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Epigraphs

epi f = {(w,a) eER"xR:a> f(w)}
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Graph and epigraph

» (Graph of abstract function) Given two sets X (domain) and Y (codomain), the graph of the
function f: X — Y is the set

graphf := {(w,y) eXxY :y= f(w)}

> (Epigraph of function from R" to R) Let R := R U {400} be the extended reals.
Now consider X =R™ and Y = R. For f: R™ — R, the epigraph of f is the set

epi f == {(m,a) ER"XR:a> f(m)}

> (Strict epigraph) epigf =epif \ graphf, or equivalently

epigf = {(ac,a) ER" xR : a>f(a:)}.
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Remarks epi f = {(w,a) eER"XR:a> f(:I:)}
» f:R"™ — R but epi f is defined to be a subset of R” x R, not R” x R.

» This is intentional to define epi f as a subset of R x R.

» RR™ is a vector space
> R™ x R is a vector space
» R” x R is not a vector space: 3 additive identity for co + oo

(Being a vector space allows to use tools from real analysis and functional analysis.)
> (At infinity) If f(xo) = 400 at © = x, then (xg, +00) ¢ epi f.

» Two extreme cases

» If footr (&) = 400 Ve, then epi fo+ is @. Empty epigraph
> If fo— (&) = —o0 Ve, then epi fo.— is the whole R® x R Whole space epigraph

(Convention: —oco < +00)
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Visualization of graphf and epi f

» epif = all the points of R™*! lying on or above graphf.
» Example: f(x) =22

» n =1 (1-dimensional)

» graphf = {(ac,y) ERXR:y= f(x)} is a 1d curve in a 2d space.

> epif = {(m,a) ERxR: aZf(x)} is a 2d set in a 2d space.
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Level sets: a concept related to epigraph.
leveof ={x eR" : f
leveo f = {w eR™ . f

levsof = {33 eR™: f
levsof ={z €eR" : f(x

The important one for minimization is lev<, f (named sublevel sets).

()
()
> For f:R" 5 R and a € R, define lev=af = {z €R" : f(z) =a}
(z)
)

» lev is a subset of domain, not codomain.
> If o =inf f, then lev<, f = lev_, f = argmin f.

» Level sets can be

> empty: leVS,l(xz), no x makes 22 < —1
» non-continuous: lev_gsin(x), then © = {nm},en is a set of dots
» non-convex: lev_q sin(z)
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An illustration of lev<, f

]R I

Picture from Rockafellar, R. Tyrrell, and Roger J-B. Wets. Variational analysis. Springer, 20009.
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Q&A

Optimization newbie: “Why talk about epigraph?”
Optimization expert: “it is useful!”

The main idea
» Many properties of f has a counterpart in epi f.

» Sometimes it is easier to work with epi f than with f.
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Properties of f Properties of epi f

» f is proper epi f is nonempty
» f is closed epi f is a closed set
» f is lower semicontinuous on R" epi f is nonempty and closed in R” x R
> f is convex epi f is a convex set
> f is strictly convex epigf is a convex set
» fOg (Infimal convolution of f and g) Minkowski sum of epi f and epig
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Example: f is convex <= epi f is convex
(To avoid confusing the bracket of graph and bracket of a number, here we use {x1,y1} € epi f)

> (=)
> fisconvex <> f((1—t)z1 +tws) < (1—t)f(x1)+tf(x2) Yy, @2 and ¢ € [0, 1]. (%)
> {x1,y1} €epif <= f(x1) <y1and {@2,y2} €epif <= f(x2) <2 ()

) (+2)
> Now (1= )y +1tws) < (1-8)f(@1) +tf(2) < (1-y+ 2. So

{(1 —t)x1 + tes, (1—1t)y1 + tyg} =(1- t){ml, y1} + t{mg, yg} <¥) epi f. So epi f is a convex set.

> (=)
> epifis a convex set <= {x1,y1} € epif, {x2,y2} € epi f implies for ¢t € [0, 1] we have

(1 *t){wl, yl} +t{w2, yz} = {(1 —t)xr +txz, (1 -ty +ty2} € epi f. (% %)

» By definition of epigraph, (*  *) is equivalent to
flx1) <y1 and f(z2) <y2 implies f((l —t)a + tz2> < (1 =ty + tya.

