Nesterov's estimate sequence: 1. What is it and how to construct one

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk Homepage angms.science

Version: July 28, 2023 First draft: Nov 21, 2021

Content

Nesterov's estimate sequence: $\left\{\phi_k(m{x}),\lambda_k
ight\}_{k=0}^\infty$, $\lambda_k\geq 0$ that

$$\lambda_k \xrightarrow{k o \infty} 0, \qquad \phi_k(oldsymbol{x}) \ \leq \ (1 - \lambda_k) f(oldsymbol{x}) + \lambda_k \phi_0(oldsymbol{x})$$

Why estimate sequence: $f(\boldsymbol{x}_k) - f^* \leq \lambda_k \Big(\phi_0(\boldsymbol{x}^*) - f^* \Big) \xrightarrow{k \to \infty} 0.$

How to construct an estimate sequence for str-cvx smooth f

Reference

Yurii Nesterov, Introductory lectures on convex optimization: a basic course, Kluwer Academic Publishers, 2003.

Yurii Nesterov, Lectures on convex optimization. Vol. 137. Berlin: Springer, 2018.

Problem setup: unconstrained convex smooth optimization

 (\mathcal{P}) : argmin $f(\boldsymbol{x})$.

•
$$f: \mathbb{R}^n \to \mathbb{R}$$
 is μ -strongly convex and L -smooth

- ► f is convex
- f is μ -strongly convex, $\mu \ge 0$

• The assumption subsume the case for f is convex $(\mu = 0)$

- ► *f* is continuous
- ► *f* is continuously differentiable
- ∇f is globally *L*-Lipschitz, L > 0

For the details of convexity, epigraph, smoothness, see here.

- \blacktriangleright We also assume a solution $x^* \in \mathcal{X}^*$ exists.
 - $\blacktriangleright \ \mathcal{X}^* \coloneqq \operatorname{argmin} \, f(\boldsymbol{x})$
 - $oldsymbol{x}^* \in \mathcal{X}^*$

$$\blacktriangleright \ f^* \coloneqq f({\boldsymbol x}^*)$$

 $f\in \mathcal{C}_L^{1,1}$

 ${\rm dom} f$ is a convex set and ${\rm epi}\,f$ is a convex set $f-\frac{\mu}{2}\|\pmb{x}\|_2^2$ is convex

no jump

$$abla f(\boldsymbol{x}) \text{ exists for all } \boldsymbol{x} \in \operatorname{dom} f$$

 $\left(\forall \boldsymbol{x} \forall \boldsymbol{y} \neq \boldsymbol{x} \right) \left(\frac{\| \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}) \|}{\| \boldsymbol{x} - \boldsymbol{y} \|} \leq L \right)$

solution set, assumed nonempty

minimizer optimal function value

Nesterov's estimate sequence: the definition

- Also called Nesterov's estimating sequence¹
- ► Definition 2.2.1 A sequences pair $\left\{\phi_k(\boldsymbol{x}), \lambda_k\right\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

 $\begin{array}{l|l} \mbox{(Def0)} & \lambda_k & \geq & 0 & (\forall k) \\ \mbox{(Def1)} & \lambda_k & \xrightarrow{k \to \infty} & 0 & (\forall k) \\ \mbox{(Def2)} & \phi_k(\boldsymbol{x}) & \leq & (1 - \lambda_k)f(\boldsymbol{x}) + \lambda_k\phi_0(\boldsymbol{x}) & (\forall k)(\forall \boldsymbol{x} \in \mathbb{R}^n) \end{array} & \begin{array}{l|l} \{\lambda_k\}_{k \in \mathbb{N}} \mbox{ is nonnegative} \\ \{\lambda_k\}_{k \in \mathbb{N}} \mbox{ converges to } 0 \\ \{\phi_k\}_{k \in \mathbb{N}} \leq \mbox{ "convex combination" of } f, \phi_0 \end{array}$

- At this stage
 - We haven't specify what is λ₀
 - If $\lambda_0 > 1$ then Def2 is not convex combination but linear combination. That's why we put quote "convex combination"
 - We haven't specify how we get λ_k
 - We haven't specify what is ϕ_0
 - We haven't specify what property ϕ_k has
- At this stage, from Definition 2.2.1, we only know $\{\lambda_k\}_{k\in\mathbb{N}}$ converges to 0. But we don't know how it converges to 0, we also don't know is $\{\lambda_k\}_{k\in\mathbb{N}}$ monotonically converges to 0.
 - For example, the following oscillating sequence fulfills Def0 and Def1

$$\frac{\sin x + 1}{x + 0.1}, x \ge 0 \hspace{.1in} : \hspace{.1in} \left\{1.6, 0.9, 0.3, 0.05, 0.008, 0.11, 0.23, \dots \hspace{.1in} \text{for} \hspace{.1in} x = \{1, 2, 3, 4, \dots\}\right\}$$

 1 Nesterov used the term "estimate sequence" in his 2003 book and then used "estimating sequence" in his 2018 book.

Nesterov's estimate sequence: the λ_k

Definition 2.2.1 A sequences pair
$$\left\{\phi_k(\boldsymbol{x}), \lambda_k\right\}_{k=0}^{\infty}$$
 is estimate sequence of $f(\cdot)$ if

