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Can we relax projection in Projected gradient descent?

• Goal: solve
argmin

x∈C
f(x)

by projected gradient descent

xk+1 = projC

(
xk − α∇f(xk)

)

• Here is a question: performing projC in each iteration is expensive, why don’t we do this

Algorithm 1: “Relaxed PGD”

1 Get y = argmin
x∈Rn

f(x) // relxation: ignore C

2 Get x∗ = proj(y) // project back onto C

This algorithm will not work. We will explain why.
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POCS: Projection Onto Convex Sets

• Consider projection onto C = C1 ∩ C2

projC(x) = argmin
ξ∈C1∩C2

1

2
∥ξ − x∥22

assume

• both C1, C2 are nonempty convex closed subset of Rn

• projC1
and projC2

can be computed cheap
• C1 ∩ C2 ̸= ∅, otherwise we project to empty-set
• C1 ⊈ C2 and C2 ⊈ C1, otherwise C = C1 or C2 and the problem is trivial

• Problem projC(x) looks innocent, this problem is actually not simple at all !!!

• This problem is actually a key challenge in research.
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Toy example in R2 – setup

• We consider R2 and we have x ∈ (x, y)

• C = C1 ∩ C2, where C1 =
{
(x, y) : x ≤ −5y

}
and C2 =

{
(x, y) : y ≥ 0

}

x

y

C1 is a halfspace, it is a convex set
C2 is a halfspace, it is a convex set
C is a convex set

• By looking at the figure, we see that projC(10, 0) = (0, 0)
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Toy example in R2 – POCS algorithm

Algorithm 2: POCS

1 for k = 1, 2, . . . do
2 xk+ 1

2
= projC1

(xk)

3 xk+1 = projC2

(
xk+ 1

2

)
If 2 sets in R2 is already this slow,
image the complexity of the gen-
eral case of Rn with m sets
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Example in R3, 4 hyperplanes

Projection onto the intersection of hy-
perplane is called Kaczmarz method in
linear algebra
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Why relaxation is bad
• We want to solve argmin

x∈C
f(x).

• this is same as finding a point in the set XRn∩C := argmin
x∈C

f(x)

• Define the set XRn := argmin
x∈Rn

f(x)

• note that it is unconstrained
• Theorem: f is convex =⇒ sublevel set lev≤αf is a convex set
• Definition: XRn is a special case of lev≤αf with α = inf f
• thus XRn is a convex subset of Rn

• Now we can view argmin
x∈C

f(x) as projXRn∩C(x0)

• Relaxed PGD is just POCS with one iteration.
• projXRn

means we solve argmin f ignoring C
• projC means we project onto C ignoring XRn

• the operation projC can drag the point projXRn
(x0) far away from XRn∩C
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Math details: Convergence of POCS

• Back to the R2 example: project (10, 0) to C1 =
{
(x, y) : x ≤ −5y

}
and C2 =

{
(x, y) : y ≥ 0

}

• The iteration is
xk+1 = projC2

(
projC1

(xk)
)

• projC1
and projC2

are projection onto halfspaces

projH(x) := argmin
ξ

1

2
∥ξ − x∥22 s.t. ⟨ξ,a⟩ ≤ b

with the solution

ξ =

x+
b− ⟨a,x⟩

∥a∥22
a x /∈ H

x x ∈ H

• For C1 we have a = (1, 5), and for C2 we have a = (0,−1)
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Simplifying xk+1 = projC2

(
projC1

(xk)
)

• The formula of projection onto halfspace is

projH(x) := argmin
ξ

1

2
∥ξ − x∥22 s.t. ⟨ξ,a⟩ ≤ b, ξ =

x+
b− ⟨a,x⟩

∥a∥22
a x /∈ H

x x ∈ H

• The set C = C1 ∩ C2 can be expressed as Ax ≤ b[
1 5
0 −1

] [
x
y

]
≤
[
0
0

]
, do not confuse coordinate x, y with vector x

• We have b = 0 for projC1
and projC2

projH(x) := argmin
ξ

1

2
∥ξ − x∥22 s.t. ⟨ξ,a⟩ ≤ 0, ξ =

{
x− ⟨â,x⟩â x /∈ H

x x ∈ H
, â =

a

∥a∥
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Simplifying projC1
(xk)

projH(x) := argmin
ξ

1

2
∥ξ − x∥22 s.t. ⟨ξ,a⟩ ≤ 0, ξ =

{
x− ⟨â,x⟩â x /∈ H

x x ∈ H
, â =

a

∥a∥

• Consider projC1

projC1
(x) =

{
x− ⟨â1,x⟩â1 x /∈ C1

x x ∈ C1

, (∗)

which is a nonlinear expression because it has two parts

• We simplify the nonlinear expression (∗) by geometry (this is not a math proof but only an explanation):
from the previous figure, we know that after projC2

