) = [h1(x), . . . ]

▶ The Lagrangian method = solving a saddle point problem associated with L

argmin
x

argmax
λ,ν≥0

L(x,λ,ν)
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Example: augmented Lagrangian method (ALM)

▶ Suppose the problem
(P0) : argmin

x
f(x) s.t. g(x) = 0.

▶ ALM is a penalty method: it consider the problem

(P1) : argmin
x

f(x) +
α

2
∥g(x)∥22 s.t. g(x) = 0.

▶ The Lagrangian of (P1) is

Lα(x,λ) = f(x) +
α

2
∥g(x)∥22 + ⟨λ, g(x)⟩.

▶ Lα(x,λ) it is called the augmented Lagrangian. The quadratic term improves the
convexity condition of L.

10 / 11



Last page - summary

Conceptual introduction to augmented cost function

▶ Penalty method

▶ Barrier method

▶ Lagrangian method

▶ Augmented Lagrangian method

Details of these methods: see other documents.
End of document
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