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Problem setup: unconstrained convex smooth optimization

(P) : argmin
x

f(x).

▶ f : Rn → R is µ-strongly convex and L-smooth. f ∈ C1,1
L

▶ f is convex domf is a convex set and epi f is a convex set
▶ f is µ-strongly convex, µ ≥ 0 f − µ

2
∥x∥22 is convex

▶ The assumption subsume the case for f is convex (µ = 0)

▶ f is continuous no jump
▶ f is continuously differentiable ∇f(x) exists for all x ∈ domf

▶ ∇f is globally L-Lipschitz, L > 0
(
∀x∀y ̸= x

)(∥∇f(x)−∇f(y)∥
∥x− y∥

≤ L

)
For the details of convexity, epigraph, smoothness, see here.

▶ We also assume a solution x∗ ∈ X ∗ exists.

▶ X ∗ := argmin
x

f(x) solution set, assumed nonempty

▶ x∗ ∈ X ∗ minimizer
▶ f∗ := f(x∗) optimal function value
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Nesterov’s estimate sequence: the definition
▶ Also called Nesterov’s estimating sequence1

▶ Definition 2.2.1 A sequences pair
{
ϕk(x), λk

}∞

k=0
is estimate sequence of f(·) if

(Def0) λk ≥ 0 (∀k) {λk}k∈N is nonnegative

(Def1) λk
k→∞−−−−→ 0 (∀k) {λk}k∈N converges to 0

(Def2) ϕk(x) ≤ (1 − λk)f(x) + λkϕ0(x) (∀k)
(
∀x ∈ Rn

)
{ϕk}k∈N ≤ “convex combination” of f , ϕ0

▶ At this stage

▶ We haven’t specify what is λ0

▶ If λ0 > 1 then Def2 is not convex combination but linear combination. That’s why we put quote “convex combination”
▶ We haven’t specify how we get λk
▶ We haven’t specify what is ϕ0
▶ We haven’t specify what property ϕk has

▶ At this stage, from Definition 2.2.1, we only know {λk}k∈N converges to 0. But we don’t know how it converges to 0, we also don’t

know is {λk}k∈N monotonically converges to 0.
▶ For example, the following oscillating sequence fulfills Def0 and Def1

sin x + 1

x + 0.1
, x ≥ 0 :

{
1.6, 0.9, 0.3, 0.05, 0.008, 0.11, 0.23, ... for x = {1, 2, 3, 4, ...}

}
1Nesterov used the term “estimate sequence” in his 2003 book and then used “estimating sequence” in his 2018

book.
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Nesterov’s estimate sequence: the λk

Definition 2.2.1 A sequences pair
{
ϕk(x), λk

}∞

k=0
is estimate sequence of f(·) if

(Def0) λk ≥ 0 (∀k)
(Def1) λk

k→∞−−−−→ 0 (∀k)
(Def2) ϕk(x) ≤ (1 − λk)f(x) + λkϕ0(x) (∀k)

(
∀x ∈ Rn

)
▶ Lemma 2.2.2 (Partly) Assume that

(L2.2.2 A4a) αk ∈
]
0, 1

[
(∀k) αk strictly positive and strictly smaller than 1

(L2.2.2 A4b)
∞∑

k=0

αk = +∞ {αk} is not a summable sequence

(L2.2.2 A5) λ0 := 1 we initialize λ0

(L2.2.2 A6) λk+1 = (1 − αk)λk (∀k) define how we update λk

▶ With Lemma 2.2.2 (Partly), now
▶ {λk}k∈N is monotonically decreasing :

λk+1
L2.2.2A6

= (1 − αk)λk

L2.2.2A4a
< λk

L2.2.2A6
= (1 − αk−1)λk−1

L2.2.2A4a
< λk−1 < ... < λ0 := 1 (#)

Reading (#) from right to left also means that Def 0 is satisfied, i.e., all λk ≥ 0
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(L2.2.2 A4) to (L2.2.2 A6) imply (Def2) λk+1 → 0 is satisfied
Definition 2.2.1 Lemma 2.2.2 (Partly) Assume that