Choose f(x1) < y1 and f(x2) < y2 gives f((l —t)xr + tmg) < (1 —=¢t)f(z1) +tf(x2), so f is convex.
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Infimal convolution

(f1i0f2)(z) = inf wfl(w1)+f2(-’32)

T1tze=
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Infimal convolution
» Given f; : R® = R and f, : R — R. The infimal convolution f;0f; : R — R is
(10f)(z) = wlfwf:w fi(@1) + fa(x2)
= i£1f fl(asl) + fg(ﬂ: — SE1>
= i:ilzf f1 (:B — 5[52) + f2 (322)

Convention: co — oo = oo and inf @ = +o0

» History
Earliest(?) work
Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Zeit. 5 (1919), 292-309.

Fenchel, “Convex Cones, Sets, and Functions”, Lecture Notes, Princeton University, Princeton, 1953.
First systematic study of infimal convolution
Moreau, Inf-convolution, Sém. d’'Math. Montpellier (1963), 3.1-3.48

Later works by Attouch, Rockafellar, Hiriart-Urruty, etc
Thomas Stromberg’s PhD thesis (1994): a nice summary.
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How infimal convolution gets its name (10f2)(@) = inf fi(@1) + fo(a — @2).

» Definition of (integral) convolution (Examples: Laplace transform, Fourier transform.)
(Fe9)@) = [ 1)gtt = yar

> fi(x1) + fo(x — x2) “looks similar” to (integral) convolution

» There is inf = people name it infimal.
w

» Deep fact: integral convolution is in (4, X )-algebra

P Integration = summation
» You combine f and g by multiplication

Infimal convolution is in (min, +)-algebra (tropical semi-ring)

» The summation is replaced by min
» You combine f and g by addition
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What infimal convolution solves: an economics example

>

You want to buy totally n hamburgers, from MacDonald and Burger King.
Suppose buying 11 hamburgers from MacDonald costs you f(n1), and if you buy no hamburgers
from Burger King, the price is g(n2).

You want to find the infimum of the total cost f(n1) + g(n2) subject to the constraint
ni +no = n. le., you want to find the “cheapest way” to buy n hamburgers.
This problem is exactly: calculate (fOg)(n)

(fOg)(n) = inf  f(n1) +g(n2) = inf f(n1) +g(n—ny) = inf f(n—na) +g(n2).

ni+nz2=n

focus on nq focus on no

this also means infimal convolution is commutative

Infimal convolution is commutative: flg = gOf.
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Example. Infimal convolution of two indicator functions

(10f)(z) = im::m fi(x1) + fa(z2)

x1+x
— inf  fi(e1) + fo(@ - 21)
= inf  fi(e —x2) + fo@2)

> Given two sets C'1, Cy and two indicator functions ic, , ic,.
(icl DZCQ)(:L') = inf i (wl) +ic, (332) = 10180, (33)
x1+xo=2
@ is Minkowski sum of sets: P& Q = {p+q|p€ P,q€ Q}.

P> Minkowski sum keeps convexity of sets, so C'; @ C5 is a convex set and ic, g, IS @ convex
function. Here we see that inf-convolution of two convex functions is a convex function.

» In general, if fi : R® = R and fo : R® = R are convex, then fi00f5 is also convex.
Proof. We prove inf-convolution preserves convexity using definition and operations that preserve convexity. By
definition, (f10f2)(z) = i;llfh(ac,xl) where h(z,z1) = fi(z1) + fo(z — z1). By assumption fi(z1) is convex and
f2(x1) is convex. The function fo(x — 1) is fa(z1) with argument 21 under a translation to z — 1 so fa(x — 1)

is convex. Now h(z,z1) is the sum of two convex functions on z1, thus it is convex.
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Infimal convolution is also called epi-addition
(f10f)(z) = iilszl(w —x2) + fa(x2).

> epig(fidfs) =episfi ®epigfo <= inf-convolution of convex functions is convex!
> epi(filJf2) 2 epi f1 @ epi f2

» epi(f10f2) = epi f1 @ epi f2 if inf-convolution is exact

Exact means the inf is gone: (f10f2)(x) = fi(x — x2) + f2(x2).

