Nesterov's estimate sequence: 1. What is it and how to construct one

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk Homepage angms.science

Version: July 28, 2023
First draft: Nov 21, 2021

Content
Nesterov's estimate sequence: $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}, \lambda_{k} \geq 0$ that

$$
\lambda_{k} \xrightarrow{k \rightarrow \infty} 0, \quad \phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})
$$

Why estimate sequence: $f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}\right) \xrightarrow{k \rightarrow \infty} 0$.
How to construct an estimate sequence for str-cvx smooth f

Reference

Yurii Nesterov, Introductory lectures on convex optimization: a basic course, Kluwer Academic Publishers, 2003.
Yurii Nesterov, Lectures on convex optimization. Vol. 137. Berlin: Springer, 2018.

Problem setup: unconstrained convex smooth optimization

$$
(\mathcal{P}): \underset{\boldsymbol{x}}{\operatorname{argmin}} f(\boldsymbol{x}) .
$$

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is μ-strongly convex and L-smooth.
- f is convex
- f is μ-strongly convex, $\mu \geq 0$
- The assumption subsume the case for f is convex $(\mu=0)$
- f is continuous
- f is continuously differentiable
- ∇f is globally L-Lipschitz, $L>0$

For the details of convexity, epigraph, smoothness, see here.

- We also assume a solution $\boldsymbol{x}^{*} \in \mathcal{X}^{*}$ exists.
- $\mathcal{X}^{*}:=\underset{\boldsymbol{x}}{\operatorname{argmin}} f(\boldsymbol{x})$
- $\boldsymbol{x}^{*} \in \mathcal{X}^{*}$
- $f^{*}:=f\left(\boldsymbol{x}^{*}\right)$

$$
f \in \mathcal{C}_{L}^{1,1}
$$

$\operatorname{dom} f$ is a convex set and epi f is a convex set $f-\frac{\mu}{2}\|x\|_{2}^{2}$ is convex
no jump
$\nabla f(\boldsymbol{x})$ exists for all $\boldsymbol{x} \in \operatorname{dom} f$ $(\forall x \forall y \neq x)\left(\frac{\|\nabla f(x)-\nabla f(y)\|}{\|x-y\|} \leq L\right)$
solution set, assumed nonempty minimizer optimal function value

Nesterov's estimate sequence: the definition

- Also called Nesterov's estimating sequence ${ }^{1}$
- Definition 2.2.1 A sequences pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

(Def0)	λ_{k}	\geq	0	$(\forall k)$	$\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is nonnegative
(Def1)	λ_{k}	$\xrightarrow{k \rightarrow \infty}$	0	$(\forall k)$	$\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to 0
(Def2)	$\phi_{k}(\boldsymbol{x})$	\leq	$\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})$	$(\forall k)\left(\forall \boldsymbol{x} \in \mathbb{R}^{n}\right)$	$\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \leq$ "convex combination" of f, ϕ_{0}

- At this stage
- We haven't specify what is λ_{0}
- If $\lambda_{0}>1$ then Def2 is not convex combination but linear combination. That's why we put quote "convex combination"
- We haven't specify how we get λ_{k}
- We haven't specify what is ϕ_{0}
- We haven't specify what property ϕ_{k} has
- At this stage, from Definition 2.2.1, we only know $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to 0 . But we don't know how it converges to 0 , we also don't know is $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ monotonically converges to 0 .
- For example, the following oscillating sequence fulfills Def0 and Def1

$$
\frac{\sin x+1}{x+0.1}, x \geq 0:\{1.6,0.9,0.3,0.05,0.008,0.11,0.23, \ldots \text { for } x=\{1,2,3,4, \ldots\}\}
$$

[^0]
Nesterov's estimate sequence: the λ_{k}

Definition 2.2.1 A sequences pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

(Def0)	λ_{k}	\geq	0	$(\forall k)$
(Def1)	λ_{k}	$\xrightarrow{k \rightarrow \infty}$	0	$(\forall k)$
(Def2)	$\phi_{k}(\boldsymbol{x})$	\leq	$\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})$	$(\forall k)\left(\forall \boldsymbol{x} \in \mathbb{R}^{n}\right)$

