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epi f :=
{
(x, α) ∈ Rn × R : α ≥ f(x)

}
.
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Graph and epigraph

▶ (Graph of abstract function) Given two sets X (domain) and Y (codomain), the graph of the
function f : X → Y is the set

graphf :=
{
(x,y) ∈ X × Y : y = f(x)

}
.

▶ (Epigraph of function from Rn to R) Let R := R ∪ {+∞} be the extended reals.
Now consider X = Rn and Y = R. For f : Rn → R, the epigraph of f is the set

epi f :=
{
(x, α) ∈ Rn × R : α ≥ f(x)

}
.

▶ (Strict epigraph) epi Sf = epi f \ graphf , or equivalently

epi Sf :=
{
(x, α) ∈ Rn × R : α > f(x)

}
.
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Remarks epi f :=
{
(x, α) ∈ Rn × R : α ≥ f(x)

}
▶ f : Rn → R but epi f is defined to be a subset of Rn × R, not Rn × R.

▶ This is intentional to define epi f as a subset of Rn × R.
▶ Rn is a vector space
▶ Rn × R is a vector space
▶ Rn × R is not a vector space: ∄ additive identity for ∞+∞

(Being a vector space allows to use tools from real analysis and functional analysis.)

▶ (At infinity) If f(x0) = +∞ at x = x0, then (x0,+∞) /∈ epi f .

▶ Two extreme cases

▶ If f∞+(x) = +∞ ∀x, then epi f∞+ is ∅. Empty epigraph
▶ If f∞−(x) = −∞ ∀x, then epi f∞− is the whole Rn × R Whole space epigraph

(Convention: −∞ < +∞)
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Visualization of graphf and epi f

▶ epi f = all the points of Rn+1 lying on or above graphf .

▶ Example: f(x) = x2

▶ n = 1 (1-dimensional)

▶ graphf :=
{
(x, y) ∈ R× R : y = f(x)

}
is a 1d curve in a 2d space.

▶ epi f :=
{
(x, α) ∈ R× R : α ≥ f(x)

}
is a 2d set in a 2d space.
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Level sets: a concept related to epigraph.

▶ For f : Rn → R and α ∈ R, define

lev≤αf :=
{
x ∈ Rn : f(x) ≤ α

}
lev<αf :=

{
x ∈ Rn : f(x) < α

}
lev=αf :=

{
x ∈ Rn : f(x) = α

}
lev>αf :=

{
x ∈ Rn : f(x) > α

}
lev≥αf :=

{
x ∈ Rn : f(x) ≥ α

}
The important one for minimization is lev≤αf (named sublevel sets).

▶ lev is a subset of domain, not codomain.

▶ If α = inf f , then lev≤αf = lev=αf = argmin f .

▶ Level sets can be

▶ empty: lev≤−1(x
2), no x makes x2 ≤ −1

▶ non-continuous: lev=0 sin(x), then x = {nπ}n∈N is a set of dots
▶ non-convex: lev=0 sin(x)
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An illustration of lev≤αf

Picture from Rockafellar, R. Tyrrell, and Roger J-B. Wets. Variational analysis. Springer, 2009.
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Q & A

Optimization newbie: “Why talk about epigraph?”

Optimization expert: “it is useful!”

The main idea

▶ Many properties of f has a counterpart in epi f .

▶ Sometimes it is easier to work with epi f than with f .
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Properties of f Properties of epi f

▶ f is proper epi f is nonempty

▶ f is closed epi f is a closed set

▶ f is lower semicontinuous on Rn epi f is nonempty and closed in Rn × R

▶ f is convex epi f is a convex set

▶ f is strictly convex epi Sf is a convex set

▶ f□g (Infimal convolution of f and g) Minkowski sum of epi f and epi g
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Example: f is convex ⇐⇒ epi f is convex
(To avoid confusing the bracket of graph and bracket of a number, here we use {x1, y1} ∈ epi f)