(L2.2.2 A4a) αk ∈
]
0, 1

[
(∀k) αk strictly positive and strictly smaller than 1

(L2.2.2 A4b)
∞∑

k=0

αk = +∞ {αk} is not a summable sequence

(L2.2.2 A5) λ0 := 1 we initialize λ0

(L2.2.2 A6) λk+1 = (1 − αk)λk (∀k) define how we update λk

▶ With Lemma 2.2.2 (Partly),

λk+1
L2.2.2A6

= (1 − αk)λk
L2.2.2A6

= (1 − αk)(1 − αk−1)λk−1
L2.2.2A6

= ...
L2.2.2A6

=

k∏
i=1

(1 − αi)λ0
L2.2.2A5

=

k∏
i=1

(1 − αi) (!)

▶ Now we show that L2.2.2 A4 implies
∞∏

k=1

(1 − αk) = 0.

Notice that L2.2.2 A4b is a sum but what we want to prove is produce, this gives the hint that we should take log.
Let S =

∏∞
k=1(1 − αk) = 0, now consider

logS =

∞∑
k=1

log(1 − αk) ≤ −
∞∑

k=1

αk log(1 − x) is concave so it is under its 1st-order Taylor expansion

= −∞ L2.2.2A4b

⇐⇒ S = e−∞ = 0

Therefore, by (!), we have λ∞ = S = 0, i.e., λk
k→+∞−−−−−→ 0.
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Why study Nesterov’s estimate sequence?

Definition 2.2.1 A sequences pair
{
ϕk(x), λk

}∞

k=0
is estimate sequence of f(·) if

(Def0) λk ≥ 0 (∀k)
(Def1) λk

k→∞−−−−→ 0 (∀k)
(Def2) ϕk(x) ≤ (1 − λk)f(x) + λkϕ0(x) (∀k)

(
∀x ∈ Rn

)
▶ Lemma 2.2.1 IF for a sequence

{
xk

}
k∈N we have

f(xk) ≤ ϕ
∗
k := min

x∈Rn
ϕk(x), (2.2.3)

THEN

f(xk) − f
∗

:::::::
≤ λk

(
ϕ0(x

∗
) − f

∗
)

︸ ︷︷ ︸
a constant

Def1−−→ 0. (3)

▶ It forms a global upper bound the of the cost optimality gap f(xk) − f∗
::::::::::::::::::::::

▶ This upper bound converges to 0 by Def1. (Note ϕ0(x
∗) − f∗ is a constant.)

=⇒ the convergence rate of
{
f(xk) − f∗}

k∈N follows that of
{
λk

}
k∈N the reason why we study estimate sequence

Proof

f(xk)
(2.2.3)

≤ ϕ
∗
k

(2.2.3)
:= min

x∈Rn
ϕk(x)

(Def2)

≤ min
x∈Rn

(1 − λk)f(x) + λkϕ0(x) ≤ (1 − λk)f(x
∗
) + λkϕ0(x

∗
)

⇐⇒ f(xk) − f∗ ≤ λk

(
ϕ0(x

∗) − f∗
)

(Def1)−−−−→ 0.
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Nesterov’s estimate sequence

Definition 2.2.1 A sequences pair
{
ϕk(x), λk

}∞

k=0
is estimate sequence of f(·) if

(Def0) λk ≥ 0 (∀k)
(Def1) λk

k→∞−−−−→ 0 (∀k)
(Def2) ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x) (∀k)

(
∀x ∈ Rn

)
▶ Lemma 2.2.1 IF for a sequence

{
xk
}
k∈N we have

f(xk) ≤ ϕ∗k := min
x∈Rn

ϕk(x), (2.2.3)

THEN

f(xk)− f∗ ≤ λk

(
ϕ0(x

∗)− f∗
)

Def1−−−→ 0. (3)

▶ Now we know estimate sequence is useful to derive convergence rate

▶ The next questions is: how to construct an estimate sequence?

