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Nesterov’s accelerated gradient
I Nesterov’s accelerated gradient (NAG)

xk+1 = yk − αk∇f(yk), yk+1 = xk+1 + βk(xk+1 − xk), (NAG)

where αk is the stepsize and βk is the extrapolation parameter.

I On can pick β as follows1 for β, one can choose

βk =
k

k + 3
.

I Theorem of NAG: if f is convex and L-smooth, picking stepsize
αk = 1

L , NAG has the convergence rate as

f(xk)− f∗ ≤
constant

(k + 1)2
= O

( 1

k2

)
,

where f∗ = min f .
1This is NOT the one proposed by Nesterov in 1983 but it satisfies the Paul Tseng’s

rule, see (15) in “On Accelerated Proximal Gradient Methods for Convex-Concave
Optimization”.
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https://angms.science/doc/CVX/CVX_alphabeta.pdf


Nesterov’s accelerated gradient

I It can be shown that2 NAG associates to the following 2nd-order
ODE dynamics

..
X +

3

t

.
X +∇f(X) = 0. (SBC)

This document: show the derivation of this ODE.

I Notation
I x ∈ Rn is the optimization variable.
I xk is the variable on discrete time k.
I X(t) is the variable on the continuous time t.
I t may be omitted if it is clear from the context.

2W. Su, S. Boyd, and E. Candes, ”A Differential Equation for Modeling Nesterov’s
Accelerated Gradient Method: Theory and Insights” in NIPS2014 and JMLR2016
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Prerequisite for deriving the ODE

I (2nd-order) Taylor series expansion
Given a function u, the Taylor series expansion around a point x0
with a small change ∆ is

u(x0 + ∆) = u(x0) + ∆
∂u

∂x

∣∣∣
x=x0

+
∆2

2!

∂2u

∂2x

∣∣∣
x=x0

+ o(∆).

where o(∆) holds the higher-order terms of ∆.

I Time-derivative notation:
.
� :=

d

dt
�(t),

..
� :=

d2

dt2
�(t)

I lim
α→0

√
α = 0.
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Derive the ODE: forming finite difference terms
I Consider NAG with constant stepsize: αk = α and

xk+1 = yk − α∇f(yk), (1)

yk+1 = xk+1 + βk(xk+1 − xk). (2)

I From (2), consider at k − 1

yk = xk + βk−1(xk − xk−1). (3)

I Put (3) into (1)

xk+1 = xk + βk−1(xk − xk−1)− α∇f(yk).

Rearrange

xk+1 − xk = βk−1(xk − xk−1)− α∇f(yk). (4)

I Review what we did:
I We canceled the y by combining the two steps in NAG, and
I We rearrange to get the finite difference terms xk+1 − xk.

I Now our goal is to derive an ODE from (4).
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Derive the ODE: discretization (1/2)

I Equation (4) lives in discrete time, and ODE lives in continuous time.

I To derive an ODE in the continuous time from an equation in discrete
time, we need to link the time units, one way is to let t = kh where h
is the discretization stepsize.

I If we pick h =
√
α, i.e., choosing the discretization stepsize as the

square-root of the stepsize of the gradient update, we get

k =
t√
α

: discrete iteration =
continuous time

stepsize
. (5)

I An immediate question is that why choose h =
√
α but not α in (5).

Answer: because the derivation does not work with h = α.

6 / 14



Derive the ODE: discretization (2/2)

I Based on h =
√
α and (5) that k =

t

h
=

t√
α

, then

X(t) = X(k
√
α) ≈ xk

X(t+
√
α) = X

(
(k + 1)

√
α
)
≈ xk+1

X(t−
√
α) = X

(
(k − 1)

√
α
)
≈ xk−1

and the “≈” becomes “=” if we take lim
α→0

.

I Using these approximation, the finite difference terms now become

xk+1 − xk ≈ X(t+
√
α)−X(t)

xk − xk−1 ≈ X(t)−X(t−
√
α)

I Now the term X(t+
√
α) has the form u(x0 + ∆), we can use

Taylor’s approximation on it.
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Derive the ODE: Taylor’s approximation (1/2)

u(x0 + ∆) = u(x0) + ∆
∂u

∂x

∣∣∣
x=x0

+
∆2

2!