▶ ( =⇒ )
▶ f is convex ⇐⇒ f

(
(1− t)x1 + tx2

)
≤ (1− t)f(x1) + tf(x2) ∀x1,x2 and t ∈ [0, 1]. (∗)

▶ {x1, y1} ∈ epi f ⇐⇒ f(x1) ≤ y1 and {x2, y2} ∈ epi f ⇐⇒ f(x2) ≤ y2 (∗∗)

▶ Now f
(
(1− t)x1 + tx2

) (∗)
≤ (1− t)f(x1) + tf(x2)

(∗∗)
≤ (1− t)y1 + ty2. So{

(1− t)x1 + tx2, (1− t)y1 + ty2
}

= (1− t)
{
x1, y1

}
+ t

{
x2, y2

} (∗∗)
∈ epi f . So epi f is a convex set.

▶ ( ⇐= )
▶ epi f is a convex set ⇐⇒ {x1, y1} ∈ epi f , {x2, y2} ∈ epi f implies for t ∈ [0, 1] we have

(1− t)
{
x1, y1

}
+ t

{
x2, y2

}
=

{
(1− t)x1 + tx2, (1− t)y1 + ty2

}
∈ epi f. (∗ ∗ ∗)

▶ By definition of epigraph, (∗ ∗ ∗) is equivalent to

f(x1) ≤ y1 and f(x2) ≤ y2 implies f
(
(1− t)x1 + tx2

)
≤ (1− t)y1 + ty2.

Choose f(x1) ≤ y1 and f(x2) ≤ y2 gives f
(
(1− t)x1 + tx2

)
≤ (1− t)f(x1) + tf(x2), so f is convex.
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(f1□f2)(x) := inf
x1+x2=x

f1(x1) + f2(x2)
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Infimal convolution

▶ Given f1 : Rn → R and f2 : Rn → R. The infimal convolution f1□f2 : Rn → R is

(f1□f2)(x) := inf
x1+x2=x

f1(x1) + f2(x2)

= inf
x1

f1(x1) + f2(x− x1)

= inf
x2

f1(x− x2) + f2(x2)

Convention: ∞−∞ = ∞ and inf ∅ = +∞

▶ History

Earliest(?) work
Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Zeit. 5 (1919), 292-309.

Fenchel, “Convex Cones, Sets, and Functions”, Lecture Notes, Princeton University, Princeton, 1953.

First systematic study of infimal convolution
Moreau, Inf-convolution, Sém. d’Math. Montpellier (1963), 3.1-3.48

Later works by Attouch, Rockafellar, Hiriart-Urruty, etc

Thomas Stromberg’s PhD thesis (1994): a nice summary.
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How infimal convolution gets its name (f1□f2)(x) := inf
x1

f1(x1) + f2(x− x2).

▶ Definition of (integral) convolution (Examples: Laplace transform, Fourier transform.)

(f ∗ g)(t) :=

∫ ∞

∞
f(τ)g(t− τ)dτ.

▶ f1(x1) + f2(x− x2) “looks similar” to (integral) convolution

▶ There is inf
w

=⇒ people name it infimal.

▶ Deep fact: integral convolution is in (+,×)-algebra

▶ Integration = summation
▶ You combine f and g by multiplication

Infimal convolution is in (min,+)-algebra (tropical semi-ring)

▶ The summation is replaced by min
▶ You combine f and g by addition
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What infimal convolution solves: an economics example

▶ You want to buy totally n hamburgers, from MacDonald and Burger King.
Suppose buying n1 hamburgers from MacDonald costs you f(n1), and if you buy n2 hamburgers
from Burger King, the price is g(n2).

▶ You want to find the infimum of the total cost f(n1) + g(n2) subject to the constraint
n1 + n2 = n. I.e., you want to find the “cheapest way” to buy n hamburgers.

▶ This problem is exactly: calculate (f□g)(n)

(f□g)(n) = inf
n1+n2=n

f(n1) + g(n2) = inf
n1

f(n1) + g(n− n1)︸ ︷︷ ︸
focus on n1

= inf
n2

f(n− n2) + g(n2)︸ ︷︷ ︸
focus on n2︸ ︷︷ ︸

this also means infimal convolution is commutative

.