Lemma 2.2.2 (Partly) Assume that

- ▶ With Lemma 2.2.2 (Partly), now
 - $\{\lambda_k\}_{k \in \mathbb{N}}$ is monotonically decreasing:

$$\lambda_{k+1} \stackrel{L2.2.2A6}{=} (1-\alpha_k)\lambda_k \stackrel{L2.2.2A4a}{<} \lambda_k \stackrel{L2.2.2A6}{=} (1-\alpha_{k-1})\lambda_{k-1} \stackrel{L2.2.2A4a}{<} \lambda_{k-1} < \dots < \lambda_0 \coloneqq 1 \qquad (\#)$$

Reading (#) from right to left also means that Def 0 is satisfied, i.e., all $\lambda_k \ge 0$

(L2.2.2 A4) to (L2.2.2 A6) imply (Def2) $\lambda_{k+1} \rightarrow 0$ is satisfied

Definition 2.2.1 Lemma 2.2.2 (Partly) Assume that

(L2.2.2 A4a) $\alpha_k \in [0, 1[$ $(\forall k) \quad \alpha_k$ strictly positive and strictly smaller than 1 $(L2.2.2 \text{ A4b}) \quad \sum_{k=0}^{\infty} \alpha_k = +\infty$ $\{lpha_k\}$ is not a summable sequence we initialize λ_0 $(L2.2.2 A5) \quad \lambda_0 := 1$ (L2.2.2 A6) $\lambda_{k+1} = (1 - \alpha_k)\lambda_k$ ($\forall k$) define how we update λ_k

With Lemma 2.2.2 (Partly).

$$\lambda_{k+1} \stackrel{L2.2.2A6}{=} (1-\alpha_k)\lambda_k \stackrel{L2.2.2A6}{=} (1-\alpha_k)(1-\alpha_{k-1})\lambda_{k-1} \stackrel{L2.2.2A6}{=} \dots \stackrel{L2.2.2A6}{=} \prod_{i=1}^k (1-\alpha_i)\lambda_0 \stackrel{L2.2.2A5}{=} \prod_{i=1}^k (1-\alpha_i) (!)$$

.

• Now we show that L2.2.2 A4 implies $\prod_{k=1}^{\infty} (1 - \alpha_k) = 0.$ Notice that L2.2.2 A4b is a sum but what we want to prove is produce, this gives the hint that we should take log. Let $S = \prod_{k=1}^{\infty} (1 - \alpha_k) = 0$, now consider

$$\begin{array}{lcl} \log S & = & \sum_{k=1}^{\infty} \log(1-\alpha_k) \leq -\sum_{k=1}^{\infty} \alpha_k & \log(1-x) \text{ is concave so it is under its 1st-order Taylor expansion} \\ & = & -\infty & L2.2.2A4b \\ \Leftrightarrow & S & = & e^{-\infty} = 0 \end{array}$$

Therefore, by (!), we have $\lambda_{\infty} = S = 0$, i.e., $\lambda_k \xrightarrow{k \to +\infty} 0$.

Why study Nesterov's estimate sequence?

Definition 2.2.1 A sequences pair
$$\left\{\phi_k(\boldsymbol{x}), \lambda_k\right\}_{k=0}^{\infty}$$
 is estimate sequence of $f(\cdot)$ if

▶ Lemma 2.2.1 IF for a sequence $\{ oldsymbol{x}_k \}_{k \in \mathbb{N}}$ we have

$$f(\boldsymbol{x}_k) \leq \phi_k^* \coloneqq \min_{\boldsymbol{x} \in \mathbb{R}^n} \phi_k(\boldsymbol{x}), \qquad (2.2.3)$$

THEN

$$\underbrace{f(\boldsymbol{x}_k) - f^*}_{\text{a constant}} \leq \lambda_k \underbrace{\left(\phi_0(\boldsymbol{x}^*) - f^*\right)}_{\text{a constant}} \xrightarrow{\text{Def1}} 0.$$
(3)

- It forms a global upper bound the of the cost optimality gap $f(\boldsymbol{x}_k) f^*$
- ► This upper bound converges to 0 by Def1. (Note $\phi_0(\boldsymbol{x}^*) f^*$ is a constant.)
 - $\implies \text{ the convergence rate of } \left\{f(\boldsymbol{x}_k) f^*\right\}_{k \in \mathbb{N}} \text{ follows that of } \left\{\lambda_k\right\}_{k \in \mathbb{N}}$

the reason why we study estimate sequence

Proof

Nesterov's estimate sequence

I

$$\begin{array}{lll} \begin{array}{lll} \text{Definition 2.2.1 A sequences pair } \left\{\phi_k(\boldsymbol{x}), \lambda_k\right\}_{k=0}^{\infty} \text{ is estimate sequence of } f(\cdot) \text{ if} \\ \begin{array}{lll} (\text{Def0}) & \lambda_k & \geq & 0 & (\forall k) \\ (\text{Def1}) & \lambda_k & \xrightarrow{k \to \infty} & 0 & (\forall k) \\ (\text{Def2}) & \phi_k(\boldsymbol{x}) & \leq & (1 - \lambda_k)f(\boldsymbol{x}) + \lambda_k\phi_0(\boldsymbol{x}) & (\forall k)(\forall \boldsymbol{x} \in \mathbb{R}^n) \end{array} \end{array}$$