- Lemma 2.2.2 (Partly) Assume that

$$
\begin{array}{lll}
\text { (L2.2.2 A4a) } & \left.\alpha_{k} \in\right] 0,1[& (\forall k) \\
\text { (L2.2.2 A4b) } & \sum_{k} \alpha_{k} \alpha_{k}=+\infty & \\
\text { (L2.2.2 A5 } 5 \text {) } & \lambda_{0}:=1 & \left\{\alpha_{k}\right\} \text { is not a summable sequence } \\
\text { (L2.2.2 A6) } & \lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k} & (\forall k)
\end{array}
$$

- With Lemma 2.2.2 (Partly), now
- $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is monotonically decreasing:

$$
\lambda_{k+1} \stackrel{L 2.2 .2 A 6}{=}\left(1-\alpha_{k}\right) \lambda_{k} \stackrel{L 2.2 .2 A 4 a}{<} \lambda_{k} \stackrel{L 2.2 .2 A 6}{=}\left(1-\alpha_{k-1}\right) \lambda_{k-1} \stackrel{L 2.2 .2 A 4 a}{<} \lambda_{k-1}<\ldots<\lambda_{0}:=1
$$

Reading (\#) from right to left also means that Def 0 is satisfied, i.e., all $\lambda_{k} \geq 0$

(L2.2.2 A4) to (L2.2.2 A6) imply (Def2) $\lambda_{k+1} \rightarrow 0$ is satisfied

Definition 2.2.1 Lemma 2.2.2 (Partly) Assume that

(L2.2.2 A4a)	$\left.\alpha_{k} \in\right] 0,1[$	$(\forall k)$
(L2.2.2 A4b)	$\sum_{k} \alpha_{k}$ strictly positive and strictly smaller than 1	
(L2.2.2 A5)	$\lambda_{k}:=1$	
(L2.2.2 A6)	$\left.\lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k}\right\}$	$(\forall k)$

- With Lemma 2.2.2 (Partly),

$$
\begin{equation*}
\lambda_{k+1} \stackrel{L 2.2 .2 A 6}{=}\left(1-\alpha_{k}\right) \lambda_{k} \stackrel{L 2.2 .2 A 6}{=}\left(1-\alpha_{k}\right)\left(1-\alpha_{k-1}\right) \lambda_{k-1} \stackrel{L 2.2 .2 A 6}{=}{ }^{L 2.2 .2 A 6} \prod_{i=1}^{k}\left(1-\alpha_{i}\right) \lambda_{0}{ }^{L 2.2 .2 A 5} \prod_{i=1}^{k}\left(1-\alpha_{i}\right) \tag{!}
\end{equation*}
$$

- Now we show that L2.2.2 A4 implies $\prod_{k=1}^{\infty}\left(1-\alpha_{k}\right)=0$.

Notice that L2.2.2 A4b is a sum but what we want to prove is produce, this gives the hint that we should take log. Let $S=\prod_{k=1}^{\infty}\left(1-\alpha_{k}\right)=0$, now consider

$$
\begin{aligned}
\log S & =\sum_{k=1}^{\infty} \log \left(1-\alpha_{k}\right) \leq-\sum_{k=1}^{\infty} \alpha_{k} \quad \log (1-x) \text { is concave so it is under its 1st-order Taylor expansion } \\
& =-\infty 2.2 .2 A 4 b \\
\Longleftrightarrow \quad S & =e^{-\infty}=0
\end{aligned}
$$

Therefore, by (!), we have $\lambda_{\infty}=S=0$, i.e., $\lambda_{k} \xrightarrow{k \rightarrow+\infty} 0$.

Why study Nesterov's estimate sequence?

Definition 2.2.1 A sequences pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

$$
\begin{array}{lrlll}
\text { (Def0) } & \lambda_{k} & \geq & 0 & (\forall k) \\
\text { (Def1) } & \lambda_{k} & \xrightarrow[k \rightarrow \infty]{\longrightarrow} & 0 & (\forall k) \\
\text { (Def2) } & \phi_{k}(\boldsymbol{x}) & \leq & \left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) & (\forall k)\left(\forall \boldsymbol{x} \in \mathbb{R}^{n}\right)
\end{array}
$$

- Lemma 2.2.1 IF for a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$ we have

$$
\begin{equation*}
f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x}) \tag{2.2.3}
\end{equation*}
$$

THEN

$$
\begin{equation*}
f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \lambda_{k} \underbrace{\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}\right)}_{\text {a constant }} \stackrel{\text { Def1 }}{\longrightarrow} 0 . \tag{3}
\end{equation*}
$$