Infimal convolution is commutative: f□g = g□f .
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Example. Infimal convolution of two indicator functions
(f1□f2)(x) := inf

x1+x2=x
f1(x1) + f2(x2)

= inf
x1

f1(x1) + f2(x− x1)

= inf
x2

f1(x− x2) + f2(x2)

▶ Given two sets C1, C2 and two indicator functions iC1 , iC2 .

(iC1
□iC2

)(x) = inf
x1+x2=x

iC1
(x1) + iC2

(x2) = iC1⊕C2
(x)

⊕ is Minkowski sum of sets: P ⊕ Q :=
{
p+ q | p ∈ P, q ∈ Q

}
.

▶ Minkowski sum keeps convexity of sets, so C1 ⊕ C2 is a convex set and iC1⊕C2 is a convex
function. Here we see that inf-convolution of two convex functions is a convex function.

▶ In general, if f1 : Rn → R and f2 : Rn → R are convex, then f1□f2 is also convex.
Proof. We prove inf-convolution preserves convexity using definition and operations that preserve convexity. By

definition, (f1□f2)(x) = inf
x1

h(x, x1) where h(x, x1) = f1(x1) + f2(x− x1). By assumption f1(x1) is convex and

f2(x1) is convex. The function f2(x− x1) is f2(x1) with argument x1 under a translation to x− x1 so f2(x− x1)

is convex. Now h(x, x1) is the sum of two convex functions on x1, thus it is convex.
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Infimal convolution is also called epi-addition

(f1□f2)(x) := inf
x2

f1(x− x2) + f2(x2).

▶ epi S(f1□f2) = epi Sf1 ⊕ epi Sf2 ⇐⇒ inf-convolution of convex functions is convex1

▶ epi (f1□f2) ⊇ epi f1 ⊕ epi f2

▶ epi (f1□f2) = epi f1 ⊕ epi f2 if inf-convolution is exact
Exact means the inf is gone: (f1□f2)(x) = f1(x− x2) + f2(x2).

▶ For proof, see Jean Jacques Moreau. Inf-convolution, sous-additivité, convexité des fonctions
numériques. Journal de Mathématiques Pures et Appliquées, 1970.
https://hal.archives-ouvertes.fr/hal-02162006

1Remark 2.3.3 in Urruty, Jean-Baptiste Hiriart, and Claude Lemaréchal. Convex analysis and
minimization algorithms. Springer-Verlag, 1993
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The proof of epi (f1□f2) ⊇ epi f1 ⊕ epi f2

▶ Take {x, α} ∈ epi f1 ⊕ epi f2. Since the element {x, α} is inside the sum of two sets (epi f1 and
epi f2), that means we can decompose {x, α} as the sum of element from each set. I.e., we have

x = x1 + x2 and α = α1 + α2 that {x1, α1} ∈ epi f1 and {x2, α2} ∈ epi f2 .

(It means given {x, α}, there is exist the pair {x1, α1}, {x2, α2} that fulfill the above conditions)

▶ implies f1(x1) ≤ α1, implies f2(x2) ≤ α2 and f1(x1) + f2(x2) ≤ α1 + α2 = α .

▶ Now consider (f1□f2)(x) := inf
y1+y2=x

f1(y1) + f2(y2). As x1 + x2 = x = y1 + y2, the infimum

inf
y1+y2=x

is the smallest among all pair that sum to x, so

(f1□f2)(x) := inf
y1+y2=x

f1(y1) + f2(y2) ≤ f1(x1) + f2(x2) ≤ α.

So {x, α} ∈ epi (f1□f2).

