Epigraphs, Infimal convolution \& Moreau-Yosida envelope

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk
Homepage angms.science

Version: April 1, 2023
First draft: January 13, 2023

Epigraphs Infimal convolution Moreau-Yosida envelope Summary

Table of Contents

Epigraphs

Infimal convolution
Moreau-Yosida envelope

$$
\text { epi } f:=\left\{(\boldsymbol{x}, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}: \alpha \geq f(\boldsymbol{x})\right\} .
$$

Graph and epigraph

- (Graph of abstract function) Given two sets X (domain) and Y (codomain), the graph of the function $f: X \rightarrow Y$ is the set

$$
\text { graph } f:=\{(\boldsymbol{x}, \boldsymbol{y}) \in X \times Y: \boldsymbol{y}=f(\boldsymbol{x})\} .
$$

- (Epigraph of function from \mathbb{R}^{n} to $\overline{\mathbb{R}}$) Let $\overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty\}$ be the extended reals. Now consider $X=\mathbb{R}^{n}$ and $Y=\overline{\mathbb{R}}$. For $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, the epigraph of f is the set

$$
\text { epi } f:=\left\{(\boldsymbol{x}, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}: \alpha \geq f(\boldsymbol{x})\right\} .
$$

- (Strict epigraph) epi ${ }_{S} f=\operatorname{epi} f \backslash \operatorname{graph} f$, or equivalently

$$
\operatorname{epi}_{S} f:=\left\{(\boldsymbol{x}, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}: \alpha>f(\boldsymbol{x})\right\} .
$$

Remarks

$$
\text { epi } f:=\left\{(\boldsymbol{x}, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}: \alpha \geq f(\boldsymbol{x})\right\}
$$

- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ but epi f is defined to be a subset of $\mathbb{R}^{n} \times \mathbb{R}$, not $\mathbb{R}^{n} \times \overline{\mathbb{R}}$.
- This is intentional to define epi f as a subset of $\mathbb{R}^{n} \times \mathbb{R}$.
- \mathbb{R}^{n} is a vector space
- $\mathbb{R}^{n} \times \mathbb{R}$ is a vector space
- $\mathbb{R}^{n} \times \overline{\mathbb{R}}$ is not a vector space: \nexists additive identity for $\infty+\infty$
(Being a vector space allows to use tools from real analysis and functional analysis.)
- (At infinity) If $f\left(\boldsymbol{x}_{0}\right)=+\infty$ at $\boldsymbol{x}=\boldsymbol{x}_{0}$, then $\left(\boldsymbol{x}_{0},+\infty\right) \notin$ epi f.
- Two extreme cases
- If $f_{\infty^{+}}(\boldsymbol{x})=+\infty \forall \boldsymbol{x}$, then epi $f_{\infty^{+}}$is \varnothing.
- If $f_{\infty^{-}}(\boldsymbol{x})=-\infty \forall \boldsymbol{x}$, then epi $f_{\infty^{-}}$is the whole $\mathbb{R}^{n} \times \mathbb{R}$

Empty epigraph
(Convention: $-\infty<+\infty$)

Visualization of graph f and epi f

- epi $f=$ all the points of \mathbb{R}^{n+1} lying on or above graph f.
- Example: $f(x)=x^{2}$
- $n=1$ (1-dimensional)
- graph $f:=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=f(x)\}$ is a 1 d curve in a 2 d space.
- epi $f:=\{(x, \alpha) \in \mathbb{R} \times \mathbb{R}: \alpha \geq f(x)\}$ is a 2 d set in a 2 d space.

Level sets: a concept related to epigraph.

$$
\begin{aligned}
& \operatorname{lev}_{\leq \alpha} f:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x}) \leq \alpha\right\} \\
& \operatorname{lev}_{<\alpha} f:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x})<\alpha\right\}
\end{aligned}
$$

- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\alpha \in \mathbb{R}$, define $\operatorname{lev}_{=\alpha} f:=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x})=\alpha\right\}$

$$
\begin{aligned}
\operatorname{lev}_{>\alpha} f & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x})>\alpha\right\} \\
\operatorname{lev}_{\geq \alpha} f & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x}) \geq \alpha\right\}
\end{aligned}
$$

The important one for minimization is $\operatorname{lev}_{\leq \alpha} f$ (named sublevel sets).