» For proof, see Jean Jacques Moreau. Inf-convolution, sous-additivité, convexité des fonctions
numériques. Journal de Mathématiques Pures et Appliquées, 1970.
https://hal.archives-ouvertes.fr/hal-02162006

'Remark 2.3.3 in Urruty, Jean-Baptiste Hiriart, and Claude Lemaréchal. Convex analysis and
minimization algorithms. Springer-Verlag, 1993
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The proof of epi (f10f2) D epi f1 @ epi fo

» Take {x,a} € epi fi @ epi fo. Since the element {x, a} is inside the sum of two sets (epi f; and
epi f2), that means we can decompose {x,a} as the sum of element from each set. l.e., we have

T=x + o2 and a=a; +ay that {x1,0q} €epifi and {x3,as} € epi fs .
(It means given {x, a}, there is exist the pair {x1, a1}, {x2, as} that fulfill the above conditions)

> implies fi(x1) < a, ¢y implies fo(@2) < ag and fi(x1) + fo(x2) <1 +as =« .

» Now consider (f10f3)(x) = +inf fi(y1) + f2(y2). As @1 + x3 = © = y1 + Yo, the infimum
Yi1rty2=x

inf  is the smallest among all pair that sum to x, so
Y1+y2=x

([L0f2)(x) = ylf?}f:m fi(yr) + fo(y2) < fi(zr) + fo(z2) < .

So {x,a} € epi(f10f2).

» What we just showed is {z,a} € epi f1 @ epi fo = {x,a} € epi(f10f2), so in set language we
have epi (f10f2) 2 epi f1 @ epi fo.
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Example. Pictorial illustration of epi-addition (and Minkowski sum)
> f=1-| epif={(z,t) ERxR : |z| < t}
t}

> (fOg)(x) = inf [w] + %(x —w)?  epi(fOg) = {(:L',t) ERxR: <igf w| + %(x - w)z) < t}

> g=3()? epig = {(z,t) e R x R : Ja?

IN

“Epi-addition: sliding the blue curve on red curve and perform union operation gives the black
curve”
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What about fi00f;0f37 Inf-convolution is associative

AOROR)E = it {Ai@)+ (£Of)m)]

= inf {f1() {ngf:yfz(w)+f3(z)}}

r+y=t

= inf {A(@)+ L)+ (=)}

z+y=t
z+w=y

= ot {fi@) + fa(w) + fo(2)}

T+zt+w=t

= 1nf {fl( )-|-f2(w)—|—f3(z)}

x+w r
= it {{ it p@)+ paw)

= H;f {(flme)( )+f3(z)}
= (AOf)0Of3(2)

}+f3(2)}

by definition
by definition

you can move inf

combinez+y=t,z+w=y

|ett=7‘+2,$+w:r

you can move inf
by definition

by definition
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Properties of inf-convolution
We already see

> flg = g0f commutative
» fOg0Oh = (fOg)0Oh = fO(g0h) associative
» f, g convex = f[dg convex inf-convolution preserves convexity
Useful table

f ‘ g H SOy

f 0 ir;ff(x) » Distance function d¢(x) = clgg |z — cll2

ic |- ll2 do

icy icy iC18C, » Indicator function ic(z) = {O ved

ol | - oo wEe

f (s,) || (s:-) = f"(s)  » Conjugate f*(z) = sup{u, z) — f(z)

f convex f 2f(3) b
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Inf-convolution and conjugate: (fCg)* = f* + ¢*

Let f,g:R™ — R be proper functions.