▶ What we just showed is {x, α} ∈ epi f1 ⊕ epi f2 =⇒ {x, α} ∈ epi (f1□f2), so in set language we
have epi (f1□f2) ⊇ epi f1 ⊕ epi f2.
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Example. Pictorial illustration of epi-addition (and Minkowski sum)

▶ f = | · | epi f =
{
(x, t) ∈ R× R : |x| ≤ t

}
▶ g = 1

2 (·)
2 epi g =

{
(x, t) ∈ R× R : 1

2x
2 ≤ t

}
▶ (f□g)(x) = inf

w
|w|+ 1

2
(x− w)2 epi (f□g) =

{
(x, t) ∈ R× R :

(
inf
w

|w|+ 1

2
(x− w)2

)
≤ t

}

“Epi-addition: sliding the blue curve on red curve and perform union operation gives the black
curve”
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What about f1□f2□f3? Inf-convolution is associative

f1□(f2□f3)(t) = inf
x+y=t

{
f1(x) + (f2□f3)(y)

}
by definition

= inf
x+y=t

{
f1(x) +

{
inf

z+w=y
f2(w) + f3(z)

}}
by definition

= inf
x+y=t
z+w=y

{
f1(x) + f2(w) + f3(z)

}
you can move inf

= inf
x+z+w=t

{
f1(x) + f2(w) + f3(z)

}
combine x+ y = t, z + w = y

= inf
r+z=t
x+w=r

{
f1(x) + f2(w) + f3(z)

}
let t = r + z, x+ w = r

= inf
r+z=t

{{
inf

x+w=r
f1(x) + f2(w)

}
+ f3(z)

}
you can move inf

= inf
r+z=t

{
(f1□f2)(r) + f3(z)

}
by definition

= (f1□f2)□f3(t) by definition
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Properties of inf-convolution
We already see

▶ f□g = g□f commutative

▶ f□g□h = (f□g)□h = f□(g□h) associative

▶ f, g convex =⇒ f□g convex inf-convolution preserves convexity

Useful table

f g f□g

f 0 inf
x

f(x)

iC ∥ · ∥2 dC

iC1 iC2 iC1⊕C2

f ix f(· − x)

f ⟨s, ·⟩ ⟨s, ·⟩ − f∗(s)

f convex f 2f
( ·
2

)

▶ Distance function dC(x) = inf
c∈C

∥x− c∥2

▶ Indicator function iC(x) =

{
0 x ∈ C

+∞ x /∈ C

▶ Conjugate f∗(x) = sup
u
⟨u, x⟩ − f(x)
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Inf-convolution and conjugate: (f□g)∗ = f ∗ + g∗

Let f, g : Rn → R be proper functions.

(f□g)∗(y) = sup
x

{
⟨y,x⟩ − (f□g)(x)

}
by definition of conjugate

= sup
x

{
⟨y,x⟩ − inf

u

[
f(u) + g(x− u)

]}
by definition of inf-convolution

= sup
x

sup
u

{
⟨y,x⟩ −

[
f(u) + g(x− u)

]}
− inf

u
= +sup

u

= sup
x,u

{
⟨y,x−u+ u⟩ − f(u)− g(x− u)

}
= sup

x,u

{
⟨y,x− u⟩+ ⟨y,u⟩ − f(u)− g(x− u)

}
= sup

x,u

{
⟨y,x− u⟩ − g(x− u)

}
+ sup

u

[
⟨y,u⟩ − f(u)

]
= g∗(y) + f∗(y)

Recall □ is similar to convolution: let F denotes Fourier transform and let ⋆ denotes integral
convolution. Then F(f ⋆ g) = F(f) · F(g). Note the correspondence between (+,×)-algebra and
(min,+)-algebra
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1

2µ
∥ · ∥2

Jean Moreau (1923-2014) Kosaku Yosida (1909-1990)
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Moreau-Yosida envelope

▶ Moreau-Yosida envelope is the special case of infimal convolution f□ 1
2µ∥ · ∥

2

▶ Denote eµf the Moreau-Yosida envelope of f under smoothing parameter µ > 0,

eµf (x) := inf
x1+x2=x

f(x1) +
1

2µ
∥x2∥22.