- lev is a subset of domain, not codomain.
- If $\alpha=\inf f$, then $\operatorname{lev}_{\leq \alpha} f=\operatorname{lev}_{=\alpha} f=\operatorname{argmin} f$.
- Level sets can be
- empty: $\operatorname{lev}_{\leq-1}\left(x^{2}\right)$, no x makes $x^{2} \leq-1$
- non-continuous: $\operatorname{lev}_{=0} \sin (x)$, then $x=\{n \pi\}_{n \in \mathbb{N}}$ is a set of dots
- non-convex: $\mathrm{lev}_{=0} \sin (x)$

An illustration of $\operatorname{lev}_{\leq \alpha} f$

Picture from Rockafellar, R. Tyrrell, and Roger J-B. Wets. Variational analysis. Springer, 2009.

Q \& A

Optimization newbie: "Why talk about epigraph?"
Optimization expert: "it is useful!"
The main idea

- Many properties of f has a counterpart in epi f.
- Sometimes it is easier to work with epi f than with f.

Properties of f

Properties of epi f

- f is proper
- f is closed
- f is lower semicontinuous on \mathbb{R}^{n}
- f is convex
- f is strictly convex
- $f \square g$ (Infimal convolution of f and g)
epi f is nonempty
epi f is a closed set
epi f is nonempty and closed in $\mathbb{R}^{n} \times \mathbb{R}$
epi f is a convex set
epi ${ }_{S} f$ is a convex set
Minkowski sum of epi f and epi g

Example: f is convex $\Longleftrightarrow \operatorname{epi} f$ is convex

(To avoid confusing the bracket of graph and bracket of a number, here we use $\left\{x_{1}, y_{1}\right\} \in$ epi f)

- (\Longrightarrow)
- f is convex $\Longleftrightarrow f\left((1-t) \boldsymbol{x}_{1}+t \boldsymbol{x}_{2}\right) \leq(1-t) f\left(\boldsymbol{x}_{1}\right)+t f\left(\boldsymbol{x}_{2}\right) \forall \boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and $t \in[0,1]$.
- $\left\{\boldsymbol{x}_{1}, y_{1}\right\} \in \operatorname{epi} f \Longleftrightarrow f\left(\boldsymbol{x}_{1}\right) \leq y_{1}$ and $\left\{\boldsymbol{x}_{2}, y_{2}\right\} \in \operatorname{epi} f \Longleftrightarrow f\left(\boldsymbol{x}_{2}\right) \leq y_{2}$
- Now $f\left((1-t) \boldsymbol{x}_{1}+t \boldsymbol{x}_{2}\right) \stackrel{(*)}{\leq}(1-t) f\left(\boldsymbol{x}_{1}\right)+t f\left(\boldsymbol{x}_{2}\right) \stackrel{(* *)}{\leq}(1-t) y_{1}+t y_{2}$. So $\left\{(1-t) \boldsymbol{x}_{1}+t \boldsymbol{x}_{2},(1-t) y_{1}+t y_{2}\right\}=(1-t)\left\{\boldsymbol{x}_{1}, y_{1}\right\}+t\left\{\boldsymbol{x}_{2}, y_{2}\right\} \stackrel{(* *)}{\epsilon}$ epi f. So epi f is a convex set.
- (\Longleftarrow)
- epi f is a convex set $\Longleftrightarrow\left\{\boldsymbol{x}_{1}, y_{1}\right\} \in \operatorname{epi} f,\left\{\boldsymbol{x}_{2}, y_{2}\right\} \in \operatorname{epi} f$ implies for $t \in[0,1]$ we have

$$
\begin{equation*}
(1-t)\left\{\boldsymbol{x}_{1}, y_{1}\right\}+t\left\{\boldsymbol{x}_{2}, y_{2}\right\}=\left\{(1-t) \boldsymbol{x}_{1}+t \boldsymbol{x}_{2},(1-t) y_{1}+t y_{2}\right\} \in \text { epi } f . \tag{***}
\end{equation*}
$$