(100 w) = sw{{y.2) ~ (fT)(@)]} by definition of conjugate
= sup {(y.2) — inf [f(u) + g(z — w)] } by definition of inf-convolution
= sgpsgp{ — [f(u) + g(z — )]} —inf = +sup
= iu5{<y,a: utu) = f(u) — gz —u)}
= s { (v =)+ ) — S0 gle - )}

= iui) {(ym: —u) —g(x — u)} +Slip [<y7u> - f(u)}
= 9" (y)+ " (y)

Recall OJ is similar to convolution: let F denotes Fourier transform and let x denotes integral
convolution. Then F(f xg) = F(f) - F(g). Note the correspondence between (+, x)-algebra and
(min, +)-algebra
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Moreau-Yosida envelope

Jean Moreau (1923-2014) Kosaku Yosida (1909-1990)
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Moreau-Yosida envelope

» Moreau-Yosida envelope is the special case of infimal convolution fDZ%H )
» Denote e’f‘ the Moreau-Yosida envelope of f under smoothing parameter > 0,

. 1
ef(z) = inf f(w1)+ﬂllxz\\§-

T1+xo=x
In optimization, usually the following form is used

le—wl3=llw—z|3

1 \ 1
M . LT . 2
c(z) = inf f(w) + 2Mllﬂc wl|; inf f(w) + 2ull’w |3
» The point-to-point map associated with Moreau-Yosida envelope is called the Proximal operator
1
prox) (@) = argmin f(w) + 5w — o

» Why study e? and prox’;: they form the basis of modern convex optimization toolbox!

» Remark: inf becomes min if f is closed (epi f is closed) and convex
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Why Moreau-Yosida envelope is useful

“Smoothing a non-smooth function to ease optimization”

» Consider minimizing f(z) = |z| using gradient descent 2+ =z — aV f(z)
» Gradient descent requires differentiable f, while |x| is not differentiable at z = 0.

> Now instead of min f(x), consider min e/ (z), here is the magic:

> e‘]ﬁ is always differentiable can use gradient descent!
> min e’ (z) and min f(x) share the same minimizer
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Properties of Moreau-Yosida envelope and proximal operator

vV VvV Y VvV VY VY

v

v

(n>0)
e‘; is always differentiable
min e‘f‘(:t) = min f(x) and argmin e?(ax) = argmin f(z)
f is L-Lipschitz, then 0 < f(z) — e/ (z) < Ly
Ve;(v) = i(v - prox‘; (v)) € 0f (prox’; (v))
Proximal point algorithm = gradient descent on min e?(az)
f is nonconvex, then prox‘; :R* = R™
f is convex, then prox? :R™ — R™
u.
ey : R* - R

(proxtt () = prox! (y), (14 = prox)(w) — (Id — proxf)(y) ) > 0

Fix prox’; = argmin f(y)
y
Let T = prox?, then {Tkx}keN — argznin §iG3)

prox;b (z) + prox’;* (z) ==z

smoothness

same minimum and minimizer

i
€r

relationship between e‘; and prox?

is a lower bound of f

Proximal point algorithm
non-uniqueness of proxjﬁ
uniqueness of prox;‘
uniqueness of eif

proxjﬁ is firmly non-expansive
fixed point

weakly convergence

Moreau decomposition
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Example: Moreau-Yosida envelope of absolute value = Huber function

-0 . fxf% < -1
{x . =5 1 ep(@) = (fOg) (@) = { 32°  we[-1,+]]

1
T— 3 z>1
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Example: min €;(z) = min f(z) and argmin e/ (r) = argmin f(z)

Proof by definition.

mwine’;(ac) = min

1 2
{myln +2,u|m_y2}}
1 2
= InlIl{IIllIl )+ ﬂﬂf - yz}}
1 2
= Il’llIl{ +nun—Hx yz}}
= minf(y)

= min f(x)

Similar proof for argmin e’;(a:) = argmin f(x).

by definition of €’
you can swap the order of two min
f(y) is constant for min

xr

x = y minimizes ||z — y||3

rename y as
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Last page - summary

» The epigraph of f: R™ — R is the set epi f == {(w,a) ER"XR: a> f(a:)}
P> Level sets

» Given f; : R” = R and f> : R® — R. The infimal convolution fi0f5 : R — R is defined as
(i0f) (=) = inf  fi(z1) + fa(2)

x1tre=x
= 1;11f fi(z1) + fo(z — 1)
= inf fi(@ - @)+ foes)

» Infimal convolution is also called epi-addition

» Moreau-Yosida envelope fDiH - ||? as the foundation of modern optimization toolbox

End of document
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