In optimization, usually the following form is used

eµf (x) = inf
w

f(w) +
1

2µ
∥x−w∥22

∥x−w∥2
2=∥w−x∥2

2= inf
w

f(w) +
1

2µ
∥w − x∥22

▶ The point-to-point map associated with Moreau-Yosida envelope is called the Proximal operator

proxµf (x) := argmin
w

f(w) +
1

2µ
∥w − x∥22

▶ Why study eµf and proxµf : they form the basis of modern convex optimization toolbox!

▶ Remark: inf becomes min if f is closed (epi f is closed) and convex
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Why Moreau-Yosida envelope is useful

“Smoothing a non-smooth function to ease optimization”

▶ Consider minimizing f(x) = |x| using gradient descent x+ = x− α∇f(x)

▶ Gradient descent requires differentiable f , while |x| is not differentiable at x = 0.

▶ Now instead of min f(x), consider min eµf (x), here is the magic:

▶ eµf is always differentiable can use gradient descent!
▶ min eµf (x) and min f(x) share the same minimizer
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Properties of Moreau-Yosida envelope and proximal operator

(µ > 0)

▶ eµf is always differentiable smoothness

▶ min eµf (x) = min f(x) and argmin eµf (x) = argmin f(x) same minimum and minimizer

▶ f is L-Lipschitz, then 0 ≤ f(x)− eµf (x) ≤ L2µ eµf is a lower bound of f

▶ ∇eµf (v) =
1
µ

(
v − proxµf (v)

)
∈ ∂f

(
proxµf (v)

)
relationship between eµf and proxµf

▶ Proximal point algorithm = gradient descent on min eµf (x) Proximal point algorithm

▶ f is nonconvex, then proxµf : Rn ⇒ Rn non-uniqueness of proxµf

▶ f is convex, then proxµf : Rn → Rn uniqueness of proxµf

▶ eµf : Rn → R uniqueness of eµf

▶
〈
proxµf (x)− proxµf (y), (Id− proxµf )(x)− (Id− proxµf )(y)

〉
≥ 0 proxµf is firmly non-expansive

▶ Fix proxµf = argmin
y

f(y) fixed point

▶ Let T = proxµf , then
{
Tkx

}
k∈N ⇀ argmin

ξ
f(ξ) weakly convergence

▶ proxµf (x) + proxµf∗ (x) = x Moreau decomposition
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Example: Moreau-Yosida envelope of absolute value = Huber function

f(x) =

{
−x x ≤ 0

x x ≥ 0
, g =

1

2µ
| · |2, e1f (x) = (f□g)(x) =


−x− 1

2 x < −1
1
2x

2 x ∈ [−1,+1]

x− 1
2 x > 1
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Example: min eµf (x) = min f(x) and argmin eµf (x) = argmin f(x)

Proof by definition.

min
x

eµf (x) = min
x

{
min
y

{
f(y) +

1

2µ
∥x− y∥22

}}
by definition of eµf

= min
y

{
min
x

{
f(y) +

1

2µ
∥x− y∥22

}}
you can swap the order of two min

= min
y

{{
f(y) + min

x

1

2µ
∥x− y∥22

}}
f(y) is constant for min

x

= min
y

f(y) x = y minimizes ∥x− y∥22

= min
x

f(x) rename y as x

Similar proof for argmin eµf (x) = argmin f(x).
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Last page - summary

▶ The epigraph of f : Rn → R is the set epi f :=
{
(x, α) ∈ Rn × R : α ≥ f(x)

}
.

▶ Level sets

▶ Given f1 : Rn → R and f2 : Rn → R. The infimal convolution f1□f2 : Rn → R is defined as

(f1□f2)(x) := inf
x1+x2=x

f1(x1) + f2(x2)

= inf
x1

f1(x1) + f2(x− x1)

= inf
x2

f1(x− x2) + f2(x2)

▶ Infimal convolution is also called epi-addition

▶ Moreau-Yosida envelope f□ 1
2µ∥ · ∥2 as the foundation of modern optimization toolbox

End of document
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