- It forms a global upper bound the of the cost optimality gap $f\left(\boldsymbol{x}_{k}\right)-f^{*}$
- This upper bound converges to 0 by Def1. (Note $\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}$ is a constant.) \Longrightarrow the convergence rate of $\left\{f\left(\boldsymbol{x}_{k}\right)-f^{*}\right\}_{k \in \mathbb{N}}$ follows that of $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$
the reason why we study estimate sequence

Proof

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right) & \stackrel{(2.2 .3)}{\leq} \phi_{k}^{*} \stackrel{(2.2 .3)}{:=} \min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x}) \stackrel{(\text { Def2 })}{\leq} \min _{\boldsymbol{x} \in \mathbb{R}^{n}}\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f\left(\boldsymbol{x}^{*}\right)+\lambda_{k} \phi_{0}\left(\boldsymbol{x}^{*}\right) \\
\Longleftrightarrow f\left(\boldsymbol{x}_{k}\right)-f^{*} & \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}\right) \xrightarrow{(\text { Def1 })} 0 .
\end{aligned}
$$

Nesterov's estimate sequence

Definition 2.2.1 A sequences pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

(Def0)	λ_{k}	\geq	0	$(\forall k)$
(Def1)	λ_{k}	$\xrightarrow[k \rightarrow \infty]{ }$	0	$(\forall k)$
(Def2)	$\phi_{k}(\boldsymbol{x})$	\leq	$\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})$	$(\forall k)\left(\forall \boldsymbol{x} \in \mathbb{R}^{n}\right)$

- Lemma 2.2.1 IF for a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$ we have

$$
\begin{equation*}
f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x}), \tag{2.2.3}
\end{equation*}
$$

THEN

$$
\begin{equation*}
f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}\right) \xrightarrow{\text { Def1 }} 0 . \tag{3}
\end{equation*}
$$

- Now we know estimate sequence is useful to derive convergence rate
- The next questions is: how to construct an estimate sequence?
- how should we pick ϕ_{0} ?
- how should we update λ_{k} and ϕ_{k} ?

A way to construct an estimate sequence for smooth convex f

- Lemma 2.2.2 IF

(L2.2.2 A1)	f is L-smooth μ-strongly convex
(L2.2.2 A2)	$\phi_{0}(\cdot)$ is a convex function on \mathbb{R}^{n}
(L2.2.2 A3)	$\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is a sequence in \mathbb{R}^{n}
(L2.2.2 A4a)	$\left.\alpha_{k} \in\right] 0,1[$
(L2.2.2 A4b)	$\sum_{k=0}^{\infty} \alpha_{k}=\infty$
(L2.2.2 A5)	$\lambda_{0}:=1$

possibly $\mu=0$ (convex not strongly convex)
any arbitrary convex function
any arbitrary sequence
$(\forall k) \quad \alpha_{k}$ strictly positive and strictly smaller than 1
$\left\{\alpha_{k}\right\}$ is not a summable sequence
we initialize λ_{0}
THEN the sequence-pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ defined as

(L2.2.2 A6)	$\lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k}$			
$(\mathrm{~L} 2.2 .2 \mathrm{~A} 7)$	$\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\\|_{2}^{2}\right)$	$(\forall k)$		
$(\forall k)$	how we update λ_{k}			
how we update ϕ_{k}				

is an estimate sequence of $f(\boldsymbol{x})$.

- To prove $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k \in \mathbb{N}}$ is an estimate sequence of $f(\boldsymbol{x})$, we need to show
$P 0 \quad\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ defined in this way is nonnegative
$P 1 \quad\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ defined in this way converges to 0
$P 2 \quad\left\{\phi_{k}(\boldsymbol{x})\right\}_{k \in \mathbb{N}}$ defined in this way satisfies $\phi_{k} \leq \phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x}) \quad \forall k$
- Showing $P 0$ is simple: by (!) we have $\lambda_{k+1}=\prod_{i=1}^{k}\left(1-\alpha_{i}\right)>0$.

