An 2n-order ODE dynamics that corresponds to Nesterov's accelerated gradient

Andersen Ang

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

msxang@uwaterloo.ca, where $\mathbf{x} = \lfloor \pi \rfloor$ Homepage: angms.science

> First draft: November 15, 2020 Last update: March 15, 2021

Nesterov's accelerated gradient

► Nesterov's accelerated gradient (NAG)

$$\mathbf{x}_{k+1} = \mathbf{y}_k - \alpha_k \nabla f(\mathbf{y}_k), \ \mathbf{y}_{k+1} = \mathbf{x}_{k+1} + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k), \quad (NAG)$$

where α_k is the stepsize and β_k is the extrapolation parameter.

▶ On can pick β as follows¹ for β , one can choose

$$\beta_k = \frac{k}{k+3}.$$

▶ Theorem of NAG: if f is convex and L-smooth, picking stepsize $\alpha_k = \frac{1}{L}$, NAG has the convergence rate as

$$f(\mathbf{x}_k) - f^* \leq \frac{\mathsf{constant}}{(k+1)^2} = \mathcal{O}\Big(\frac{1}{k^2}\Big),$$

where $f^* = \min f$.

¹This is NOT the one proposed by Nesterov in 1983 but it satisfies the Paul Tseng's rule, see (15) in "On Accelerated Proximal Gradient Methods for Convex-Concave Optimization".

Nesterov's accelerated gradient

► It can be shown that NAG associates to the following 2nd-order ODE dynamics

$$\ddot{\mathbf{X}} + \frac{3}{t}\dot{\mathbf{X}} + \nabla f(\mathbf{X}) = \mathbf{0}.$$
 (SBC)

This document: show the derivation of this ODE.

- ▶ Notation
 - $ightharpoonup \mathbf{x} \in \mathbb{R}^n$ is the optimization variable.
 - $ightharpoonup \mathbf{x}_k$ is the variable on discrete time k.
 - $ightharpoonup \mathbf{X}(t)$ is the variable on the continuous time t.
 - ▶ t may be omitted if it is clear from the context.

²W. Su, S. Boyd, and E. Candes, "A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights" in NIPS2014 and JMLR2016

Prerequisite for deriving the ODE

• (2nd-order) Taylor series expansion Given a function u, the Taylor series expansion around a point x_0 with a small change Δ is

$$u(x_0 + \Delta) = u(x_0) + \Delta \frac{\partial u}{\partial x}\Big|_{x=x_0} + \frac{\Delta^2}{2!} \frac{\partial^2 u}{\partial x^2}\Big|_{x=x_0} + o(\Delta).$$

where $o(\Delta)$ holds the higher-order terms of $\Delta.$

- ► Time-derivative notation: $\dot{\Box} \coloneqq \frac{d}{dt}\Box(t), \ \dot{\Box} \coloneqq \frac{d^2}{dt^2}\Box(t)$

Derive the ODE: forming finite difference terms ightharpoonup Consider NAG with constant stepsize: $\alpha_k = \alpha$ and

 $\mathbf{x}_{k+1} = \mathbf{y}_k - \alpha \nabla f(\mathbf{y}_k),$

 $\mathbf{v}_{k+1} = \mathbf{x}_{k+1} + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k).$

From (2), consider at
$$k-1$$

 $\mathbf{v}_{k} = \mathbf{x}_{k} + \beta_{k-1}(\mathbf{x}_{k} - \mathbf{x}_{k-1}).$

Rearrange

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \beta_{k-1}(\mathbf{x}_k - \mathbf{x}_{k-1}) - \alpha \nabla f(\mathbf{y}_k).$

 $\mathbf{x}_{k+1} - \mathbf{x}_k = \beta_{k-1}(\mathbf{x}_k - \mathbf{x}_{k-1}) - \alpha \nabla f(\mathbf{y}_k).$

Review what we did:

► We canceled the y by combining the two steps in NAG, and

ightharpoonup We rearrange to get the finite difference terms $\mathbf{x}_{k+1} - \mathbf{x}_k$. Now our goal is to derive an ODE from (4).

5 / 14

(1)

(2)

(3)

(4)

Derive the ODE: discretization (1/2)

- ▶ Equation (4) lives in discrete time, and ODE lives in continuous time.
- ▶ To derive an ODE in the continuous time from an equation in discrete time, we need to link the time units, one way is to let t=kh where h is the discretization stepsize.
- ▶ If we pick $h=\sqrt{\alpha}$, i.e., choosing the discretization stepsize as the square-root of the stepsize of the gradient update, we get

$$k = \frac{t}{\sqrt{\alpha}}$$
: discrete iteration = $\frac{\text{continuous time}}{\text{stepsize}}$. (5)

▶ An immediate question is that why choose $h = \sqrt{\alpha}$ but not α in (5). Answer: because the derivation does not work with $h = \alpha$.