- By definition of epigraph, (***) is equivalent to

$$
f\left(\boldsymbol{x}_{1}\right) \leq y_{1} \text { and } f\left(\boldsymbol{x}_{2}\right) \leq y_{2} \quad \text { implies } \quad f\left((1-t) \boldsymbol{x}_{1}+t \boldsymbol{x}_{2}\right) \leq(1-t) y_{1}+t y_{2} .
$$

Choose $f\left(\boldsymbol{x}_{1}\right) \leq y_{1}$ and $f\left(\boldsymbol{x}_{2}\right) \leq y_{2}$ gives $f\left((1-t) \boldsymbol{x}_{1}+t \boldsymbol{x}_{2}\right) \leq(1-t) f\left(\boldsymbol{x}_{1}\right)+t f\left(\boldsymbol{x}_{2}\right)$, so f is convex.

Table of Contents

Epigraphs

Infimal convolution
Moreau-Yosida envelope
Summary

$$
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}):=\inf _{\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}_{2}\right)
$$

Infimal convolution

- Given $f_{1}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and $f_{2}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$. The infimal convolution $f_{1} \square f_{2}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is

$$
\begin{aligned}
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}) & :=\inf _{\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}_{2}\right) \\
& =\inf _{\boldsymbol{x}_{1}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right) \\
& =\inf _{\boldsymbol{x}_{2}} f_{1}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)+f_{2}\left(\boldsymbol{x}_{2}\right)
\end{aligned}
$$

Convention: $\infty-\infty=\infty$ and $\inf \varnothing=+\infty$

- History

Earliest(?) work
Hausdorff, Uber halbstetige Funktionen und deren Verallgemeinerung, Math. Zeit. 5 (1919), 292-309.
Fenchel, "Convex Cones, Sets, and Functions", Lecture Notes, Princeton University, Princeton, 1953.
First systematic study of infimal convolution
Moreau, Inf-convolution, Sém. d'Math. Montpellier (1963), 3.1-3.48
Later works by Attouch, Rockafellar, Hiriart-Urruty, etc
Thomas Stromberg's PhD thesis (1994): a nice summary.

How infimal convolution gets its name

$$
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}):=\inf _{\boldsymbol{x}_{1}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right) .
$$

- Definition of (integral) convolution
(Examples: Laplace transform, Fourier transform.)

$$
(f * g)(t):=\int_{\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

- $f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)$ "looks similar" to (integral) convolution
- There is $\inf _{\boldsymbol{w}} \Longrightarrow$ people name it infimal.
- Deep fact: integral convolution is in $(+, \times)$-algebra
- Integration $=$ summation
- You combine f and g by multiplication

Infimal convolution is in (min, +)-algebra (tropical semi-ring)

- The summation is replaced by min
- You combine f and g by addition

What infimal convolution solves: an economics example

- You want to buy totally n hamburgers, from MacDonald and Burger King. Suppose buying n_{1} hamburgers from MacDonald costs you $f\left(n_{1}\right)$, and if you buy n_{2} hamburgers from Burger King, the price is $g\left(n_{2}\right)$.
- You want to find the infimum of the total cost $f\left(n_{1}\right)+g\left(n_{2}\right)$ subject to the constraint $n_{1}+n_{2}=n$. I.e., you want to find the "cheapest way" to buy n hamburgers.
- This problem is exactly: calculate $(f \square g)(n)$

$$
(f \square g)(n)=\inf _{n_{1}+n_{2}=n} f\left(n_{1}\right)+g\left(n_{2}\right)=\underbrace{{\operatorname{cocus~on~} n_{1}}_{\inf _{n_{1}} f\left(n_{1}\right)+g\left(n-n_{1}\right)}^{\inf _{n_{2}} f\left(n-n_{2}\right)+g\left(n_{2}\right)} .}_{\text {this also means infimal convolution is commutative }}
$$

Infimal convolution is commutative: $f \square g=g \square f$.