Now we have $P 0: \lambda_{k} \geq 0$

Proof P1: showing $\lambda_{k} \rightarrow 0$

- Proposition By definition $\lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k}$ with assumption $\left.\alpha_{k} \in\right] 0,1\left[\right.$, the sequence $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is monotonically decreasing.
Proof by ratio test

$$
\begin{aligned}
\lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k} \quad & \Longleftrightarrow \frac{\lambda_{k+1}}{\lambda_{k}}=1-\alpha_{k} \\
& \left.\Longleftrightarrow \frac{\lambda_{k+1}}{\lambda_{k}} \alpha_{k} \in\right] 0,1[
\end{aligned}
$$

- By $P 0: \lambda_{k} \geq 0$, the sequence $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is bounded below by 0 .
- Theorem (Real analysis 101)
- Monotonic decreasing AND bounded below $\Longrightarrow\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ has a limit c
- What we need to do: show $c=0$.

There are three ways to show $\lambda_{k} \rightarrow 0$

- Way 1: By Monotone convergence theorem (Real analysis 101), $c=\inf \left\{\lambda_{k}\right\}_{k \in \mathbb{N}}=0$.
- Way 2: By contradiction.
- By $\lambda_{k} \geq 0$, suppose the sequence $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to a positive number $c>0$.
- Now consider $\lambda_{k}-\lambda_{k+1}=\lambda_{k}-\left(1-\alpha_{k}\right) \lambda_{k}=\alpha_{k} \lambda_{k}$. It forms a telescoping sum, sum it from 0 to k gives

$$
\begin{equation*}
\lambda_{0}-\lambda_{k+1}=\sum_{i=0}^{k} \alpha_{i} \lambda_{i} \geq \sum_{i=0}^{k} \alpha_{i} c=c \sum_{i=0}^{k} \alpha_{i} \tag{*}
\end{equation*}
$$

where the \geq is based on the fact that we assume $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ converges (from above: all $\lambda_{k} \geq c$ for all k) to c.

- Now $\lambda_{0}-\lambda_{k+1} \stackrel{(*)}{\geq} c \sum_{i=0}^{k} \alpha_{i}$. Take limit $k \rightarrow \infty$ gives $\lambda_{0}-c \geq c \sum_{i=0}^{\infty} \alpha_{i}$. By $\sum_{i=0}^{\infty} \alpha_{i}=\infty$ so $\lambda_{0}-c \geq+\infty$, which is impossible (because $\lambda_{0}:=1$), a contradiction, therefore $c=0$.
- Way 3: By $\lambda_{\infty}=S=0$ using L2.2.2 A4, A5, A6 and property of $\log (1-x)$ as what we did previously.

Proof part 2: on ϕ_{k} by induction

- Base case $k=0$: $\phi_{0}(\boldsymbol{x}) \leq\left(1-\lambda_{0}\right) f(\boldsymbol{x})+\lambda_{0} \phi_{0}(\boldsymbol{x})=\phi_{0}(\boldsymbol{x})$ by $\lambda_{0}:=1$
- Induction hypothesis $\phi_{k}(\boldsymbol{x}) \leq\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})$
- Case $k+1$

$$
\begin{array}{rlr}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) & \text { by A7 def of } \phi_{k+1} \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) & \text { A1:f } \mu \text {-str cvx, } \mu \geq 0 \\
& \stackrel{\text { tricky }}{=}\left(1-\alpha_{k}\right)\left(\phi_{k}(\boldsymbol{x})+\underline{\left(1-\lambda_{k}\right) f(\boldsymbol{x})}-\left(1-\lambda_{k}\right) f(\boldsymbol{x})\right)+\alpha_{k} f(\boldsymbol{x}) & \\
& =\left(1-\alpha_{k}\right)(\underbrace{\phi_{k}(\boldsymbol{x})-\left(1-\lambda_{k}\right) f(\boldsymbol{x})}_{\leq \lambda_{k} \phi_{0}(\boldsymbol{x})})+\underbrace{\left(1-\alpha_{k}\right)\left(1-\lambda_{k}\right) f(\boldsymbol{x})}_{=((1-\alpha)-(1-\alpha) \lambda) f}+\alpha_{k} f(\boldsymbol{x}) & \\
& \leq\left(1-\alpha_{k}\right) \lambda_{k} \phi_{0}(\boldsymbol{x})+\left(1-\left(1-\alpha_{k}\right) \lambda_{k}\right) f(\boldsymbol{x}) & \text { case } k \& \alpha_{k}{ }^{A 4 a} 1 \\
& =\lambda_{k+1} \phi_{0}(\boldsymbol{x})+\left(1-\lambda_{k+1}\right) f(\boldsymbol{x}) . & \lambda_{k+1} \stackrel{A 6}{=}\left(1-\alpha_{k}\right) \lambda_{k}
\end{array}
$$

So case $k+1$ is true. By induction, the proof ϕ_{k} is completed.