▶ how should we pick ϕ0?
▶ how should we update λk and ϕk?
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A way to construct an estimate sequence for smooth convex f
▶ Lemma 2.2.2 IF

(L2.2.2 A1) f is L-smooth µ-strongly convex possibly µ = 0 (convex not strongly convex)
(L2.2.2 A2) ϕ0(·) is a convex function on Rn any arbitrary convex function
(L2.2.2 A3)

{
yk

}∞
k=0

is a sequence in Rn any arbitrary sequence

(L2.2.2 A4a) αk ∈ ]0, 1[ (∀k) αk strictly positive and strictly smaller than 1

(L2.2.2 A4b)
∞∑

k=0

αk = ∞ {αk} is not a summable sequence

(L2.2.2 A5) λ0 := 1 we initialize λ0

THEN the sequence-pair
{
ϕk(x), λk

}∞
k=0

defined as

(L2.2.2 A6) λk+1 = (1 − αk)λk (∀k) how we update λk

(L2.2.2 A7) ϕk+1(x) = (1 − αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x − yk⟩ + µ

2 ∥x − yk∥2
2

)
(∀k) how we update ϕk

is an estimate sequence of f(x).

▶ To prove
{
ϕk(x), λk

}
k∈N is an estimate sequence of f(x), we need to show

P0
{
λk

}
k∈N defined in this way is nonnegative

P1
{
λk

}
k∈N defined in this way converges to 0

P2
{
ϕk(x)

}
k∈N defined in this way satisfies ϕk ≤ ϕk(x) ≤ (1 − λk)f(x) + λkϕ0(x) ∀k

▶ Showing P0 is simple: by (!) we have λk+1 =
∏k

i=1(1 − αi) > 0.

Now we have P0 : λk ≥ 0 .
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Proof P1: showing λk → 0

▶ Proposition By definition λk+1 = (1− αk)λk with assumption αk ∈ ] 0, 1 [ , the sequence {λk}k∈N is

monotonically decreasing.
Proof by ratio test

λk+1 = (1− αk)λk ⇐⇒
λk+1

λk
= 1− αk

⇐⇒
λk+1

λk

αk ∈ ] 0, 1 [

< 1

▶ By P0 : λk ≥ 0 , the sequence {λk}k∈N is bounded below by 0.

▶ Theorem (Real analysis 101)

▶ Monotonic decreasing AND bounded below =⇒ {λk}k∈N has a limit c

▶ What we need to do: show c = 0.
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There are three ways to show λk → 0

▶ Way 1: By Monotone convergence theorem (Real analysis 101), c = inf{λk}k∈N = 0.

▶ Way 2: By contradiction.

▶ By λk ≥ 0 , suppose the sequence {λk}k∈N converges to a positive number c > 0.

▶ Now consider λk − λk+1 = λk − (1− αk)λk = αkλk. It forms a telescoping sum, sum it from 0 to k gives

λ0 − λk+1 =

k∑
i=0

αiλi ≥
k∑
i=0

αic = c
k∑
i=0

αi (∗)

where the ≥ is based on the fact that we assume {λk}k∈N converges (from above: all λk ≥ c for all k) to c.

▶ Now λ0 − λk+1

(∗)
≥ c

k∑
i=0

αi. Take limit k → ∞ gives λ0 − c ≥ c
∞∑
i=0

αi. By
∞∑
i=0

αi = ∞ so λ0 − c ≥ +∞,

which is impossible (because λ0 := 1 ), a contradiction, therefore c = 0.

▶ Way 3: By λ∞ = S = 0 using L2.2.2 A4, A5, A6 and property of log(1− x) as what we did previously.
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Proof part 2: on ϕk by induction
▶ Base case k = 0: ϕ0(x) ≤ (1− λ0)f(x) + λ0ϕ0(x) = ϕ0(x) by λ0 := 1 .