Derive the ODE: discretization (2/2)

▶ Based on $h = \sqrt{\alpha}$ and (5) that $k = \frac{t}{h} = \frac{t}{\sqrt{\alpha}}$, then

$$\begin{array}{rcll} \mathbf{X}(t) & = & \mathbf{X}(k\sqrt{\alpha}) & \approx & \mathbf{x}_k \\ \mathbf{X}(t+\sqrt{\alpha}) & = & \mathbf{X}\big((k+1)\sqrt{\alpha}\big) & \approx & \mathbf{x}_{k+1} \\ \mathbf{X}(t-\sqrt{\alpha}) & = & \mathbf{X}\big((k-1)\sqrt{\alpha}\big) & \approx & \mathbf{x}_{k-1} \end{array}$$

and the " \approx " becomes "=" if we take $\lim_{\alpha \to 0}$.

Using these approximation, the finite difference terms now become

$$\begin{array}{lll} \mathbf{x}_{k+1} - \mathbf{x}_k & \approx & \mathbf{X}(t + \sqrt{\alpha}) - \mathbf{X}(t) \\ \mathbf{x}_k - \mathbf{x}_{k-1} & \approx & \mathbf{X}(t) - \mathbf{X}(t - \sqrt{\alpha}) \end{array}$$

Now the term $\mathbf{X}(t+\sqrt{\alpha})$ has the form $u(x_0+\Delta)$, we can use Taylor's approximation on it.

Derive the ODE: Taylor's approximation (1/2)

$$u(x_0 + \Delta) = u(x_0) + \Delta \frac{\partial u}{\partial x}\Big|_{x=x_0} + \frac{\Delta^2}{2!} \frac{\partial^2 u}{\partial x^2}\Big|_{x=x_0} + o(\Delta).$$

For $\mathbf{X}(t+\sqrt{\alpha})$:

Let
$$u = \mathbf{X}$$
, $x_0 = t$, $\Delta = \sqrt{\alpha}$ and $\frac{\partial u}{\partial x} = \frac{\partial \mathbf{X}}{\partial t} = \dot{\mathbf{X}}$, then

$$\mathbf{X}(t+\sqrt{\alpha}) = \mathbf{X}(t) + \sqrt{\alpha}\dot{\mathbf{X}}(t) + \frac{\alpha}{2}\ddot{\mathbf{X}}(t) + o(\sqrt{\alpha}).$$

► For $\mathbf{X}(t-\sqrt{\alpha})$:

Let
$$u = \mathbf{X}$$
, $x_0 = t$, $\Delta = -\sqrt{\alpha}$ and $\frac{\partial u}{\partial x} = \frac{\partial \mathbf{X}}{\partial t} = \dot{\mathbf{X}}$, then

$$\mathbf{X}(t - \sqrt{\alpha}) = \mathbf{X}(t) - \sqrt{\alpha}\dot{\mathbf{X}}(t) + \frac{\alpha}{2}\ddot{\mathbf{X}}(t) + o(\sqrt{\alpha}).$$

Note: you don't care about the sign in $o(\sqrt{\alpha})$ here.

Derive the ODE: Taylor's approximation (2/2)

► Based on the Taylor's approximation,

$$\mathbf{X}(t+\sqrt{\alpha}) = \mathbf{X}(t) + \sqrt{\alpha}\dot{\mathbf{X}}(t) + \frac{\alpha}{2}\ddot{\mathbf{X}}(t) + o(\sqrt{\alpha})$$

$$\mathbf{X}(t - \sqrt{\alpha}) = \mathbf{X}(t) - \sqrt{\alpha}\dot{\mathbf{X}}(t) + \frac{\alpha}{2}\ddot{\mathbf{X}}(t) + o(\sqrt{\alpha}).$$

▶ We have

$$\mathbf{x}_{k+1} - \mathbf{x}_k = \mathbf{X}(t + \sqrt{\alpha}) - \mathbf{X}(t) + o(\sqrt{\alpha})$$

 $\mathbf{x}_k - \mathbf{x}_{k-1} = \mathbf{X}(t) - \mathbf{X}(t - \sqrt{\alpha}) + o(\sqrt{\alpha})$

which becomes

$$\mathbf{x}_{k+1} - \mathbf{x}_k = \sqrt{\alpha} \dot{\mathbf{X}}(t) + \frac{\alpha}{2} \ddot{\mathbf{X}}(t) + o(\sqrt{\alpha})$$

$$\mathbf{x}_k - \mathbf{x}_{k-1} = \sqrt{\alpha} \dot{\mathbf{X}}(t) - \frac{\alpha}{2} \ddot{\mathbf{X}}(t) + o(\sqrt{\alpha}).$$

Note: be careful of the sign.