The framework carries over to convex but not strongly convex f

- In the proof

$$
\begin{aligned}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) & & \text { by A7 def of } \phi_{k+1} \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) & & \text { A1: } f \mu \text {-str cvx, } \mu \geq 0
\end{aligned}
$$

The argument holds if f convex but not strongly convex

- In fact the whole framework assume $\mu \geq 0$, which includes the case $\mu=0 \Longleftrightarrow \mathbf{f}$ is convex but not strongly convex
- When f is convex but not strongly convex, we construct ϕ_{k+1} as L2.2.2 A 7 with $\mu=0$, i.e.,

$$
\begin{aligned}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) & & L 2.2 .2 A 7 \\
& =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle\right) & & \mu=0
\end{aligned}
$$

The framework carries over to nondifferentiable convex f

- Note that in the whole proof we never explicitly make use of the assumption that f is L-smooth
- The only place we make use of f is differentiable is where we assume $\nabla f(\boldsymbol{x})$ exists at \boldsymbol{y}_{k}
- In the proof

$$
\begin{array}{rlrl}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) & & \text { by A7 def of } \phi_{k+1} \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) & \text { A1: } f \mu \text {-str cvx, } \mu \geq 0
\end{array}
$$

The argument holds if f is convex but not differentiable

- When f is convex but not differentiable, we replace ∇f by subdifferential / subgradient

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\partial f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle\right)
$$

What are these $\phi_{k}, \alpha_{k}, \lambda_{k}$ actually?

$$
\begin{equation*}
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} \underbrace{\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right)}_{\psi(\boldsymbol{x})} \tag{L2.2.2A7}
\end{equation*}
$$

- λ_{k} is defined by α_{k} so you can treat them as the same thing under different expression
- By A4, A5, A6, we can think of λ_{k} as the coefficient of convex combination and thus think of ϕ_{k+1} as convex combination of ϕ_{k} and $\psi(\boldsymbol{x})$
- What is ψ : an global support / global under-estimator of f at a point \boldsymbol{y}_{k}
- Therefore $\phi_{k+1}=\operatorname{cvx}\left(\phi_{k}, \psi\right)=\operatorname{cvx}\left(\phi_{k}\right.$, lower estimate of $\left.f\right)$

Understand ϕ_{k} through pictures ... $1 / 2$

Recall

- We can pick any ϕ_{0} as long as it is convex
- If f is strongly-convex, a simple ϕ_{0} is a quadratic
- If f is convex, a simple ϕ_{0} is a affine function (a line here)
- If f is convex and nondifferentiable, a simple ϕ_{0} is a affine function (where we replace gradient by subgradient)

Understand ϕ_{k} through pictures ... $2 / 2$

You build ϕ_{1} using ϕ_{0} and f via a convex combination with weights λ_{1}

- An observation: in all the cases, $\left\{\right.$ minimizer of $\left.\phi_{1}\right\}$ is closer to \boldsymbol{x}^{*} than $\left\{\right.$ minimizer of $\left.\phi_{0}\right\}$ to \boldsymbol{x}^{*}
- Therefore, if we can somehow find $\left\{\right.$ minimizer of $\left.\phi_{1}\right\}$ and then use it to construct/update to ϕ_{2}, we move closer to \boldsymbol{x}^{*}
- By Lemma 2.2.1, the convergence speed of such process is bounded above by how fast λ_{k} approaches to 0

Small summary

- [Definition 2.2.1 ("what is" estimate sequence)] A sequences pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

(Def0)	λ_{k}	\geq	0	$(\forall k)$	$\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is nonnegative
(Def1)	λ_{k}	$\xrightarrow{k \rightarrow \infty}$	0	$(\forall k)$	$\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to 0
(Def2)	$\phi_{k}(\boldsymbol{x})$	\leq	$\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})$	$(\forall k)\left(\forall \boldsymbol{x} \in \mathbb{R}^{n}\right)$	$\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \leq$ "convex combination" of f, ϕ_{0}

