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Introduction

I What is Frank-Wolfe (FW) algorithm?
A first-order algorithm for solving constrained convex optimization.

I What are the other names of FW algorithm?
Conditional gradient, convex commination algorithm

I For problem we can solve by FW algorithm, what is the alternative method?
Projected gradient descent (PGD). Or in other words, for problem that can be solved by
PGD, we can also solve it by FW.

I As FW is closely related to PGD, so to understand better about FW, we first review
about PGD and constrained convex optimization.
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Problem setup: constrained convex optimization

I Consider the following problem
min
x∈C

f(x), (P)

where
I f : Rn → R is the cost function

I f is assumed to be L-smooth and convex

I C ⊆ Rn is the constrained set

I C is assumed to be convex, closed and compact

I x ∈ Rn is the optimization variable

I When x ∈ C, the variable is feasible. Otherwise, the variable is infeasible.

I We are interested in designing an iterative algorithm that solve problem (P) by producing an
optimal and feasible solution x∗.
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Projected gradient descent
I For solving the problem

min
x∈C

f(x), (P)

one way is to use the Projected Gradient Descent (PGD):

Algorithm 1: Projected gradient descent

Result: x∗ that solves (P)
1 Initialize x0 ∈ C;
2 for k = 1, 2, . . . do
3 yk+1 = xk − 1

L∇f(xk) ; // Gradient step

4 xk+1 = projC
(
yk+1

)
; // Projection step

5 end

where the projection step consists of solving an optimization subproblem

projC(y) := argmin
u∈C

1

2
‖u− y‖22

I PGD in one line: xk+1 = projC
(
xk − 1

L∇f(xk)
)
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The problem of PGD

I One problem of PGD iteration

xk+1 = projC
(
xk −

1

L
∇f(xk)

)
is on the projection step. It is possible that the projection subproblem cannot be solved
“quickly” or “cheaply”.

I This motivates the use of Frank-Wolfe algorithm.
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Frank-Wolfe algorithm

Algorithm 2: Frank-Wolfe algorithm

Result: x∗ that solves (P)
1 Initialize x0 ∈ C;
2 for k = 1, 2, . . . do
3 yk+1 ∈ argmin

y∈C
〈∇f(xk),y〉 ; // FW step

4 αk = 2
k+1 ; // Convex combination weight

5 xk+1 = (1− αk)xk + αkyk+1 ; // Convex combination

6 end

I Why iterate xk+1 is feasible:
I Notice that x0 is feasible and y1 is feasible in the FW step.
I The iterate x1 is a convex combination of x0 and y1

I The set C is a convex set
I So by induction, all xk are feasible
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A closer look at the FW iteration

I The FW step is a constrained linear optimization in the form of

argmin
u∈C

〈c,u〉, (LO)

which can be expensive to solve in general.

I If C represents a linear constraint, then FW step is a linear programming subproblem, i.e.,
it can be expressed as

argmin
u
〈c,u〉 s.t. Au ≤ b,u ≥ 0, (LP)

for some A,b.

I Note that in general LO can be expensive to solve, while for some LP with some specific
A,b can be solved very cheaply and fast.
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The no-free lunch of Frank-Wolfe algorithm

I The most expensive step in PGD is the projection

projC
(
xk −

1

L
∇f(xk)

)
= argmin

u∈C

1

2
‖u−

(
xk −

1

L
∇f(xk)

)
‖22,

which is a constrained problem with quadratic cost function.

I The most expensive step in FW is the constrained linear optimization step

argmin
u∈C

〈c,u〉. (LO)

I We now see the “no-free lunch” aspect of FW: it replaces the projection subproblem by a LO
subproblem, in which both subproblems can be equally expensive to solve.

I When C is a linear set that the LP subproblem is easy to solve, a potential advantage of FW over
PGD is that FW may converge faster than PGD because the most costly step in FW is only a
cheap LP, while the PGD subproblem is a quadratic programming with linear constraint.
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Does FW run faster than PGD?

I In general, FW and PGD share the same asymptotic convergence rate.

I Theorem The sequence {f(xk)} produced by FW converges to the optimal value f∗ at a
rate of O( 1k ), assuming that f is convex and L-smooth.

I Similarly, the convergence rate of PGD is O( 1k ).

I We will look at the proof of the convergence of FW next time.

I Ultimately, it depends on the structure of C to determine which algorithm to use.
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