▶ Lemma 2.2.1 IF for a sequence $\left\{ oldsymbol{x}_k
ight\}_{k \in \mathbb{N}}$ we have

$$f(\boldsymbol{x}_k) \leq \phi_k^* := \min_{\boldsymbol{x} \in \mathbb{R}^n} \phi_k(\boldsymbol{x}), \qquad (2.2.3)$$

THEN

$$f(\boldsymbol{x}_k) - f^* \leq \lambda_k \Big(\phi_0(\boldsymbol{x}^*) - f^* \Big) \xrightarrow{\text{Def1}} 0.$$
(3)

- ► Now we know estimate sequence is useful to derive convergence rate
- The next questions is: how to construct an estimate sequence?
 - how should we pick ϕ_0 ?
 - how should we update λ_k and ϕ_k ?

A way to construct an estimate sequence for smooth convex f

Lemma 2.2.2 IF

$$\begin{array}{ll} (\text{L2.2.2 A1}) & f \text{ is } L\text{-smooth } \mu\text{-strongly convex} \\ (\text{L2.2.2 A2}) & \phi_0(\cdot) \text{ is a convex function on } \mathbb{R}^n \\ (\text{L2.2.2 A3}) & \left\{ \boldsymbol{y}_k \right\}_{k=0}^{\infty} \text{ is a sequence in } \mathbb{R}^n \\ (\text{L2.2.2 A4a}) & \alpha_k \in]0,1[\\ (\text{L2.2.2 A4b}) & \sum_{k=0}^{\infty} \alpha_k = \infty \\ (\text{L2.2.2 A5}) & \lambda_0 \coloneqq 1 \end{array}$$

possibly $\mu=0$ (convex not strongly convex) any arbitrary convex function any arbitrary sequence

 $(orall k) = lpha_k$ strictly positive and strictly smaller than 1

 $\{\alpha_k\}$ is not a summable sequence

we initialize λ_0

THEN the sequence-pair $ig\{\phi_k(m{x}),\lambda_kig\}_{k=0}^\infty$ defined as

 $\begin{array}{ll} \text{(L2.2.2 A6)} & \lambda_{k+1} = (1 - \alpha_k)\lambda_k & (\forall k) & \text{how we update } \lambda_k \\ \text{(L2.2.2 A7)} & \phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2\right) & (\forall k) & \text{how we update } \phi_k \end{array}$

is an estimate sequence of $f(\boldsymbol{x})$.

- To prove $\{\phi_k(\boldsymbol{x}), \lambda_k\}_{k \in \mathbb{N}}$ is an estimate sequence of $f(\boldsymbol{x})$, we need to show
 - $\begin{array}{ll} P0 & \left\{\lambda_k\right\}_{k\in\mathbb{N}} \text{ defined in this way is nonnegative} \\ P1 & \left\{\lambda_k\right\}_{k\in\mathbb{N}} \text{ defined in this way converges to } 0 \\ P2 & \left\{\phi_k(\boldsymbol{x})\right\}_{k\in\mathbb{N}} \text{ defined in this way satisfies } \phi_k \leq \phi_k(\boldsymbol{x}) \leq (1-\lambda_k)f(\boldsymbol{x}) + \lambda_k\phi_0(\boldsymbol{x}) \ \forall k \end{array}$

► Showing P0 is simple: by (!) we have $\lambda_{k+1} = \prod_{i=1}^{k} (1 - \alpha_i) > 0$. Now we have P0 : $\lambda_k \ge 0$. Proof P1: showing $\lambda_k \to 0$

► Proposition By definition $\lambda_{k+1} = (1 - \alpha_k)\lambda_k$ with assumption $\alpha_k \in]0,1[$, the sequence $\{\lambda_k\}_{k\in\mathbb{N}}$ is monotonically decreasing. Proof by ratio test

$$\begin{array}{lll} \lambda_{k+1} &=& (1-\alpha_k)\lambda_k & \iff & \frac{\lambda_{k+1}}{\lambda_k} = 1-\alpha_k \\ & \iff & \frac{\lambda_{k+1}}{\lambda_k} & \stackrel{\alpha_k \in]0,1[}{<} 1 \end{array}$$

▶ By
$$P0: \lambda_k \ge 0$$
, the sequence $\{\lambda_k\}_{k \in \mathbb{N}}$ is bounded below by 0.

- ► Theorem (Real analysis 101)
 - Monotonic decreasing AND bounded below $\implies \{\lambda_k\}_{k \in \mathbb{N}}$ has a limit c
- What we need to do: show c = 0.

There are three ways to show $\lambda_k \to 0$

▶ Way 1: By Monotone convergence theorem (Real analysis 101), $c = \inf{\{\lambda_k\}_{k \in \mathbb{N}}} = 0$.