- [Lemma 2.2.1 ("why of" estimate sequence)] Assume \boldsymbol{x}^{*} exists. For a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$:

$$
\text { IF } f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x}) \quad \text { THEN } \quad f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}\right) \xrightarrow{\text { Def1 }} 0
$$

- [Lemma 2.2 .2 ("how to" estimate sequence)]

A1 $f L$-smooth μ-strongly cvx
A2 $\quad \phi_{0}(\cdot)$ a cvx function
A3 $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is a sequence
THEN $\quad\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ defined by A6 A7 is an estimate sequence of f
IF A4a $\left.\alpha_{k} \in\right] 0,1[\forall k$
A4b $\sum_{k=0}^{\infty} \alpha_{k}=\infty$
A7

$$
\begin{array}{ll}
\text { A6 } & \lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k} \\
\text { A7 } & \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right)
\end{array}
$$

A5 $\lambda_{0}:=1$

- What now
- What is ϕ_{0} ?
- Well we can use any convex ϕ_{0} by A2
- We can use a simple function, like a quadratic

A simple quadratic ϕ_{0}

- We can just define ϕ_{0} as

$$
\begin{equation*}
\phi_{0}(\boldsymbol{x}):=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{2}^{2} . \tag{Phi-0}
\end{equation*}
$$

- We now introduce three new things: ϕ, γ and \boldsymbol{v}
- ϕ_{0}, γ_{0} are scalars and $\boldsymbol{v}_{0} \in \mathbb{R}^{n}$ is a vector
- ϕ_{0}^{*} is a shifting parameter, shifting the parabola up and down
- γ_{0} is a slope parameter
- \boldsymbol{v}_{0} is a shifting parameter, shifting the parabola horizontally
- ϕ_{k}, γ_{k} and \boldsymbol{v}_{k} are all sequence that keep changing

$$
\begin{aligned}
\gamma_{k+1} & =\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \\
\phi_{k+1}^{*} & =\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

Why ϕ_{k}, γ_{k} and \boldsymbol{v}_{k} are updated this way is not intuitive and can be considered as black magic by Nesterov.

- Here μ is the strong convexity parameter of f

Lemma on ϕ_{k}

$$
\text { A7: } \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right)
$$

- Lemma 2.2.3 If

$$
\begin{equation*}
\phi_{0}(\boldsymbol{x}):=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{2}^{2} . \tag{Phi-0}
\end{equation*}
$$

Then $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ defined by A7 in Lemma 2.2.2 preserves the canonical form of $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k \in \mathbb{N}}$

$$
\begin{equation*}
\phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2} . \tag{Phi-k}
\end{equation*}
$$

where ϕ_{k}, γ_{k} and \boldsymbol{v}_{k} are defined as

$$
\begin{align*}
\gamma_{k+1} & =\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \tag{i}\\
\boldsymbol{v}_{k+1} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \tag{ii}\\
\phi_{k+1}^{*} & =\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) \tag{iii}
\end{align*}
$$

- Proof First by definition (Phi-0) gives

$$
\nabla^{2} \phi_{0}(\boldsymbol{x}) \stackrel{(\mathrm{Phi}-0)}{=} \gamma_{0} \boldsymbol{I}_{n} .
$$

What next we show $\nabla^{2} \phi_{k}(\boldsymbol{x})$ has the same form as $\nabla^{2} \phi_{0}(\boldsymbol{x})$, i.e., we want to show

$$
\nabla^{2} \phi_{k}(\boldsymbol{x})=\gamma_{k} \boldsymbol{I}_{n}
$$

We do so by induction.

$$
\begin{equation*}
\text { Prove } \nabla^{2} \phi_{k}(\boldsymbol{x})=\gamma_{k} \boldsymbol{I}_{n} \tag{A7}
\end{equation*}
$$

$$
\begin{align*}
& \nabla^{2} \phi_{0}(\boldsymbol{x}) \stackrel{(\text { Phino })}{=} \gamma_{0} \boldsymbol{I}_{n} \\
& \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) \tag{i}\\
& \gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu
\end{align*}
$$