Example. Infimal convolution of two indicator functions

$$
\begin{aligned}
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}) & :=\inf _{\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}_{2}\right) \\
& =\inf _{\boldsymbol{x}_{1}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right) \\
& =\inf _{\boldsymbol{x}_{2}} f_{1}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)+f_{2}\left(\boldsymbol{x}_{2}\right)
\end{aligned}
$$

- Given two sets C_{1}, C_{2} and two indicator functions $i_{C_{1}}, i_{C_{2}}$.

$$
\left(i_{C_{1}} \square i_{C_{2}}\right)(\boldsymbol{x})=\inf _{\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}} i_{C_{1}}\left(\boldsymbol{x}_{1}\right)+i_{C_{2}}\left(\boldsymbol{x}_{2}\right)=i_{C_{1} \oplus C_{2}}(\boldsymbol{x})
$$

\oplus is Minkowski sum of sets: $P \oplus Q:=\{p+q \mid p \in P, q \in Q\}$.

- Minkowski sum keeps convexity of sets, so $C_{1} \oplus C_{2}$ is a convex set and $i_{C_{1} \oplus C_{2}}$ is a convex function. Here we see that inf-convolution of two convex functions is a convex function.
- In general, if $f_{1}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and $f_{2}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ are convex, then $f_{1} \square f_{2}$ is also convex. Proof. We prove inf-convolution preserves convexity using definition and operations that preserve convexity. By definition, $\left(f_{1} \square f_{2}\right)(x)=\inf _{x_{1}} h\left(x, x_{1}\right)$ where $h\left(x, x_{1}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x-x_{1}\right)$. By assumption $f_{1}\left(x_{1}\right)$ is convex and $f_{2}\left(x_{1}\right)$ is convex. The function $f_{2}\left(x-x_{1}\right)$ is $f_{2}\left(x_{1}\right)$ with argument x_{1} under a translation to $x-x_{1}$ so $f_{2}\left(x-x_{1}\right)$ is convex. Now $h\left(x, x_{1}\right)$ is the sum of two convex functions on x_{1}, thus it is convex.

Infimal convolution is also called epi-addition

$$
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}):=\inf _{\boldsymbol{x}_{2}} f_{1}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)+f_{2}\left(\boldsymbol{x}_{2}\right) .
$$

- $\operatorname{epi}_{S}\left(f_{1} \square f_{2}\right)=\operatorname{epi}{ }_{S} f_{1} \oplus \operatorname{epi}_{S} f_{2}$
\Longleftrightarrow inf-convolution of convex functions is convex ${ }^{1}$
- $\operatorname{epi}\left(f_{1} \square f_{2}\right) \supseteq \operatorname{epi} f_{1} \oplus \operatorname{epi} f_{2}$
- epi $\left(f_{1} \square f_{2}\right)=\operatorname{epi} f_{1} \oplus \operatorname{epi} f_{2}$ if inf-convolution is exact

Exact means the inf is gone: $\left(f_{1} \square f_{2}\right)(\boldsymbol{x})=f_{1}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)+f_{2}\left(\boldsymbol{x}_{2}\right)$.

- For proof, see Jean Jacques Moreau. Inf-convolution, sous-additivité, convexité des fonctions numériques. Journal de Mathématiques Pures et Appliquées, 1970.
https://hal.archives-ouvertes.fr/hal-02162006

[^0]The proof of epi $\left(f_{1} \square f_{2}\right) \supseteq \operatorname{epi} f_{1} \oplus \operatorname{epi} f_{2}$