- ► Way 2: By contradiction.
 - ▶ By $\lambda_k \ge 0$, suppose the sequence $\{\lambda_k\}_{k \in \mathbb{N}}$ converges to a positive number c > 0.
 - Now consider $\lambda_k \lambda_{k+1} = \lambda_k (1 \alpha_k)\lambda_k = \alpha_k\lambda_k$. It forms a telescoping sum, sum it from 0 to k gives

$$\lambda_0 - \lambda_{k+1} = \sum_{i=0}^k \alpha_i \lambda_i \ge \sum_{i=0}^k \alpha_i c = c \sum_{i=0}^k \alpha_i$$
(*)

where the \geq is based on the fact that we assume $\{\lambda_k\}_{k\in\mathbb{N}}$ converges (from above: all $\lambda_k \geq c$ for all k) to c.

$$\blacktriangleright \text{ Now } \lambda_0 - \lambda_{k+1} \stackrel{(*)}{\geq} c \sum_{i=0}^k \alpha_i. \text{ Take limit } k \to \infty \text{ gives } \lambda_0 - c \ge c \sum_{i=0}^\infty \alpha_i. \text{ By } \sum_{i=0}^\infty \alpha_i = \infty \text{ so } \lambda_0 - c \ge +\infty,$$

which is impossible (because $\lambda_0 := 1$), a contradiction, therefore c = 0.

• Way 3: By $\lambda_{\infty} = S = 0$ using L2.2.2 A4, A5, A6 and property of $\log(1-x)$ as what we did previously.

Proof part 2: on ϕ_k by induction

► Base case
$$k = 0$$
: $\phi_0(\boldsymbol{x}) \le (1 - \lambda_0)f(\boldsymbol{x}) + \lambda_0\phi_0(\boldsymbol{x}) = \phi_0(\boldsymbol{x})$ by $\lambda_0 \coloneqq 1$.

Induction hypothesis $\phi_k(\boldsymbol{x}) \leq (1 - \lambda_k)f(\boldsymbol{x}) + \lambda_k\phi_0(\boldsymbol{x})$ ►

• Case k+1

$$\phi_{k+1}(\boldsymbol{x}) = (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \Big(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \Big) \qquad \text{by A7 def of } \phi_{k+1}$$

$$\leq (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k f(\boldsymbol{x}) \qquad \qquad \mathsf{A1:} \ f \ \mu\text{-str cvx}, \ \mu \geq 0$$

$$\begin{aligned} \overset{\text{tricky}}{=} & (1 - \alpha_k) \Big(\phi_k(\boldsymbol{x}) + \underline{(1 - \lambda_k) f(\boldsymbol{x})} - (1 - \lambda_k) f(\boldsymbol{x}) \Big) + \alpha_k f(\boldsymbol{x}) \\ &= & (1 - \alpha_k) \Big(\underbrace{\phi_k(\boldsymbol{x}) - (1 - \lambda_k) f(\boldsymbol{x})}_{\leq \lambda_k \phi_0(\boldsymbol{x})} \Big) + \underbrace{(1 - \alpha_k) (1 - \lambda_k) f(\boldsymbol{x})}_{= \Big((1 - \alpha) - (1 - \alpha) \lambda\Big) f} \\ &\leq & (1 - \alpha_k) \lambda_k \phi_0(\boldsymbol{x}) + \Big(1 - (1 - \alpha_k) \lambda_k \Big) f(\boldsymbol{x}) \\ &= & \lambda_{k+1} \phi_0(\boldsymbol{x}) + (1 - \lambda_{k+1}) f(\boldsymbol{x}). \end{aligned}$$

$$= \lambda_{k+1}\phi_0(\boldsymbol{x}) + (1-\lambda_{k+1})f(\boldsymbol{x}).$$

So case k + 1 is true. By induction, the proof ϕ_k is completed.

The framework carries over to convex but not strongly convex f

► In the proof

The argument holds if f convex but not strongly convex

- In fact the whole framework assume $\mu \ge 0$, which includes the case $\mu = 0 \iff$ f is convex but not strongly convex
- When f is convex but not strongly convex, we construct ϕ_{k+1} as L2.2.2 A7 with $\mu = 0$, i.e.,

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right) \quad L2.2.2A7$$
$$= (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle \right) \qquad \mu = 0$$

The framework carries over to nondifferentiable convex \boldsymbol{f}

- \blacktriangleright Note that in the whole proof we never explicitly make use of the assumption that f is L-smooth
- The only place we make use of f is differentiable is where we assume $\nabla f(x)$ exists at y_k
- ► In the proof

The argument holds if f is convex but not differentiable

• When f is convex but not differentiable, we replace ∇f by subdifferential / subgradient

$$\phi_{k+1}(\boldsymbol{x}) = (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \Big(f(\boldsymbol{y}_k) + \langle \partial f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle \Big)$$

What are these $\phi_k, \alpha_k, \lambda_k$ actually?

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \underbrace{\left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2\right)}_{\psi(\boldsymbol{x})}$$
(L2.2.2 A7)

- λ_k is defined by α_k so you can treat them as the same thing under different expression
- By A4, A5, A6, we can think of λ_k as the coefficient of convex combination and thus think of ϕ_{k+1} as convex combination of ϕ_k and $\psi(\boldsymbol{x})$
 - What is ψ : an global support / global under-estimator of f at a point y_k
 - Therefore $\phi_{k+1} = \operatorname{cvx}(\phi_k, \psi) = \operatorname{cvx}(\phi_k, \text{lower estimate of } f)$

Understand ϕ_k through pictures ... 1/2

Recall

- We can pick any ϕ_0 as long as it is convex
- If f is strongly-convex, a simple ϕ_0 is a quadratic
- If f is convex, a simple ϕ_0 is a affine function (a line here)
- If f is convex and nondifferentiable, a simple ϕ_0 is a affine function (where we replace gradient by subgradient)