▶ Induction hypothesis ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x)

▶ Case k + 1

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

)
by A7 def of ϕk+1

≤ (1− αk)ϕk(x) + αkf(x) A1: f µ-str cvx, µ ≥ 0

tricky
= (1− αk)

(
ϕk(x)+(1− λk)f(x)− (1− λk)f(x)

)
+ αkf(x)

= (1− αk)
(
ϕk(x)− (1− λk)f(x)︸ ︷︷ ︸

≤ λkϕ0(x)

)
+ (1− αk)(1− λk)f(x)︸ ︷︷ ︸

=

(
(1−α)−(1−α)λ

)
f

+αkf(x)

≤ (1− αk)λkϕ0(x) +
(
1− (1− αk)λk

)
f(x) case k & αk

A4a
< 1

= λk+1ϕ0(x) + (1− λk+1)f(x). λk+1
A6
= (1− αk)λk

So case k + 1 is true. By induction, the proof ϕk is completed.
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The framework carries over to convex but not strongly convex f

▶ In the proof

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

)
by A7 def of ϕk+1

≤ (1− αk)ϕk(x) + αkf(x) A1: f µ-str cvx, µ ≥ 0

The argument holds if f convex but not strongly convex

▶ In fact the whole framework assume µ ≥ 0, which includes the case µ = 0 ⇐⇒ f is convex but not strongly convex

▶ When f is convex but not strongly convex, we construct ϕk+1 as L2.2.2 A7 with µ = 0, i.e.,

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+ µ

2
∥x− yk∥22

)
L2.2.2A7

= (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩

)
µ = 0
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The framework carries over to nondifferentiable convex f

▶ Note that in the whole proof we never explicitly make use of the assumption that f is L-smooth

▶ The only place we make use of f is differentiable is where we assume ∇f(x) exists at yk

▶ In the proof

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

)
by A7 def of ϕk+1

≤ (1− αk)ϕk(x) + αkf(x) A1: f µ-str cvx, µ ≥ 0

The argument holds if f is convex but not differentiable

▶ When f is convex but not differentiable, we replace ∇f by subdifferential / subgradient

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∂f(yk),x− yk⟩

)
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What are these ϕk, αk, λk actually?

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

)
︸ ︷︷ ︸

ψ(x)

(L2.2.2 A7)

▶ λk is defined by αk so you can treat them as the same thing under different expression

▶ By A4, A5, A6, we can think of λk as the coefficient of convex combination and thus think of ϕk+1 as convex
combination of ϕk and ψ(x)

▶ What is ψ: an global support / global under-estimator of f at a point yk
▶ Therefore ϕk+1 = cvx

(
ϕk, ψ

)
= cvx

(
ϕk, lower estimate of f

)
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Understand ϕk through pictures ... 1/2

Recall

▶ We can pick any ϕ0 as long as it is convex

▶ If f is strongly-convex, a simple ϕ0 is a quadratic

▶ If f is convex, a simple ϕ0 is a affine function (a line here)

▶ If f is convex and nondifferentiable, a simple ϕ0 is a affine function (where we replace gradient by subgradient)
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Understand ϕk through pictures ... 2/2

You build ϕ1 using ϕ0 and f via a convex combination with weights λ1

▶ An observation: in all the cases,
{
minimizer of ϕ1

}
is closer to x∗ than

{
minimizer of ϕ0

}
to x∗

▶ Therefore, if we can somehow find
{
minimizer of ϕ1

}
and then use it to construct/update to ϕ2, we move closer to x∗

▶ By Lemma 2.2.1, the convergence speed of such process is bounded above by how fast λk approaches to 0
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Small summary
▶ [Definition 2.2.1 (“what is” estimate sequence)] A sequences pair

{
ϕk(x), λk

}∞

k=0
is estimate sequence of f(·) if

(Def0) λk ≥ 0 (∀k) {λk}k∈N is nonnegative

(Def1) λk
k→∞−−−−→ 0 (∀k) {λk}k∈N converges to 0

(Def2) ϕk(x) ≤ (1 − λk)f(x) + λkϕ0(x) (∀k)
(
∀x ∈ Rn

)
{ϕk}k∈N ≤ “convex combination” of f , ϕ0

▶ [Lemma 2.2.1 (“why of” estimate sequence)] Assume x∗ exists. For a sequence
{
xk

}
k∈N:

IF f(xk) ≤ ϕ
∗
k := min

x∈Rn
ϕk(x) THEN f(xk) − f

∗ ≤ λk

(
ϕ0(x

∗
) − f

∗
)

Def1−−→ 0.