- Take $\{\boldsymbol{x}, \alpha\} \in \operatorname{epi} f_{1} \oplus \operatorname{epi} f_{2}$. Since the element $\{\boldsymbol{x}, \alpha\}$ is inside the sum of two sets (epi f_{1} and epi f_{2}), that means we can decompose $\{\boldsymbol{x}, \alpha\}$ as the sum of element from each set. I.e., we have $\boldsymbol{x}=\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ and $\alpha=\alpha_{1}+\alpha_{2}$ that $\left\{\boldsymbol{x}_{1}, \alpha_{1}\right\} \in \operatorname{epi} f_{1}$ and $\left\{\boldsymbol{x}_{2}, \alpha_{2}\right\} \in \operatorname{epi} f_{2}$.
(It means given $\{\boldsymbol{x}, \alpha\}$, there is exist the pair $\left\{\boldsymbol{x}_{1}, \alpha_{1}\right\},\left\{\boldsymbol{x}_{2}, \alpha_{2}\right\}$ that fulfill the above conditions)
- implies $f_{1}\left(\boldsymbol{x}_{1}\right) \leq \alpha_{1}$, implies $f_{2}\left(\boldsymbol{x}_{2}\right) \leq \alpha_{2}$ and $f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}_{2}\right) \leq \alpha_{1}+\alpha_{2}=\alpha$.
- Now consider $\left(f_{1} \square f_{2}\right)(\boldsymbol{x}):=\inf _{y_{1}+y_{2}=\boldsymbol{x}} f_{1}\left(\boldsymbol{y}_{1}\right)+f_{2}\left(\boldsymbol{y}_{2}\right)$. As $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}=\boldsymbol{y}_{1}+\boldsymbol{y}_{2}$, the infimum $\inf _{y_{1}+y_{2}=\boldsymbol{x}}$ is the smallest among all pair that sum to \boldsymbol{x}, so

$$
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}):=\inf _{\boldsymbol{y}_{1}+\boldsymbol{y}_{2}=\boldsymbol{x}} f_{1}\left(\boldsymbol{y}_{1}\right)+f_{2}\left(\boldsymbol{y}_{2}\right) \leq f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}_{2}\right) \leq \alpha .
$$

So $\{\boldsymbol{x}, \alpha\} \in \operatorname{epi}\left(f_{1} \square f_{2}\right)$.

- What we just showed is $\{\boldsymbol{x}, \alpha\} \in \operatorname{epi} f_{1} \oplus \operatorname{epi} f_{2} \Longrightarrow\{\boldsymbol{x}, \alpha\} \in \operatorname{epi}\left(f_{1} \square f_{2}\right)$, so in set language we have epi $\left(f_{1} \square f_{2}\right) \supseteq \operatorname{epi} f_{1} \oplus \operatorname{epi} f_{2}$.

Example. Pictorial illustration of epi-addition (and Minkowski sum)

- $f=|\cdot|$

$$
\begin{array}{r}
\text { epi } f=\{(x, t) \in \mathbb{R} \times \mathbb{R}:|x| \leq t\} \\
\text { epi } g=\left\{(x, t) \in \mathbb{R} \times \mathbb{R}: \frac{1}{2} x^{2} \leq t\right\}
\end{array}
$$

- $g=\frac{1}{2}(\cdot)^{2}$
- $(f \square g)(x)=\inf _{w}|w|+\frac{1}{2}(x-w)^{2}$

$$
\operatorname{epi}(f \square g)=\left\{(x, t) \in \mathbb{R} \times \mathbb{R}:\left(\inf _{w}|w|+\frac{1}{2}(x-w)^{2}\right) \leq t\right\}
$$

"Epi-addition: sliding the blue curve on red curve and perform union operation gives the black curve"

What about $f_{1} \square f_{2} \square f_{3}$? Inf-convolution is associative

$$
\begin{aligned}
f_{1} \square\left(f_{2} \square f_{3}\right)(t) & =\inf _{x+y=t}\left\{f_{1}(x)+\left(f_{2} \square f_{3}\right)(y)\right\} & & \text { by definition } \\
& =\inf _{x+y=t}\left\{f_{1}(x)+\left\{\inf _{z+w=y} f_{2}(w)+f_{3}(z)\right\}\right\} & & \text { by definition } \\
& =\inf _{\substack{x+y=t \\
z+w=y}}\left\{f_{1}(x)+f_{2}(w)+f_{3}(z)\right\} & & \text { you can move inf } \\
& =\inf _{x+z+w=t}\left\{f_{1}(x)+f_{2}(w)+f_{3}(z)\right\} & & \text { combine } x+y=t, z+w=y \\
& =\inf _{\substack{r+z=t \\
x+w=r}}\left\{f_{1}(x)+f_{2}(w)+f_{3}(z)\right\} & & \text { let } t=r+z, x+w=r \\
& =\inf _{r+z=t}^{r+z}\left\{\left\{\inf _{x+w=r} f_{1}(x)+f_{2}(w)\right\}+f_{3}(z)\right\} & & \text { you can move inf } \\
& =\inf _{r+z=t}\left\{\left(f_{1} \square f_{2}\right)(r)+f_{3}(z)\right\} & & \text { by definition } \\
& =\left(f_{1} \square f_{2}\right) \square f_{3}(t) & & \text { by definition }
\end{aligned}
$$

