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Can we relax projection in Projected gradient descent?

® Goal: solve

argmin f(x)
xzeC

by
Tk+1 = Projg (wk - an(a:k))

® Here is a question: performing proj. in each iteration is expensive, why don't we do this

Algorithm 1: “Relaxed PGD"

1 Get y = argmin f(x) // relxation: ignore C
EER"L
2 Get ¢ = proj(y) // project back onto C

This algorithm will not work. We will explain why.
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POCS: Projection Onto Convex Sets

® Consider projection onto C' = C1 N Cs

. 1 2
projo(x) = argmin §||£—:c|\2
£eC1nCy
assume
® both C1,C> are nonempty convex closed subset of R™
® projc, and projg, can be computed cheap
o (1 NCy # @, otherwise we project to empty-set
e C1 ¢ Cy and Cy ¢ C1, otherwise C' = C1 or Ca and the problem is trivial

® Problem proj. () looks innocent, this problem is actually not simple at all !!!

® This problem is actually a key challenge in research.
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Toy example in R? — setup

® We consider R? and we have x € (z,y)

. C:C’lﬂC2,where01:{(w,y) : m§—5y} and CQ:{(x,y) : yZO}

Y

C is a halfspace, it is a convex set
(5 is a halfspace, it is a convex set
z C is a convex set

® By looking at the figure, we see that proj-(10,0) = (0, 0)
7/31



Toy example in R? — POCS algorithm

= 1: Ch:x<=by
Cg oy > 0
——"Trajectory
- 0.51 Starting Point
Algorithm 2: POCS ® Final Point
1 for k=1,2,... do or
2 Ty 1 = projq, (zx)
3 Ty1 = PIoj -0.5p
k+1 = PTOJcoy \ Tpeq 1
If 2 sets in R? is already this slow, -1
image the complexity of the gen-
eral case of R™ with m sets -1.5
-2 0 2 4 6 8 10
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Example in R?, 4 hyperplanes

e Starting Point
e Final Point

Projection onto the intersection of hy-
perplane is called Kaczmarz method in
. N
linear algebra
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Why relaxation is bad
® We want to solve argmin f(x).
zeC

® this is same as finding a point in the set Arnnc = argmin f(x)
xzeC

® Define the set Agn := argmin f(x)
xER™

note that it is unconstrained

Theorem: f is convex = sublevel set lev<, f is a convex set
Definition: Arn is a special case of lev<, f with a = inf f
thus Ak~ is a convex subset of R"

® Now we can view argmin f(z) as projy,, nc(xo)
zeC

® Relaxed PGD is just POCS with one iteration.
® projy,, means we solve argmin f ignoring C
® proj. means we project onto C ignoring Arn
® the operation proj. can drag the point projy,,, (xo) far away from Xrnnc
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Math details: Convergence of POCS

® Back to the R? example: project (10,0) to C; = {(z,y) < —Sy} and Cs = {(J:y) sy > 0}

® The iteration is
Tp41 = Projg, (projcl (wk))

® projgs, and projc, are projection onto halfspaces

. 1
proj s (a) i= argmin g€ ~l} st (€ a) <b

with the solution
- b—(a,x) a
€= lall3
x xe H

x¢ H

® For C; we have a = (1,5), and for C2 we have a = (0, —1)
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Simplifying ;.1 = projc, (projc, (z1))

® The formula of projection onto halfspace is

b—(a,x)

. .1 x + x ¢ H
projy () := argmin 7 [|§ — z|3 st (§a)<b, €= lal3
13 T rc H
® The set C' = C1 N C2 can be expressed as Ax < b
Lo < 0 , do not confuse coordinate x,y with vector @
0 —1| |y 0
® We have b = 0 for proj., and projg,
. 1 2 xz—{(a,z)a x¢ H R a
roj () == argmin —||§ — x s.t. ,a) <0, = , a=-—-
projy (x) = argmin JJ¢ ~al} st (6a) <0 & {w AT
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Simplifying proj, (xx)

xz—(a,zya ¢ H a

zeH’ lall

[~}
I

e
Il
—
8

. .1
projs () i= argmin €~} st (6,a) <0

¢ Consider projg,
€T — <d1,$>d1 €T ¢ Cl
T xeC’

projc, (z) = {

which is a nonlinear expression because it has two parts

® We simplify the nonlinear expression (x) by geometry (this is not a math proof but only an explanation):
from the previous figure, we know that after proj.,, the point must be outside C'1, hence the second case in
(*) will never occur, and thus

projg, (&) = x — (a1, x)a L z—(a1®a)e = (I —aa )z = Az

step T is a tensor product formula in multilinear algebra
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Simplifying proj,

xz—(a,zya ¢ H a

. 1 2
rojy(x) = argmin —||& — x s.t. ,a) <0, =
projyy (@) = argmin S ~x[} st (Ea) <0, ¢ {w o o

projg, (z) = (I-aaf)e = Az

® Consider projc, -
From the previous figure, we know that after proj., , the point must be outside C, so y-part is negative, so

@) = = taweten = []-([S]. [ 5] = [+ 5] = ]

Meaning: if y is negative, replace it with zero. We do not touch z.
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Non-expansive and firmly non-expansive
® Projection onto a set Q is non-expansive® (1-Lipschitz)
[projq () — projo(¥)|| < ||z —y|

nonexpansiveness comes from the Bourbaki-Cheney-Goldstein inequality.