- Base case is proved by (\dagger)
- Induction hypothesis: $\nabla^{2} \phi_{k}(\boldsymbol{x})=\gamma_{k} \boldsymbol{I}_{n}$
- Case $k+1$

$$
\begin{array}{rlr}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) & \\
\nabla \phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \nabla \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right)\right) & \\
\nabla^{2} \phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \nabla^{2} \phi_{k}(\boldsymbol{x})+\alpha_{k} \mu \boldsymbol{I} & \\
& =\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{I}_{n}+\alpha_{k} \mu \boldsymbol{I} & \\
& =\left(\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu\right) \boldsymbol{I} & \text { induction hy } \\
& =\gamma_{k+1} \boldsymbol{I} &
\end{array}
$$

- Hence now we have showed $\nabla^{2} \phi_{k}(\boldsymbol{x})=\gamma_{k} \boldsymbol{I}_{n}$. This equation means that if we perform the antiderivative twice we get

$$
\phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2}
$$

for a scalar ϕ_{k}^{*} and a vector \boldsymbol{v}_{k}. Our remaining tasks are to

- shows \boldsymbol{v}_{k} satisfies (ii) in Lemma 2.2.3
- shows ϕ_{k}^{*} satisfies (iii) in Lemma 2.2.3

Proving \boldsymbol{v}_{k+1}.

$$
\begin{align*}
& \phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2} \\
& \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) \tag{A7}\\
& \boldsymbol{v}_{k+1}=\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \tag{ii}\\
& \gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k}{ }^{\mu} \tag{i}
\end{align*}
$$

- First combine (A7) and ($\dagger \dagger$)

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2}\right)+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right)
$$

- What are we going to do now is to find the minimizer of ϕ_{k+1} and denote it as \boldsymbol{v}_{k+1}. I.e., find $\boldsymbol{v}_{k+1}=\operatorname{argmin} \phi_{k+1}$. This is basically the idea from the pictures of ϕ_{k} we previously seen.
- Take gradient

$$
\nabla \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{x}-\boldsymbol{v}_{k}\right)+\alpha_{k}\left(\nabla f\left(\boldsymbol{y}_{k}\right)+\mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right)\right)
$$

- Consider at minimizer \boldsymbol{v}_{k+1} that $\nabla \phi_{k+1}\left(\boldsymbol{v}_{k+1}\right)=\mathbf{0}$

$$
\begin{array}{ll}
& \left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k+1}-\boldsymbol{v}_{k}\right)+\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}\right)=\mathbf{0} \\
\Longleftrightarrow & \left(\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu\right) \boldsymbol{v}_{k+1}+\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)-\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}-\alpha_{k} \mu \boldsymbol{y}_{k}=\mathbf{0} \\
\Longleftrightarrow \quad \gamma_{k+1} \boldsymbol{v}_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right) \\
\Longleftrightarrow \quad \boldsymbol{v}_{k+1}=\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \\
\Longleftrightarrow \quad(i i)
\end{array}
$$

Proving ϕ_{k+1}^{*}.

$$
\begin{align*}
& \phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2} \\
& \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right) \tag{A7}\\
& \boldsymbol{v}_{k+1}=\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \tag{ii}\\
& \gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \tag{i}
\end{align*}
$$

- $(\dagger \dagger)=(A 7)$ at $k+1$

$$
\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|_{2}^{2}=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right)
$$

- Put $\boldsymbol{x}=\boldsymbol{y}_{k}$

$$
\begin{align*}
\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} & =\left(1-\alpha_{k}\right) \phi_{k}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) \\
& \stackrel{\dagger \dagger)}{=}\left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)
\end{align*}
$$

- By (ii)

$$
\begin{aligned}
\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k} & =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}}-\boldsymbol{y}_{k} \\
& =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\gamma_{k+1} \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \\
& \stackrel{(i)}{=} \frac{\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \\
\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}\right\|_{2}^{2} & =\frac{\left(1-\alpha_{k}\right)^{2} \gamma_{k}^{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}-2\left\langle\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right), \alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)\right\rangle+\alpha_{k}^{2}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}}{2 \gamma_{k+1}}
\end{aligned}
$$

- Put $(\dagger \dagger \dagger \dagger)$ into $(\dagger \dagger \dagger)$ will give (iii), trust me.

$$
\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k+1}\right\|_{2}^{2}=\left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)
$$

$$
\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}\right\|_{2}^{2}=\frac{\left(1-\alpha_{k}\right)^{2} \gamma_{k}^{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}-2\left\langle\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right), \alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)\right\rangle+\alpha_{k}^{2}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}}{2 \gamma_{k+1}}
$$

$$
\begin{equation*}
\phi_{k+1}^{*}=\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) \tag{iii}
\end{equation*}
$$