∂2u

∂2x

∣∣∣
x=x0

+ o(∆).

I For X(t+
√
α):

Let u = X, x0 = t, ∆ =
√
α and

∂u

∂x
=
∂X

∂t
=
.
X, then

X(t+
√
α) = X(t) +

√
α
.
X(t) +

α

2

..
X(t) + o(

√
α).

I For X(t−
√
α):

Let u = X, x0 = t, ∆ = −
√
α and

∂u

∂x
=
∂X

∂t
=
.
X, then

X(t−
√
α) = X(t)−

√
α
.
X(t) +

α

2

..
X(t) + o(

√
α).

Note: you don’t care about the sign in o(
√
α) here.
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Derive the ODE: Taylor’s approximation (2/2)
I Based on the Taylor’s approximation,

X(t+
√
α) = X(t) +

√
α
.
X(t) +

α

2

..
X(t) + o(

√
α)

X(t−
√
α) = X(t)−

√
α
.
X(t) +

α

2

..
X(t) + o(

√
α).

I We have

xk+1 − xk = X(t+
√
α)−X(t) + o(

√
α)

xk − xk−1 = X(t)−X(t−
√
α) + o(

√
α)

which becomes

xk+1 − xk =
√
α
.
X(t) +

α

2

..
X(t) + o(

√
α)

xk − xk−1 =
√
α
.
X(t)− α

2

..
X(t) + o(

√
α).

Note: be careful of the sign.
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Derive the ODE: almost there

I Now (4) becomes

√
α
.
X +

α

2

..
X + o(

√
α) = βk−1

(√
α
.
X− α

2

..
X + o(

√
α)

)
− α∇f(yk).

I Rearrange

α

2
(1 + βk−1)

..
X +

√
α(1− βk−1)

.
X + α∇f(yk) + o(

√
α) = 0.

I For yk, as xk = yk in the long run, we can take yk = X(t).

α

2
(1 + βk−1)

..
X +

√
α(1− βk−1)

.
X + α∇f

(
X
)

+ o(
√
α) = 0.

I What next: plug-in βk−1 and take lim
α→0

.
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The βk

I There are in fact infinitely many choice of β, as long as it satisfies3

1− βk+1

β2k+1

≤ 1

β2k
.

I What we want: taking lim
α→0

not to remove
..
X or blow up the ODE. Try

βk =
k

k + 3
.

βk−1 =
k − 1

k + 2
= 1− −3

k + 2

k�2
≈ 1− 3

k

k= t√
α

= 1− 3
√
α

t
.

Now the mysterious 3 appears.

3Paul Tseng, “On Accelerated Proximal Gradient Methods for Convex-Concave
Optimization”.
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Finishing the derivation

I For βk−1 = 1− 3
√
α

t
,

α

2
(1 + βk−1)

..
X +

√
α(1− βk−1)

.
X + α∇f(X) + o(

√
α) = 0

becomes

α

2

(
2− 3

√
α

t

)..
X +

√
α
(3
√
α

t

) .
X + α∇f(X) + o(

√
α) = 0.

I Divide the whole equation by α, and note that o(
√
α) contains terms

with cubic power or higher in
√
α and hence they have α,

1

2

(
2− 3

√
α

t

)..
X +

3

t

.
X +∇f(X) + o(

√
α) = 0.

I Take lim
α→0

gives
..
X +

3

t

.
X +∇f(X) = 0.
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Why h = α does not work

I Consider instead of using h =
√
α, pick h = α. Then we have

α2

2

(
2− 3α

t

)..
X + α

(3α

t

) .
X + α∇f(X) + o(α) = 0.

I Take lim
α→0

makes the whole equation disappear.
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Last page - summary
I Nesterov’s accelerated gradient (NAG)

xk+1 = yk − αk∇f(yk), yk+1 = xk+1 + βk(xk+1 − xk),

I Under k =
t√
α

with βk =
k

k + 3
, NAG is associated with the ODE

..
X +

3

t

.
X +∇f(X) = 0.

I Standard ODE theory (not discussed here) gives

f
(
X
)
− f∗ ≤ constant

t2
= O

( 1

t2

)
.

As ODE ⇐⇒ NAG, this partially explains

f(xk)− f∗ = O
( 1

k2

)
.

End of document
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