Derive the ODE: almost there

► Now (4) becomes

$$\sqrt{\alpha}\mathbf{\dot{X}} + \frac{\alpha}{2}\mathbf{\ddot{X}} + o(\sqrt{\alpha}) = \beta_{k-1}\left(\sqrt{\alpha}\mathbf{\dot{X}} - \frac{\alpha}{2}\mathbf{\ddot{X}} + o(\sqrt{\alpha})\right) - \alpha\nabla f(\mathbf{y}_k).$$

► Rearrange

$$\frac{\alpha}{2}(1+\beta_{k-1})\ddot{\mathbf{X}} + \sqrt{\alpha}(1-\beta_{k-1})\dot{\mathbf{X}} + \alpha\nabla f(\mathbf{y}_k) + o(\sqrt{\alpha}) = 0.$$

lackbox For \mathbf{y}_k , as $\mathbf{x}_k = \mathbf{y}_k$ in the long run, we can take $\mathbf{y}_k = \mathbf{X}(t)$.

$$\frac{\alpha}{2}(1+\beta_{k-1})\ddot{\mathbf{X}} + \sqrt{\alpha}(1-\beta_{k-1})\dot{\mathbf{X}} + \alpha\nabla f(\mathbf{X}) + o(\sqrt{\alpha}) = 0.$$

▶ What next: plug-in β_{k-1} and take $\lim_{n\to 0}$.

The β_k

▶ There are in fact infinitely many choice of β , as long as it satisfies³

$$\frac{1-\beta_{k+1}}{\beta_{k+1}^2} \le \frac{1}{\beta_k^2}.$$

lackbox What we want: taking $\lim_{\alpha \to 0}$ not to remove $\ddot{\mathbf{X}}$ or blow up the ODE. Try

$$\beta_k = \frac{k}{k+3}.$$

$$\beta_{k-1} = \frac{k-1}{k+2} = 1 - \frac{-3}{k+2} \stackrel{k \gg 2}{\approx} 1 - \frac{3}{k} \stackrel{k = \frac{t}{\sqrt{\alpha}}}{=} 1 - \frac{3\sqrt{\alpha}}{t}.$$

Now the mysterious 3 appears.

 $^{^3\}mbox{Paul}$ Tseng, "On Accelerated Proximal Gradient Methods for Convex-Concave Optimization" .

Finishing the derivation

 $\blacktriangleright \text{ For } \beta_{k-1} = 1 - \frac{3\sqrt{\alpha}}{t},$

$$\frac{\alpha}{2}(1+\beta_{k-1})\ddot{\mathbf{X}} + \sqrt{\alpha}(1-\beta_{k-1})\dot{\mathbf{X}} + \alpha\nabla f(\mathbf{X}) + o(\sqrt{\alpha}) = 0$$

becomes

$$\frac{\alpha}{2} \left(2 - \frac{3\sqrt{\alpha}}{t} \right) \ddot{\mathbf{X}} + \sqrt{\alpha} \left(\frac{3\sqrt{\alpha}}{t} \right) \dot{\mathbf{X}} + \alpha \nabla f(\mathbf{X}) + o(\sqrt{\alpha}) = 0.$$

▶ Divide the whole equation by α , and note that $o(\sqrt{\alpha})$ contains terms with cubic power or higher in $\sqrt{\alpha}$ and hence they have α ,

$$\frac{1}{2}\left(2 - \frac{3\sqrt{\alpha}}{t}\right)\ddot{\mathbf{X}} + \frac{3}{t}\dot{\mathbf{X}} + \nabla f(\mathbf{X}) + o(\sqrt{\alpha}) = 0.$$

► Take $\lim_{\alpha \to 0}$ gives $\ddot{\mathbf{X}} + \frac{3}{t}\dot{\mathbf{X}} + \nabla f(\mathbf{X}) = 0$.

Why $h = \alpha$ does not work

▶ Consider instead of using $h = \sqrt{\alpha}$, pick $h = \alpha$. Then we have

$$\frac{\alpha^2}{2} \left(2 - \frac{3\alpha}{t} \right) \ddot{\mathbf{X}} + \alpha \left(\frac{3\alpha}{t} \right) \dot{\mathbf{X}} + \alpha \nabla f(\mathbf{X}) + o(\alpha) = 0.$$

 \blacktriangleright Take $\lim_{\alpha \to 0}$ makes the whole equation disappear.

Last page - summary

► Nesterov's accelerated gradient (NAG)

$$\mathbf{x}_{k+1} = \mathbf{y}_k - \alpha_k \nabla f(\mathbf{y}_k), \quad \mathbf{y}_{k+1} = \mathbf{x}_{k+1} + \beta_k (\mathbf{x}_{k+1} - \mathbf{x}_k),$$

▶ Under $k = \frac{t}{\sqrt{\alpha}}$ with $\beta_k = \frac{k}{k+3}$, NAG is associated with the ODE

$$\ddot{\mathbf{X}} + \frac{3}{t}\dot{\mathbf{X}} + \nabla f(\mathbf{X}) = 0.$$

Standard ODE theory (not discussed here) gives

$$f\left(\mathbf{X}\right) - f^* \le \frac{\mathsf{constant}}{t^2} = \mathcal{O}\Big(\frac{1}{t^2}\Big).$$

As ODE \iff NAG, this partially explains

$$f(\mathbf{x}_k) - f^* = \mathcal{O}\left(\frac{1}{k^2}\right).$$

End of document