Understand ϕ_k through pictures ... 2/2

- An observation: in all the cases, $\{\text{minimizer of }\phi_1\}$ is closer to x^* than $\{\text{minimizer of }\phi_0\}$ to x^*
- For Therefore, if we can somehow find $\{$ minimizer of $\phi_1 \}$ and then use it to construct/update to ϕ_2 , we move closer to x^*
- By Lemma 2.2.1, the convergence speed of such process is bounded above by how fast λ_k approaches to 0

Small summary

• [Definition 2.2.1 ("what is" estimate sequence)] A sequences pair $\{\phi_k(x), \lambda_k\}_{k=0}^{\infty}$ is estimate sequence of $f(\cdot)$ if

 $\begin{array}{l|l} (\operatorname{Def0}) & \lambda_k & \geq & 0 & (\forall k) \\ (\operatorname{Def1}) & \lambda_k & \xrightarrow{k \to \infty} & 0 & (\forall k) \\ (\operatorname{Def2}) & \phi_k(\boldsymbol{x}) & \leq & (1 - \lambda_k)f(\boldsymbol{x}) + \lambda_k\phi_0(\boldsymbol{x}) & (\forall k)(\forall \boldsymbol{x} \in \mathbb{R}^n) \end{array} & \begin{cases} \lambda_k \}_{k \in \mathbb{N}} \text{ is nonnegative} \\ \{\lambda_k \}_{k \in \mathbb{N}} \text{ converges to } 0 \\ \{\phi_k \}_{k \in \mathbb{N}} \leq \text{ "convex combination" of } f, \phi_0 \end{cases}$

▶ [Lemma 2.2.1 ("why of" estimate sequence)] Assume x^* exists. For a sequence $\{x_k\}_{k \in \mathbb{N}}$:

 $\mathsf{IF} \quad f(\boldsymbol{x}_k) \ \leq \ \phi_k^* \ \coloneqq \ \min_{\boldsymbol{x} \in \mathbb{R}^n} \phi_k(\boldsymbol{x}) \qquad \mathsf{THEN} \quad f(\boldsymbol{x}_k) - f^* \ \leq \ \lambda_k \Big(\phi_0(\boldsymbol{x}^*) - f^* \Big) \ \xrightarrow{\mathsf{Def1}} \ 0.$

▶ [Lemma 2.2.2 ("how to" estimate sequence)]

A1
$$f$$
 L-smooth μ -strongly cvx
A2 $\phi_0(\cdot)$ a cvx function
A3 $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ is a sequence
IF A4a $\alpha_k \in]0,1[\forall k$ A6 $\lambda_{k+1} = (1-\alpha_k)\lambda_k$
A4b $\sum_{k=0}^{\infty} \alpha_k = \infty$ A7 $\phi_{k+1}(\boldsymbol{x}) = (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2\right)$
A5 $\lambda_0 := 1$

- What now
 - What is ϕ_0 ?
 - Well we can use any convex ϕ_0 by A2
 - We can use a simple function, like a quadratic

A simple quadratic ϕ_0

• We can just define ϕ_0 as

$$\phi_0(\boldsymbol{x}) \coloneqq \phi_0^* + \frac{\gamma_0}{2} \| \boldsymbol{x} - \boldsymbol{v}_0 \|_2^2.$$
 (Phi-0)

- \blacktriangleright We now introduce three new things: ϕ,γ and ${\boldsymbol v}$
- ϕ_0, γ_0 are scalars and $oldsymbol{v}_0 \in \mathbb{R}^n$ is a vector
- ϕ_0^* is a shifting parameter, shifting the parabola up and down
- γ_0 is a slope parameter
- \blacktriangleright v_0 is a shifting parameter, shifting the parabola horizontally
- $\blacktriangleright \ \phi_k, \gamma_k$ and \pmb{v}_k are all sequence that keep changing

$$\begin{split} \gamma_{k+1} &= (1-\alpha_k)\gamma_k + \alpha_k \mu \\ \boldsymbol{v}_{k+1} &= \frac{(1-\alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)}{\gamma_{k+1}} \\ \phi_{k+1}^* &= (1-\alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|\nabla f(\boldsymbol{y}_k)\|_2^2 + \frac{\alpha_k (1-\alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \right) \end{split}$$

Why ϕ_k, γ_k and v_k are updated this way is not intuitive and can be considered as black magic by Nesterov. • Here μ is the strong convexity parameter of f Lemma on ϕ_k

$$\mathsf{A7}: \ \phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \Big(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \Big)$$

► Lemma 2.2.3 If

$$\phi_0(\boldsymbol{x}) \coloneqq \phi_0^* + \frac{\gamma_0}{2} \| \boldsymbol{x} - \boldsymbol{v}_0 \|_2^2.$$
 (Phi-0)