Properties of inf-convolution

We already see

- $f \square g=g \square f$ commutative
- $f \square g \square h=(f \square g) \square h=f \square(g \square h)$ associative
- f, g convex $\Longrightarrow f \square g$ convex

Useful table

f	g	$f \square g$			
f	0	$\inf _{x} f(x)$	- Distance function $d_{C}(x)=\inf _{c \in C}\\|x-c\\|_{2}$		
i_{C}	$\\|\cdot\\|_{2}$	d_{C}			
$i_{C_{1}}$ f	$\begin{gathered} i_{C_{2}} \\ i_{x} \end{gathered}$	$\begin{aligned} & i_{C_{1} \oplus C_{2}} \\ & f(\cdot-x) \end{aligned}$	Indicator function $i_{C}(x)= \begin{cases}0 & x \in C \\ +\infty & x \notin C\end{cases}$		
f	$\langle s, \cdot\rangle$	$\langle s, \cdot\rangle-f^{*}(s)$	- Conjugate $f^{*}(x)=\sup \langle u, x\rangle-f(x)$		
f convex	f	$2 f(\dot{\overline{2}})$			

Inf-convolution and conjugate: $(f \square g)^{*}=f^{*}+g^{*}$
Let $f, g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be proper functions.

$$
\begin{array}{rlrl}
(f \square g)^{*}(\boldsymbol{y}) & =\sup _{\boldsymbol{x}}\{\langle\boldsymbol{y}, \boldsymbol{x}\rangle-(f \square g)(\boldsymbol{x})\} & & \text { by definition of conjugate } \\
& =\sup _{\boldsymbol{x}}\left\{\langle\boldsymbol{y}, \boldsymbol{x}\rangle-\inf _{\boldsymbol{u}}[f(\boldsymbol{u})+g(\boldsymbol{x}-\boldsymbol{u})]\right\} & & \text { by definition of inf-convolution } \\
& =\sup _{\boldsymbol{x}} \sup _{\boldsymbol{u}}\{\langle\boldsymbol{y}, \boldsymbol{x}\rangle-[f(\boldsymbol{u})+g(\boldsymbol{x}-\boldsymbol{u})]\} & & -\inf _{\boldsymbol{u}}=+\sup _{\boldsymbol{u}} \\
& =\sup _{\boldsymbol{x}, \boldsymbol{u}}\{\langle\boldsymbol{y}, \boldsymbol{x}-\boldsymbol{u}+\boldsymbol{u}\rangle-f(\boldsymbol{u})-g(\boldsymbol{x}-\boldsymbol{u})\} & & \\
& =\sup _{\boldsymbol{x}, \boldsymbol{u}}\{\langle\boldsymbol{y}, \boldsymbol{x}-\boldsymbol{u}\rangle+\langle\boldsymbol{y}, \boldsymbol{u}\rangle-f(\boldsymbol{u})-g(\boldsymbol{x}-\boldsymbol{u})\} & & \\
& =\sup _{\boldsymbol{x}, \boldsymbol{u}}\{\langle\boldsymbol{y}, \boldsymbol{x}-\boldsymbol{u}\rangle-g(\boldsymbol{x}-\boldsymbol{u})\}+\sup _{\boldsymbol{u}}[\langle\boldsymbol{y}, \boldsymbol{u}\rangle-f(\boldsymbol{u})] \\
& =g^{*}(\boldsymbol{y})+f^{*}(\boldsymbol{y}) &
\end{array}
$$

Recall \square is similar to convolution: let \mathcal{F} denotes Fourier transform and let \star denotes integral convolution. Then $\mathcal{F}(f \star g)=\mathcal{F}(f) \cdot \mathcal{F}(g)$. Note the correspondence between $(+, \times)$-algebra and (min, +)-algebra

