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Nesterov's accelerated gradient
» Nesterov's accelerated gradient (NAG)

X1 =Yk — VF(YE): Yit1 = Xit1 + Bk (Xis1 — %),  (NAG)

where «, is the stepsize and (. is the extrapolation parameter.
» On can pick 3 as follows® for 3, one can choose

B k
k43

» Theorem of NAG: if f is convex and , picking stepsize
Qg = % NAG has the convergence rate as

« _ constant 1
fxp) — 7 < m = O(ﬁ)v

Bk

where f* = min f.
'This is NOT the one proposed by Nesterov in 1983 but it satisfies the Paul Tseng’s
rule, see (15) in “On Accelerated Proximal Gradient Methods for Convex-Concave
Optimization”.
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https://angms.science/doc/CVX/CVX_alphabeta.pdf

Nesterov's accelerated gradient

» It can be shown that?> NAG associates to the following 2nd-order

ODE dynamics
3

t
This document: show the derivation of this ODE.

X+ X +Vf(X)=0. (SBC)

> Notation
> x € R" is the optimization variable.
» x; is the variable on discrete time k.
» X(t) is the variable on the continuous time t.
» { may be omitted if it is clear from the context.

2W. Su, S. Boyd, and E. Candes, " A Differential Equation for Modeling Nesterov's
Accelerated Gradient Method: Theory and Insights” in NIPS2014 and JMLR2016
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Prerequisite for deriving the ODE

» (2nd-order) Taylor series expansion
Given a function u, the Taylor series expansion around a point xg
with a small change A is
ou A? 9%u

’LL(SL’O =+ A) = u(l’o) + A% =20 ?% T=x0

+o(A).

where 0(A) holds the higher-order terms of A.

. . ) . d - d?
» Time-derivative notation: [J := £D(t), 0= WD(t)
» lim /a =0.
a—0
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Derive the ODE: forming finite difference terms

» Consider NAG with constant stepsize: aj = « and

Xpr1 = Ye—aVI(yr), (1)
Vel = Xpp1 + Br(Xegp1 — Xp)- (2)

» From (2), consider at k — 1
Yi = Xk + Bk‘,—l(xkt - Xk‘,—l)- (3)

» Put (3) into (1)
X1 = Xk + Be—1(Xk — Xp-1) — aV f(y)-
Rearrange

X1 — Xk = Be—1(Xk — Xp-1) — aV f(y)- (4)

» Review what we did:
» We canceled the y by combining the two steps in NAG, and
» We rearrange to get the finite difference terms xj 1 — x.

» Now our goal is to derive an ODE from (4).
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Derive the ODE: discretization (1/2)

» Equation (4) lives in discrete time, and ODE lives in continuous time.

» To derive an ODE in the continuous time from an equation in discrete
time, we need to link the time units, one way is to let ¢ = kh where h
is the discretization stepsize.

» If we pick h = \/«, i.e., choosing the discretization stepsize as the
square-root of the stepsize of the gradient update, we get

t ) ) ) continuous time
k = — : discrete iteration = - .
Va stepsize

(5)

» An immediate question is that why choose h = /a but not « in (5).
Answer: because the derivation does not work with A = «.

6/14



Derive the ODE: discretization (2/2)
» Based on h = v/« and (5) that k = % = —, then

X(t) = X(kva) NOXg
X(t+va) = X((k+1)va) ~ xin
X((k—-1 ~

X(t-va) = X((k-1D)va) ~ xi
and the “~"” becomes “=" if we take lim.
a—0

» Using these approximation, the finite difference terms now become

Xpt+1 — X R~ X(t + \/5) — X(t)
~ X(t) - X(t — V&)

Xk — Xg-1

» Now the term X(¢ + /) has the form u(zp + A), we can use
Taylor's approximation on it.
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Derive the ODE: Taylor's approximation (1/2)

ou A2 9%y
A) = A— —— .
u(zo + A) = u(wg) + e T + 57 52, - +0(A)
» For X(t + v/a):
Let u =X, o =t, A = /a and %—%:X, then
oz

X(t+ va) = X(t) + VaX(t) + 2 X(t) + o(v/a).
» For X(t — \/a):

X(t - Va) = X(t) — VaX(t) + 5 X(t) + o(Va).

Note: you don't care about the sign in o(y/a) here.
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Derive the ODE: Taylor's approximation (2/2)

» Based on the Taylor's approximation,

X(t+va) = X(t)+vaX() + 5X (1) +o(va)

X(t—va) = X(t)—vaX(t) + SR +o(va).

» We have

Xp+1 — Xg
Xk — Xk-1

which becomes

xir1—xi = VaX() + 5X(t) +o(va)
xi—xe1 = VaX(t) - 5X(0) +o(va).

Note: be careful of the sign.

9/14



Derive the ODE: almost there

» Now (4) becomes

VaX + SX 4 o(va) = B (VaX = X+ o(va)) — aV(yy).

» Rearrange
a . .
5(1 + Br—1)X + Va(l = Br—1)X + aV f(yx) + o(va) = 0.
» For yk, as X =y in the long run, we can take y; = X(¢).

(07

5 1+ Br)X + Va(l - B_)X + an(X) +o(va) = 0.

» What next: plug-in S;_1 and take lim.
a—0
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The B,

» There are in fact infinitely many choice of 3, as long as it satisfies®

1 — Bri1 .

2 — P2
/Bk+1 Bk

» What we want: taking lin%] not to remove X or blow up the ODE. Try
o—>

k
e =153
3 k-1 -3 k%zl_§k=ﬁ1_3\/a
P A ko t

Now the mysterious 3 appears.

3Paul Tseng, “On Accelerated Proximal Gradient Methods for Convex-Concave
Optimization”.
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Finishing the derivation
3Va

> For/ak,1:1——

S0+ )X +Vall - B )X +aV(X) +o(va) = 0

becomes

U2- 2%+ V(20K 1+ avs(X) + o(va) =0,

» Divide the whole equation by «, and note that o(y/«) contains terms
with cubic power or higher in y/a and hence they have «,

;(2—3‘f)x+ ZX 4 VF(X) + o(va) = 0.

> Take lim gives X + §X +VfiX)=
a—0 t
12 /14



Why h = o does not work

» Consider instead of using h = v/, pick h = a.. Then we have
2 3 e 3 .
%(2_{Qx+a(§jx+aVﬂXy+q@:m.

> Take 1irrb makes the whole equation disappear.
o—
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Last page - summary
» Nesterov's accelerated gradient (NAG)

X1 =Yk — UV (YE): Yt = Xpp1 + Br(Xpp1 — X)),

Wlth B = L NAG is associated with the ODE

» der k =
Under Pt

%\w

w 3.
X + ;X +Vf(X) =
» Standard ODE theory (not discussed here) gives

f< ) < con:tant _O<tl2>-

As ODE <= NAG, this partially explains

fo) — £ = 0(5).

End of document
14 /14



	Summary