Then $\{\phi_k({m x})\}_{k=0}^\infty$ defined by A7 in Lemma 2.2.2 preserves the canonical form of $\{\phi_k({m x})\}_{k\in\mathbb{N}}$

$$\phi_k(\boldsymbol{x}) = \phi_k^* + \frac{\gamma_0}{2} \| \boldsymbol{x} - \boldsymbol{v}_k \|_2^2.$$
 (Phi-k)

where ϕ_k, γ_k and $oldsymbol{v}_k$ are defined as

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k\mu \tag{i}$$

$$\boldsymbol{v}_{k+1} = \frac{(1-\alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)}{\gamma_{k+1}}$$
(*ii*)

$$\phi_{k+1}^{*} = (1 - \alpha_{k})\phi_{k}^{*} + \alpha_{k}f(\boldsymbol{y}_{k}) - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\|\nabla f(\boldsymbol{y}_{k})\|_{2}^{2} + \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}} \left(\frac{\mu}{2}\|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2} + \langle \nabla f(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right) \quad (iii)$$

Proof First by definition (Phi-0) gives

$$\nabla^2 \phi_0(\boldsymbol{x}) \stackrel{(\mathsf{Phi-0})}{=} \gamma_0 \boldsymbol{I}_n. \tag{\dagger}$$

What next we show $abla^2\phi_k(\pmb{x})$ has the same form as $abla^2\phi_0(\pmb{x})$, i.e., we want to show

$$\nabla^2 \phi_k(\boldsymbol{x}) = \gamma_k \boldsymbol{I}_n$$

We do so by induction.

Prove
$$abla^2 \phi_k({m x}) = \gamma_k {m I}_n.$$

$$\begin{aligned} \nabla^2 \phi_0(\boldsymbol{x}) &\stackrel{(\mathsf{Phi-0})}{=} \gamma_0 \boldsymbol{I}_n & (\dagger) \\ \phi_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y}_k \|_2^2 \right) & (A7) \\ \gamma_{k+1} &= (1-\alpha_k)\gamma_k + \alpha_k \mu & (i) \end{aligned}$$

- ► Base case is proved by (†)
- ▶ Induction hypothesis: $\nabla^2 \phi_k({m x}) = \gamma_k {m I}_n$
- ▶ Case k + 1

$$\begin{split} \phi_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \Big(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \Big) \quad \text{by def (A7)} \\ \nabla \phi_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\nabla \phi_k(\boldsymbol{x}) + \alpha_k \Big(\nabla f(\boldsymbol{y}_k) + \mu(\boldsymbol{x} - \boldsymbol{y}_k) \Big) \\ \nabla^2 \phi_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\nabla^2 \phi_k(\boldsymbol{x}) + \alpha_k \mu \boldsymbol{I} \\ &= (1-\alpha_k)\gamma_k \boldsymbol{I}_n + \alpha_k \mu \boldsymbol{I} \\ &= \left((1-\alpha_k)\gamma_k + \alpha_k \mu \right) \boldsymbol{I} \\ &= \gamma_{k+1} \boldsymbol{I} \end{split}$$

• Hence now we have showed $\nabla^2 \phi_k(x) = \gamma_k I_n$. This equation means that if we perform the antiderivative twice we get

$$\phi_k(\boldsymbol{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{x} - \boldsymbol{v}_k\|_2^2.$$
(††)

for a scalar ϕ_k^* and a vector $oldsymbol{v}_k.$ Our remaining tasks are to

- shows v_k satisfies (*ii*) in Lemma 2.2.3
- shows ϕ_k^* satisfies (*iii*) in Lemma 2.2.3

$$\begin{aligned} \phi_{k}(\boldsymbol{x}) &= \phi_{k}^{*} + \frac{\gamma_{k}}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k}\|_{2}^{2}. \quad (\dagger\dagger) \\ \phi_{k+1}(\boldsymbol{x}) &= (1 - \alpha_{k})\phi_{k}(\boldsymbol{x}) + \alpha_{k} \left(f(\boldsymbol{y}_{k}) + \langle \nabla f(\boldsymbol{y}_{k}), \boldsymbol{x} - \boldsymbol{y}_{k} \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_{k}\|_{2}^{2} \right) \quad (A7) \\ \boldsymbol{v}_{k+1} &= \frac{(1 - \alpha_{k})\gamma_{k}\boldsymbol{v}_{k} + \alpha_{k}\mu\boldsymbol{y}_{k} - \alpha_{k}\nabla f(\boldsymbol{y}_{k})}{\gamma_{k+1}} \quad (i) \\ \gamma_{k+1} &= (1 - \alpha_{k})\gamma_{k} + \alpha_{k}\mu \quad (i) \end{aligned}$$

Proving v_{k+1} .

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k) \left(\phi_k^* + \frac{\gamma_k}{2} \| \boldsymbol{x} - \boldsymbol{v}_k \|_2^2 \right) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y}_k \|_2^2 \right)$$

• What are we going to do now is to find the minimizer of ϕ_{k+1} and denote it as v_{k+1} . I.e., find $v_{k+1} = \operatorname{argmin} \phi_{k+1}$. This is basically the idea from the pictures of ϕ_k we previously seen.