▶ [Lemma 2.2.2 (“how to” estimate sequence)]

IF

A1 f L-smooth µ-strongly cvx
A2 ϕ0(·) a cvx function
A3

{
yk

}∞
k=0

is a sequence

A4a αk ∈ ] 0, 1 [ ∀k

A4b
∞∑

k=0

αk = ∞

A5 λ0 := 1

THEN
{
ϕk(x), λk

}∞
k=0

defined by A6 A7 is an estimate sequence of f

A6 λk+1 = (1 − αk)λk

A7 ϕk+1(x) = (1 − αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x − yk⟩ + µ

2 ∥x − yk∥2
2

)

▶ What now
▶ What is ϕ0?
▶ Well we can use any convex ϕ0 by A2
▶ We can use a simple function, like a quadratic
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A simple quadratic ϕ0

▶ We can just define ϕ0 as

ϕ0(x) := ϕ∗0 +
γ0

2
∥x− v0∥22. (Phi-0)

▶ We now introduce three new things: ϕ, γ and v

▶ ϕ0, γ0 are scalars and v0 ∈ Rn is a vector

▶ ϕ∗0 is a shifting parameter, shifting the parabola up and down

▶ γ0 is a slope parameter

▶ v0 is a shifting parameter, shifting the parabola horizontally

▶ ϕk, γk and vk are all sequence that keep changing

γk+1 = (1− αk)γk + αkµ

vk+1 =
(1− αk)γkvk + αkµyk − αk∇f(yk)

γk+1

ϕ∗k+1 = (1− αk)ϕ
∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22 +

αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
Why ϕk, γk and vk are updated this way is not intuitive and can be considered as black magic by Nesterov.

▶ Here µ is the strong convexity parameter of f
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Lemma on ϕk A7 : ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+ µ

2
∥x− yk∥22

)
▶ Lemma 2.2.3 If

ϕ0(x) := ϕ∗0 +
γ0

2
∥x− v0∥22. (Phi-0)

Then
{
ϕk(x)

}∞
k=0

defined by A7 in Lemma 2.2.2 preserves the canonical form of {ϕk(x)}k∈N

ϕk(x) = ϕ∗k +
γ0

2
∥x− vk∥22. (Phi-k)

where ϕk, γk and vk are defined as

γk+1 = (1− αk)γk + αkµ (i)

vk+1 =
(1− αk)γkvk + αkµyk − αk∇f(yk)

γk+1
(ii)

ϕ∗k+1 = (1− αk)ϕ
∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22 +

αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
(iii)

▶ Proof First by definition (Phi-0) gives

∇2ϕ0(x)
(Phi-0)
= γ0In. (†)

What next we show ∇2ϕk(x) has the same form as ∇2ϕ0(x), i.e., we want to show

∇2ϕk(x) = γkIn.

We do so by induction.
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Prove ∇2ϕk(x) = γkIn.
∇2ϕ0(x)

(Phi-0)
= γ0In (†)

ϕk+1(x) = (1 − αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x − yk⟩ + µ

2 ∥x − yk∥2
2

)
(A7)

γk+1 = (1 − αk)γk + αkµ (i)

▶ Base case is proved by (†)

▶ Induction hypothesis: ∇2ϕk(x) = γkIn

▶ Case k + 1

ϕk+1(x) = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+ µ

2
∥x− yk∥22

)
by def (A7)

∇ϕk+1(x) = (1− αk)∇ϕk(x) + αk

(
∇f(yk) + µ(x− yk)

)
∇2ϕk+1(x) = (1− αk)∇2ϕk(x) + αkµI

= (1− αk)γkIn + αkµI induction hypothesis

=
(
(1− αk)γk + αkµ

)
I

= γk+1I

▶ Hence now we have showed ∇2ϕk(x) = γkIn. This equation means that if we perform the antiderivative twice we get

ϕk(x) = ϕ∗k +
γk

2
∥x− vk∥22. (††)

for a scalar ϕ∗k and a vector vk. Our remaining tasks are to

▶ shows vk satisfies (ii) in Lemma 2.2.3
▶ shows ϕ∗k satisfies (iii) in Lemma 2.2.3
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Proving vk+1.