What to do: show $\{(\dagger \dagger \dagger)$ and $(\dagger \dagger \dagger \dagger)\}-($ iii $)=0$

$$
\begin{aligned}
& \left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} \\
& -\left\{\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)\right\} \\
= & \left(1-\alpha_{k}\right) \frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}-\frac{\left(1-\alpha_{k}\right)^{2} \gamma_{k}^{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}-2\left\langle\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right), \alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)\right\rangle+\alpha_{k}^{2}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}}{2 \gamma_{k+1}} \\
& -\left\{-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)\right\} \\
= & \frac{\left(1-\alpha_{k}\right) \gamma_{k}}{2}\left[1-\frac{\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\right]\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\frac{\left(1-\alpha_{k}\right) \alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left\langle\boldsymbol{v}_{k}-\boldsymbol{y}_{k}, \nabla f\left(\boldsymbol{y}_{k}\right)\right\rangle \\
& -\left\{\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}} \frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)\right\}
\end{aligned}
$$

$$
=0 \text { by (i) } \gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu
$$

Last page

- [Definition 2.2.1 ("what is" estimate sequence)] A sequences pair $\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

(Def0)	λ_{k}	\geq	0	$(\forall k)$	$\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is nonnegative
(Def1)	λ_{k}	$\xrightarrow{k \rightarrow \infty}$	0	$(\forall k)$	$\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ converges to 0
(Def2)	$\phi_{k}(\boldsymbol{x})$	\leq	$\left(1-\lambda_{k}\right) f(\boldsymbol{x})+\lambda_{k} \phi_{0}(\boldsymbol{x})$	$(\forall k)\left(\forall \boldsymbol{x} \in \mathbb{R}^{n}\right)$	$\left\{\phi_{k}\right\}_{k \in \mathbb{N}} \leq$ "convex combination" of f, ϕ_{0}

- [Lemma 2.2.1 ("why of" estimate sequence)] Assume \boldsymbol{x}^{*} exists. For a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$:

$$
\text { IF } f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \phi_{k}(\boldsymbol{x}) \quad \text { THEN } \quad f\left(\boldsymbol{x}_{k}\right)-f^{*} \leq \lambda_{k}\left(\phi_{0}\left(\boldsymbol{x}^{*}\right)-f^{*}\right) \xrightarrow{\text { Def1 }} 0 .
$$

- [Lemma 2.2.2 ("how to" estimate sequence)]

A1 $\quad f L$-smooth μ-strongly cvx
A2 $\phi_{0}(\cdot)$ a cvx function
A3 $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ is a sequence
THEN $\quad\left\{\phi_{k}(\boldsymbol{x}), \lambda_{k}\right\}_{k=0}^{\infty}$ defined by A6 A7 is an estimate sequence of f
IF A4a $\left.\alpha_{k} \in\right] 0,1[\forall k$
A4b $\sum_{k=0}^{\infty} \alpha_{k}=\infty$
A6 $\quad \lambda_{k+1}=\left(1-\alpha_{k}\right) \lambda_{k}$
A7 $\quad \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left(f\left(\boldsymbol{y}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right)$
A5 $\quad \lambda_{0}:=1$

- [Lemma 2.2.3 (a quadratic $\left.\left.\phi_{0}\right)\right]$ IF $\phi_{0}(\boldsymbol{x}):=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{2}^{2}$ THEN $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ defined as A7 in Lemma 2.2.2 preserves the canonical form of $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k \in \mathbb{N}}$

$$
\phi_{k}(\boldsymbol{x})=\phi_{k}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k}\right\|_{2}^{2}
$$

$$
\text { where } \quad \begin{align*}
\gamma_{k+1} & =\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \tag{i}\\
& =\frac{\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{y}_{k}\right)}{\gamma_{k+1}} \tag{ii}\\
\boldsymbol{v}_{k+1}^{*} & =\left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\nabla f\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\nabla f\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) \tag{iii}
\end{align*}
$$

[^0]: ${ }^{1}$ Nesterov used the term "estimate sequence" in his 2003 book and then used "estimating sequence" in his 2018 book.