Table of Contents

$$
f \square \frac{1}{2 \mu}\|\cdot\|^{2}
$$

Epigraphs

Infimal convolution
Moreau-Yosida envelope
Summary

Moreau-Yosida envelope

- Moreau-Yosida envelope is the special case of infimal convolution $f \square \frac{1}{2 \mu}\|\cdot\|^{2}$
- Denote e_{f}^{μ} the Moreau-Yosida envelope of f under smoothing parameter $\mu>0$,

$$
e_{f}^{\mu}(\boldsymbol{x}):=\inf _{\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}} f\left(\boldsymbol{x}_{1}\right)+\frac{1}{2 \mu}\left\|\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

In optimization, usually the following form is used

$$
e_{f}^{\mu}(\boldsymbol{x})=\inf _{\boldsymbol{w}} f(\boldsymbol{w})+\frac{1}{2 \mu}\|\boldsymbol{x}-\boldsymbol{w}\|_{2}^{2}\|\boldsymbol{x}-\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{w}-\boldsymbol{x}\|_{2}^{2} \inf _{\boldsymbol{w}} f(\boldsymbol{w})+\frac{1}{2 \mu}\|\boldsymbol{w}-\boldsymbol{x}\|_{2}^{2}
$$

- The point-to-point map associated with Moreau-Yosida envelope is called the Proximal operator

$$
\operatorname{prox}_{f}^{\mu}(\boldsymbol{x}):=\underset{\boldsymbol{w}}{\operatorname{argmin}} f(\boldsymbol{w})+\frac{1}{2 \mu}\|\boldsymbol{w}-\boldsymbol{x}\|_{2}^{2}
$$

- Why study e_{f}^{μ} and prox ${ }_{f}^{\mu}$: they form the basis of modern convex optimization toolbox!
- Remark: inf becomes min if f is closed (epi f is closed) and convex

Why Moreau-Yosida envelope is useful

"Smoothing a non-smooth function to ease optimization"

- Consider minimizing $f(x)=|x|$ using gradient descent $x^{+}=x-\alpha \nabla f(x)$
- Gradient descent requires differentiable f, while $|x|$ is not differentiable at $x=0$.
- Now instead of $\min f(x)$, consider $\min e_{f}^{\mu}(x)$, here is the magic:
- e_{f}^{μ} is always differentiable can use gradient descent!
- $\min e_{f}^{\mu}(x)$ and $\min f(x)$ share the same minimizer

Properties of Moreau-Yosida envelope and proximal operator

$(\mu>0)$

- e_{f}^{μ} is always differentiable
smoothness
$-\min e_{f}^{\mu}(x)=\min f(x)$ and $\operatorname{argmin} e_{f}^{\mu}(x)=\operatorname{argmin} f(x)$
- f is L-Lipschitz, then $0 \leq f(x)-e_{f}^{\mu}(x) \leq L^{2} \mu$
- $\nabla e_{f}^{\mu}(v)=\frac{1}{\mu}\left(v-\operatorname{prox}_{f}^{\mu}(v)\right) \in \partial f\left(\operatorname{prox}_{f}^{\mu}(v)\right)$
- Proximal point algorithm $=$ gradient descent on $\min e_{f}^{\mu}(x)$
- f is nonconvex, then $\operatorname{prox}_{f}^{\mu}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$
- f is convex, then $\operatorname{prox}_{f}^{\mu}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- $e_{f}^{\mu}: \mathbb{R}^{n} \rightarrow \mathbb{R}$
$-\left\langle\operatorname{prox}_{f}^{\mu}(x)-\operatorname{prox}_{f}^{\mu}(y),\left(\operatorname{Id}-\operatorname{prox}_{f}^{\mu}\right)(x)-\left(\operatorname{Id}-\operatorname{prox}_{f}^{\mu}\right)(y)\right\rangle \geq 0$
- $\operatorname{Fix} \operatorname{prox}_{f}^{\mu}=\underset{y}{\operatorname{argmin}} f(y)$
- Let $T=\operatorname{prox}_{f}^{\mu}$, then $\left\{T^{k} x\right\}_{k \in \mathbb{N}} \rightharpoonup \underset{\xi}{\operatorname{argmin}} f(\xi)$
same minimum and minimizer
e_{f}^{μ} is a lower bound of f relationship between e_{f}^{μ} and $\operatorname{prox}_{f}^{\mu}$ Proximal point algorithm non-uniqueness of $\operatorname{prox}_{f}^{\mu}$ uniqueness of $\operatorname{prox}_{f}^{\mu}$ uniqueness of e_{f}^{μ} $\operatorname{prox}_{f}^{\mu}$ is firmly non-expansive fixed point weakly convergence