ϕk(x) = ϕ∗
k +

γk

2
∥x − vk∥2

2. (††)

ϕk+1(x) = (1 − αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x − yk⟩ + µ

2 ∥x − yk∥2
2

)
(A7)

vk+1 =
(1 − αk)γkvk + αkµyk − αk∇f(yk)

γk+1

(ii)

γk+1 = (1 − αk)γk + αkµ (i)

▶ First combine (A7) and (††)

ϕk+1(x) = (1− αk)
(
ϕ∗k +

γk

2
∥x− vk∥22

)
+ αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

)
▶ What are we going to do now is to find the minimizer of ϕk+1 and denote it as vk+1. I.e., find

vk+1 = argmin ϕk+1. This is basically the idea from the pictures of ϕk we previously seen.
▶ Take gradient

∇ϕk+1(x) = (1 − αk)γk(x − vk) + αk

(
∇f(yk) + µ(x − yk)

)
▶ Consider at minimizer vk+1 that ∇ϕk+1(vk+1) = 0

(1 − αk)γk(vk+1 − vk) + αk∇f(yk) + αkµ(vk+1 − yk) = 0

⇐⇒
(
(1 − αk)γk + αkµ

)
vk+1 + αk∇f(yk) − (1 − αk)γkvk − αkµyk = 0

⇐⇒ γk+1vk+1 = (1 − αk)γkvk + αkµyk − αk∇f(yk)

⇐⇒ vk+1 =
(1 − αk)γkvk + αkµyk − αk∇f(yk)

γk+1

⇐⇒ (ii)
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Proving ϕ∗
k+1.

ϕk(x) = ϕ∗
k +

γk

2
∥x − vk∥2

2. (††)

ϕk+1(x) = (1 − αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x − yk⟩ + µ

2 ∥x − yk∥2
2

)
(A7)

vk+1 =
(1 − αk)γkvk + αkµyk − αk∇f(yk)

γk+1

(ii)

γk+1 = (1 − αk)γk + αkµ (i)

▶ (††) = (A7) at k + 1

ϕ∗k+1 +
γk+1

2
∥x− vk+1∥22 = (1− αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

)
▶ Put x = yk

ϕ∗k+1 +
γk+1

2
∥yk − vk+1∥22 = (1− αk)ϕk(yk) + αkf(yk)

(††)
= (1− αk)

(
ϕ∗k +

γk

2
∥yk − vk∥22

)
+ αkf(yk) († † †)

▶ By (ii)

vk+1 − yk =
(1− αk)γkvk + αkµyk − αk∇f(yk)

γk+1
− yk

=
(1− αk)γkvk + αkµyk − γk+1yk − αk∇f(yk)

γk+1
(i)
=

(1− αk)γk(vk − yk)− αk∇f(yk)
γk+1

γk+1

2
∥vk+1 − yk∥22 =

(1− αk)
2γ2k∥vk − yk∥22 − 2

〈
(1− αk)γk(vk − yk), αk∇f(yk)

〉
+ α2

k∥∇f(yk)∥
2
2

2γk+1
(† † ††)

▶ Put († † ††) into († † †) will give (iii), trust me.
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ϕ
∗
k+1 +

γk+1

2
∥yk − vk+1∥22 = (1 − αk)

(
ϕ
∗
k +

γk

2
∥yk − vk∥22

)
+ αkf(yk) († † †)

γk+1

2
∥vk+1 − yk∥22 =

(1 − αk)2γ2
k∥vk − yk∥22 − 2

〈
(1 − αk)γk(vk − yk), αk∇f(yk)

〉
+ α2

k∥∇f(yk)∥22
2γk+1

(† † ††)

ϕ
∗
k+1 = (1 − αk)ϕ

∗
k + αkf(yk) −

α2
k

2γk+1

∥∇f(yk)∥22 +
αk(1 − αk)γk

γk+1

(µ

2
∥yk − vk∥22 + ⟨∇f(yk), vk − yk⟩

)
(iii)

What to do: show
{
(† † †) and († † ††)