® Now we have ||a:k+1 - w*” = HprojC?projc1 (@k) — projc,projc, (:c*)H
< |lproje, (®x) — proje, ("]
< ex =27
= ||Pr0j02pr0jcl (xh—1) — projc2projcl (m*)”
< HprojCl (Tr-1) — pProjo, (m*)H
< s -]
< |lwo—ar

! Actually we have stronger result here: Projection onto a convex set Q is firmly non-expansive

HPFOjQ(‘B) - Pron(y)” < <PTOjQ(m) - prOjQ(y)7 T — y>
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Convergence of projected sequence

® projo, () = (I — a16] )z = Az

* projc, (@) = o).

® i1 = Pprojc,Projc, (xk)

® We have 0 < ||w;C - a:*” < o < H:co - 93*” this is known as Fejér monotonicity

e Math fact (real analysis): if a sequence is monotonically decreasing and bounded below, it is convergent.

* lim Hmk — :c*H =0 = @, — ", here we know z* exists and =* = (0, 0)
k—o00
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Convergence speed

® With starting point (10,0), the iteration 1 = projg,projo, (xx) always has yx = 0 so we focus on zx

wnmmmn = (5051 ADED),

5 25

0
25 5
- _ 5 1 0
26 26 1
S B (2 -
~ o267 F T \a2e) TR T
.25 . . .
the fraction — =1 — sin” 6 is the contraction factor, and sin# = —— is the angle between constraints
26 V26
® Thus reaching e-precision to 0 will requires
k
(ﬁ) <e — klog 2 <loge —» k>—985 o k= [58loge]
26 26 ‘ 25
N—— log
<0
Example: € = 107'2 gives k > 705 iterations
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Convergence

e Theorem (von Neumann 1933)?
C1,C2 C R” closed subsets, then for any @, the sequence k11 = projg, (projc1 (:ck)) converges in norm

to proje, ne, (k)

® Theorem (Bregman 1965)

C1,C2 C R™ closed convex subsets with, then for any xo, the sequence x11 = projg, (plrojc1 (mk))
converges weakly to a point y € C1 N Cy

2yon Neumann actually prove it for the general notion in Hilbert space
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Example in R? with 3 sets: slow

N WA~ oo N

4.5

3.5

&}

&

Cy
—e—Trajectory

Starting Point

2.5 3

3.5
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Acceleration (e.g. momentum, Dykstra’s projection, inexact projection)

5

4.5

3.5

&}
Cy
Cs
—e— Trajectory

Starting Point

25 3

3.5
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Convex Feasibility Problem (CFP)

® Given convex sets C1,C2,...,Cn that are all nonempty closed subset of R™, the CFP is

find z € () Cs (CFP)

® CFP is a special case of convex optimization
argmin 0

xT

st. x€ C::mCi

the objective function here is zero all the time, zero gradient, zero Hessian, zero Lipschitz ...

® The message:
any “find a point problem” is an optimization problem

Now you should understand why | said this problem is actually not simple at all in page
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Any “find a point problem” is an optimization problem in the form of CFP

® Given a broken image b, we want to recover the image as
find @ € (1) C
i
o (: {||Ax — b||2 < €} the recovered image Ax “looks like” the broken image
e (5 : {max(Ax); < u} the brightest pixel in the recovered image cannot be brighter than a limit u

o (3 :{max(Ax); > I} the darkest pixel in the recovered image cannot be darker than a limit [

® (4 :{max||Vx| > o} the recovered image cannot be too spiky
K3

® Solve this CFP you solve image recovery problem
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Don’t think that projection is something trivial: this is a research area

CMS Books in Mathematics

Heinz H. Bauschke
Patrick L. Combettes

Convex Analysis
and Monotone

Operator Theory
in Hilbert Spaces

@ Springer
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Douglas-Rachford operator (1950s)

x + reflectc, (reﬂectc1 (ack))

reflectc(x) := 2projo(x) — x, DR, oy () = 5
0.5
ot
-0.5
-1+ Cy:x< by
Cg Yy = 0
—e—Trajectory
-1.57 Starting Point
e Final Point

-2 0 2 4 6 8 10

Dykstra's method is a special case of Douglas-Rachford 29/31



Consensus optimization
® Big-sum minimization
argmin fi(x) + fo(x) + ...+ fn(x)

we have one variable @ shared over N functions

® consensus optimization

argmin fi(xr) + fo(x2) + ... + fv(xn)

st.  (x1,22,...,xN) € C = {'ul,'vg,.“,vN : 1}1:’1}2:...:'01\[}

Distributed algorithm

® step 1: N parallel updates
® step 2: coordination
® step 3: go back to step 1
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