Take gradient

$$abla \phi_{k+1}(oldsymbol{x}) = (1 - lpha_k) \gamma_k(oldsymbol{x} - oldsymbol{v}_k) + lpha_k \Big(
abla f(oldsymbol{y}_k) + \mu(oldsymbol{x} - oldsymbol{y}_k) \Big)$$

• Consider at minimizer $oldsymbol{v}_{k+1}$ that $abla \phi_{k+1}(oldsymbol{v}_{k+1}) = oldsymbol{0}$

$$(1 - \alpha_k)\gamma_k(\boldsymbol{v}_{k+1} - \boldsymbol{v}_k) + \alpha_k \nabla f(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{v}_{k+1} - \boldsymbol{y}_k) = \mathbf{0}$$

$$\iff ((1 - \alpha_k)\gamma_k + \alpha_k \mu)\boldsymbol{v}_{k+1} + \alpha_k \nabla f(\boldsymbol{y}_k) - (1 - \alpha_k)\gamma_k \boldsymbol{v}_k - \alpha_k \mu \boldsymbol{y}_k = \mathbf{0}$$

$$\iff \gamma_{k+1}\boldsymbol{v}_{k+1} = (1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)$$

$$\iff \boldsymbol{v}_{k+1} = \frac{(1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)}{\gamma_{k+1}}$$

$$\iff (ii)$$

Proving
$$\phi_{k+1}^*$$
.

$$\begin{pmatrix} \phi_k(\boldsymbol{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{x} - \boldsymbol{v}_k\|_2^2. & (\dagger \dagger) \\ \phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right) & (A7) \\ \boldsymbol{v}_{k+1} = \frac{(1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)}{\gamma_{k+1}} & (i) \\ \gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu & (i) \end{cases}$$

$$(\dagger \dagger) = (A7) \text{ at } k + 1 \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \| \boldsymbol{x} - \boldsymbol{v}_{k+1} \|_2^2 = (1 - \alpha_k) \phi_k(\boldsymbol{x}) + \alpha_k \Big(f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y}_k \|_2^2 \Big)$$

Put
$$\boldsymbol{x} = \boldsymbol{y}_k$$

$$\phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_{k+1}\|_2^2 = (1 - \alpha_k)\phi_k(\boldsymbol{y}_k) + \alpha_k f(\boldsymbol{y}_k)$$

$$\stackrel{(\dagger\dagger)}{=} (1 - \alpha_k) \left(\phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2\right) + \alpha_k f(\boldsymbol{y}_k) \quad (\dagger\dagger\dagger)$$

► By (*ii*)

$$\begin{aligned} \boldsymbol{v}_{k+1} - \boldsymbol{y}_k &= \frac{(1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)}{\gamma_{k+1}} - \boldsymbol{y}_k \\ &= \frac{(1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \gamma_{k+1} \boldsymbol{y}_k - \alpha_k \nabla f(\boldsymbol{y}_k)}{(1 - \alpha_k)\gamma_k (\boldsymbol{v}_k - \boldsymbol{y}_k) - \alpha_k \nabla f(\boldsymbol{y}_k)} \\ & (\underline{i}) & \frac{(1 - \alpha_k)\gamma_k (\boldsymbol{v}_k - \boldsymbol{y}_k) - \alpha_k \nabla f(\boldsymbol{y}_k)}{\gamma_{k+1}} \\ \frac{\gamma_{k+1}}{2} \| \boldsymbol{v}_{k+1} - \boldsymbol{y}_k \|_2^2 &= \frac{(1 - \alpha_k)^2 \gamma_k^2 \| \boldsymbol{v}_k^2 - \boldsymbol{y}_k \|_2^2 - 2\langle (1 - \alpha_k)\gamma_k (\boldsymbol{v}_k - \boldsymbol{y}_k), \alpha_k \nabla f(\boldsymbol{y}_k) \rangle + \alpha_k^2 \| \nabla f(\boldsymbol{y}_k) \|_2^2}{2\gamma_{k+1}} \quad (\dagger \dagger \dagger \dagger) \end{aligned}$$

• Put $(\dagger \dagger \dagger \dagger)$ into $(\dagger \dagger \dagger)$ will give (iii), trust me.

$$\phi_{k+1}^{*} + \frac{\gamma_{k+1}}{2} \|\boldsymbol{y}_{k} - \boldsymbol{v}_{k+1}\|_{2}^{2} = (1 - \alpha_{k}) \left(\phi_{k}^{*} + \frac{\gamma_{k}}{2} \|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2}\right) + \alpha_{k} f(\boldsymbol{y}_{k}) \tag{\dagger} \dagger \dagger)$$

$$\frac{\gamma_{k+1}}{2} \|\mathbf{v}_{k+1} - \mathbf{y}_k\|_2^2 = \frac{(1 - \alpha_k)^2 \gamma_k^2 \|\mathbf{v}_k - \mathbf{y}_k\|_2^2 - 2\langle (1 - \alpha_k)\gamma_k(\mathbf{v}_k - \mathbf{y}_k), \alpha_k \nabla f(\mathbf{y}_k) \rangle + \alpha_k^2 \|\nabla f(\mathbf{y}_k)\|_2^2}{2\gamma_{k+1}} \tag{(\dagger \dagger \dagger \dagger)}$$

$$\phi_{k+1}^{*} = (1 - \alpha_{k})\phi_{k}^{*} + \alpha_{k}f(\boldsymbol{y}_{k}) - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\|\nabla f(\boldsymbol{y}_{k})\|_{2}^{2} + \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}} \left(\frac{\mu}{2}\|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2} + \langle \nabla f(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right)$$
(iii)