}
− (iii) = 0

(1 − αk)
(
ϕ∗
k +

γk

2
∥yk − vk∥22

)
+ αkf(yk) −

γk+1

2
∥yk − vk+1∥22

−
{
(1 − αk)ϕ∗

k + αkf(yk) −
α2
k

2γk+1

∥∇f(yk)∥22 +
αk(1 − αk)γk

γk+1

(µ

2
∥yk − vk∥22 + ⟨∇f(yk), vk − yk⟩

)}

= (1 − αk)
γk

2
∥yk − vk∥22 −

(1 − αk)2γ2
k∥vk − yk∥22 − 2

〈
(1 − αk)γk(vk − yk), αk∇f(yk)

〉
+ α2

k∥∇f(yk)∥22
2γk+1

−
{
−

α2
k

2γk+1

∥∇f(yk)∥22 +
αk(1 − αk)γk

γk+1

(µ

2
∥yk − vk∥22 + ⟨∇f(yk), vk − yk⟩

)}

=
(1 − αk)γk

2

[
1 −

(1 − αk)γk

γk+1

]
∥yk − vk∥22 +

(1 − αk)αkγk

γk+1

⟨vk − yk,∇f(yk)⟩

−
{

αk(1 − αk)γk

γk+1

µ

2
∥yk − vk∥22 +

αk(1 − αk)γk

γk+1

(
⟨∇f(yk), vk − yk⟩

)}

= 0 by (i) γk+1 = (1 − αk)γk + αkµ
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Last page
▶ [Definition 2.2.1 (“what is” estimate sequence)] A sequences pair

{
ϕk(x), λk

}∞
k=0

is estimate sequence of f(·) if

(Def0) λk ≥ 0 (∀k) {λk}k∈N is nonnegative

(Def1) λk
k→∞−−−−−→ 0 (∀k) {λk}k∈N converges to 0

(Def2) ϕk(x) ≤ (1 − λk)f(x) + λkϕ0(x) (∀k)
(
∀x ∈ Rn

)
{ϕk}k∈N ≤ “convex combination” of f , ϕ0

▶ [Lemma 2.2.1 (“why of” estimate sequence)] Assume x∗ exists. For a sequence
{
xk

}
k∈N :

IF f(xk) ≤ ϕ
∗
k := min

x∈Rn
ϕk(x) THEN f(xk) − f

∗ ≤ λk

(
ϕ0(x

∗
) − f

∗) Def1−−−→ 0.

▶ [Lemma 2.2.2 (“how to” estimate sequence)]

IF

A1 f L-smooth µ-strongly cvx
A2 ϕ0(·) a cvx function
A3

{
yk

}∞
k=0 is a sequence

A4a αk ∈ ] 0, 1 [ ∀k

A4b
∞∑

k=0

αk = ∞

A5 λ0 := 1

THEN
{
ϕk(x), λk

}∞
k=0 defined by A6 A7 is an estimate sequence of f

A6 λk+1 = (1 − αk)λk

A7 ϕk+1(x) = (1 − αk)ϕk(x) + αk

(
f(yk) + ⟨∇f(yk),x − yk⟩ +

µ
2

∥x − yk∥22
)

▶ [Lemma 2.2.3 (a quadratic ϕ0)] IF ϕ0(x) := ϕ∗
0 +

γ0

2
∥x − v0∥22 THEN

{
ϕk(x)

}∞
k=0 defined as A7 in Lemma 2.2.2 preserves the canonical form of {ϕk(x)}k∈N

ϕk(x) = ϕ
∗
k +

γ0

2
∥x − vk∥22.

where γk+1 = (1 − αk)γk + αkµ (i)

vk+1 =
(1 − αk)γkvk + αkµyk − αk∇f(yk)

γk+1

(ii)

ϕ∗
k+1 = (1 − αk)ϕ∗

k + αkf(yk) −
α2
k

2γk+1

∥∇f(yk)∥22 +
αk(1 − αk)γk

γk+1

(µ

2
∥yk − vk∥22 + ⟨∇f(yk), vk − yk⟩

)
(iii)
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