Moreau decomposition
$-\operatorname{prox}_{f}^{\mu}(x)+\operatorname{prox}_{f^{*}}^{\mu}(x)=x$

Example: Moreau-Yosida envelope of absolute value $=$ Huber function

$$
f(x)=\left\{\begin{array}{ll}
-x & x \leq 0 \\
x & x \geq 0
\end{array}, g=\frac{1}{2 \mu}|\cdot|^{2}, \quad e_{f}^{1}(x)=(f \square g)(x)= \begin{cases}-x-\frac{1}{2} & x<-1 \\
\frac{1}{2} x^{2} & x \in[-1,+1] \\
x-\frac{1}{2} & x>1\end{cases}\right.
$$

Example: $\min e_{f}^{\mu}(x)=\min f(x)$ and $\operatorname{argmin} e_{f}^{\mu}(x)=\operatorname{argmin} f(x)$
Proof by definition.

$$
\begin{aligned}
\min _{x} e_{f}^{\mu}(x) & =\min _{x}\left\{\min _{y}\left\{f(y)+\frac{1}{2 \mu}\|x-y\|_{2}^{2}\right\}\right\} & & \text { by definition of } e_{f}^{\mu} \\
& =\min _{y}\left\{\min _{x}\left\{f(y)+\frac{1}{2 \mu}\|x-y\|_{2}^{2}\right\}\right\} & & \text { you can swap the order of two min } \\
& =\min _{y}\left\{\left\{f(y)+\min _{x} \frac{1}{2 \mu}\|x-y\|_{2}^{2}\right\}\right\} & & f(y) \text { is constant for min } \\
& =\min _{y} f(y) & & x=y \text { minimizes }\|x-y\|_{2}^{2} \\
& =\min _{x} f(x) & & \text { rename } y \text { as } x
\end{aligned}
$$

Similar proof for $\operatorname{argmin} e_{f}^{\mu}(x)=\operatorname{argmin} f(x)$.

Last page - summary

- The epigraph of $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is the set epi $f:=\left\{(\boldsymbol{x}, \alpha) \in \mathbb{R}^{n} \times \mathbb{R}: \alpha \geq f(\boldsymbol{x})\right\}$.
- Level sets
- Given $f_{1}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ and $f_{2}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$. The infimal convolution $f_{1} \square f_{2}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is defined as

$$
\begin{aligned}
\left(f_{1} \square f_{2}\right)(\boldsymbol{x}) & :=\inf _{\boldsymbol{x}_{1}+\boldsymbol{x}_{2}=\boldsymbol{x}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}_{2}\right) \\
& =\inf _{\boldsymbol{x}_{1}} f_{1}\left(\boldsymbol{x}_{1}\right)+f_{2}\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right) \\
& =\inf _{\boldsymbol{x}_{2}} f_{1}\left(\boldsymbol{x}-\boldsymbol{x}_{2}\right)+f_{2}\left(\boldsymbol{x}_{2}\right)
\end{aligned}
$$

- Infimal convolution is also called epi-addition
- Moreau-Yosida envelope $f \square \frac{1}{2 \mu}\|\cdot\|^{2}$ as the foundation of modern optimization toolbox

End of document

[^0]: ${ }^{1}$ Remark 2.3.3 in Urruty, Jean-Baptiste Hiriart, and Claude Lemaréchal. Convex analysis and minimization algorithms. Springer-Verlag, 1993