What to do: show $\left\{(\dagger \dagger \dagger) \text{ and } (\dagger \dagger \dagger \dagger)
ight\} - (iii) = 0$

$$(1 - \alpha_k) \left(\phi_k^* + \frac{\gamma_k}{2} \| \boldsymbol{y}_k - \boldsymbol{v}_k \|_2^2 \right) + \alpha_k f(\boldsymbol{y}_k) - \frac{\gamma_{k+1}}{2} \| \boldsymbol{y}_k - \boldsymbol{v}_{k+1} \|_2^2 \\ - \left\{ (1 - \alpha_k) \phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \| \nabla f(\boldsymbol{y}_k) \|_2^2 + \frac{\alpha_k (1 - \alpha_k) \gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \| \boldsymbol{y}_k - \boldsymbol{v}_k \|_2^2 + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \right) \right\}$$

$$= (1 - \alpha_k)\frac{\gamma_k}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 - \frac{(1 - \alpha_k)^2 \gamma_k^2 \|\boldsymbol{v}_k - \boldsymbol{y}_k\|_2^2 - 2\langle (1 - \alpha_k)\gamma_k(\boldsymbol{v}_k - \boldsymbol{y}_k), \alpha_k \nabla f(\boldsymbol{y}_k) \rangle + \alpha_k^2 \|\nabla f(\boldsymbol{y}_k)\|_2^2}{2\gamma_{k+1}} \\ - \left\{ -\frac{\alpha_k^2}{2\gamma_{k+1}} \|\nabla f(\boldsymbol{y}_k)\|_2^2 + \frac{\alpha_k (1 - \alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \right) \right\}$$

$$= \frac{(1-\alpha_k)\gamma_k}{2} \left[1 - \frac{(1-\alpha_k)\gamma_k}{\gamma_{k+1}} \right] \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \frac{(1-\alpha_k)\alpha_k\gamma_k}{\gamma_{k+1}} \langle \boldsymbol{v}_k - \boldsymbol{y}_k, \nabla f(\boldsymbol{y}_k) \rangle \\ - \left\{ \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}} \frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}} \left(\langle \nabla f(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \right) \right\}$$

$$= \quad 0 \text{ by (i) } \gamma_{k+1} = (1-\alpha_k)\gamma_k + \alpha_k \mu$$

Last page

 $\blacktriangleright \text{ [Definition 2.2.1 ("what is" estimate sequence)] A sequences pair } \left\{\phi_k(\boldsymbol{x}), \lambda_k\right\}_{k=0}^{\infty} \text{ is estimate sequence of } f(\cdot) \text{ if } f(\cdot) = 0$

• [Lemma 2.2.1 ("why of" estimate sequence)] Assume x^* exists. For a sequence $\{x_k\}_{k\in\mathbb{N}}$:

$$\mathsf{IF} \quad f(\pmb{x}_k) \ \leq \ \phi_k^* \ \coloneqq \ \min_{\pmb{x} \in \mathbb{R}^n} \ \phi_k(\pmb{x}) \qquad \mathsf{THEN} \quad f(\pmb{x}_k) - f^* \ \leq \ \lambda_k \Big(\phi_0(\pmb{x}^*) - f^* \Big) \ \xrightarrow{\mathsf{Defl}} \ 0.$$

[Lemma 2.2.2 ("how to" estimate sequence)]

A1
$$f L$$
-smooth μ -strongly over
A2 $\phi_0(\cdot)$ a cvx function
A3 $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ is a sequence THEN $\{\phi_k(\boldsymbol{x}), \lambda_k\}_{k=0}^{\infty}$ defined by A6 A7 is an estimate sequence of f
IF A4a $\alpha_k \in]0, 1[\forall k$ A6 $\lambda_{k+1} = (1 - \alpha_k)\lambda_k$
A4b $\sum_{k=0}^{\infty} \alpha_k = \infty$ A7 $\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k (f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2)$
A5 $\lambda_0 := 1$

 $\blacktriangleright \quad \text{[Lemma 2.2.3 (a quadratic } \phi_0)\text{]} \quad \text{IF } \phi_0(\boldsymbol{x}) := \phi_0^* + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{v}_0\|_2^2 \quad \text{THEN } \{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty} \text{ defined as A7 in Lemma 2.2.2 preserves the canonical form of } \{\phi_k(\boldsymbol{x})\}_{k\in\mathbb{N}} \|\boldsymbol{x} - \boldsymbol{v}_0\|_2^2 \quad \text{THEN } \{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty} \|\boldsymbol{x} - \boldsymbol{v}_0\|_2^2 \|\boldsymbol{x} -$

$$\phi_k(\boldsymbol{x}) = \phi_k^* + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{v}_k\|_2^2$$

where
$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k\mu$$
 (i)

$$\boldsymbol{v}_{k+1} = \frac{(1-\alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \sqrt{f(\boldsymbol{y}_k)}}{\gamma_{k+1}} \tag{ii}$$

$$\phi_{k+1}^{*} = (1 - \alpha_{k})\phi_{k}^{*} + \alpha_{k}f(\boldsymbol{y}_{k}) - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}} \|\nabla f(\boldsymbol{y}_{k})\|_{2}^{2} + \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2} + \langle \nabla f(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right) \quad (iii)$$