, the point must be outside C1, hence the second case in
(∗) will never occur, and thus

projC1
(x) = x− ⟨â1,x⟩â1

T
= x− (â1 ⊗ â1)x = (I − â1â

⊤
1 )x = A1x

step T is a tensor product formula in multilinear algebra
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Simplifying projC2

projH(x) := argmin
ξ

1

2
∥ξ − x∥22 s.t. ⟨ξ,a⟩ ≤ 0, ξ =

{
x− ⟨â,x⟩â x /∈ H

x x ∈ H
, â =

a

∥a∥

projC1
(x) = (I − â1â

⊤
1 )x = A1x

• Consider projC2
.

From the previous figure, we know that after projC1
, the point must be outside C2, so y-part is negative, so

projC2
(x) = x− ⟨â2,x⟩â2 =

[
x
y

]
−
〈[

0
−1

]
,

[
x
y

]〉[
0
−1

]
=

[
x
y

]
+

[
0
−y

]
=

[
x
0

]
.

Meaning: if y is negative, replace it with zero. We do not touch x.
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Non-expansive and firmly non-expansive
• Projection onto a set Q is non-expansive1 (1-Lipschitz)∥∥projQ(x)− projQ(y)

∥∥ ≤
∥∥x− y

∥∥
nonexpansiveness comes from the Bourbaki-Cheney-Goldstein inequality.

• Now we have
∥∥xk+1 − x∗∥∥ =

∥∥projC2
projC1

(xk)− projC2
projC1

(x∗)
∥∥

≤
∥∥projC1

(xk)− projC1
(x∗)

∥∥
≤

∥∥xk − x∗∥∥
=

∥∥projC2
projC1

(xk−1)− projC2
projC1

(x∗)
∥∥

≤
∥∥projC1

(xk−1)− projC1
(x∗)

∥∥
≤

∥∥xk−1 − x∗∥∥
...
≤

∥∥x0 − x∗∥∥
1Actually we have stronger result here: Projection onto a convex set Q is firmly non-expansive∥∥projQ(x)− projQ(y)

∥∥ ≤
〈
projQ(x)− projQ(y), x− y

〉
.
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Convergence of projected sequence

• projC1
(x) = (I − â1â

⊤
1 )x = A1x

• projC2
(x) =

[
x
0

]
.

• xk+1 = projC2
projC1

(xk)

• We have 0 ≤
∥∥xk − x∗∥∥ ≤ · · · ≤

∥∥x0 − x∗∥∥, this is known as Fejér monotonicity

• Math fact (real analysis): if a sequence is monotonically decreasing and bounded below, it is convergent.

• lim
k→∞

∥∥xk − x∗∥∥ = 0 =⇒ xk → x∗, here we know x∗ exists and x∗ = (0, 0)
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Convergence speed
• With starting point (10, 0), the iteration xk+1 = projC2

projC1
(xk) always has yk = 0 so we focus on xk

xk+1 = (A1x)1 =

(([
1 0
0 1

]
− 1

26

[
1 5
5 25

])[
xk

0

])
1

=

([
25
26

− 5
26

− 5
26

1
26

][
xk

0

])
1

=
25

26
xk =

(25
26

)2
xk−1 = . . .

the fraction
25

26
= 1− sin2 θ is the contraction factor, and sin θ =

1√
26

is the angle between constraints

• Thus reaching ϵ-precision to 0 will requires(25
26

)k
≤ ϵ =⇒ k log

25

26︸ ︷︷ ︸
<0

≤ log ϵ =⇒ k≥ log ϵ∣∣∣ log 25

26

∣∣∣ =⇒ k = ⌈58 log ϵ⌉

Example: ϵ = 10−12 gives k ≥ 705 iterations.
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Convergence

• Theorem (von Neumann 1933)2

C1, C2 ⊂ Rn closed subsets, then for any x0, the sequence xk+1 = projC2

(
projC1

(xk)
)
converges in norm

to projC1∩C2
(xk)

• Theorem (Bregman 1965)

C1, C2 ⊂ Rn closed convex subsets with, then for any x0, the sequence xk+1 = projC2

(
projC1

(xk)
)

converges weakly to a point y ∈ C1 ∩ C2

2von Neumann actually prove it for the general notion in Hilbert space
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Example in R2 with 3 sets: slow
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Acceleration (e.g. momentum, Dykstra’s projection, inexact projection)
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Convex Feasibility Problem (CFP)

• Given convex sets C1, C2, . . . , CN that are all nonempty closed subset of Rn, the CFP is

find x ∈
⋂
i

Ci (CFP)

• CFP is a special case of convex optimization

argmin
x

0

s.t. x ∈ C :=
⋂
i

Ci

the objective function here is zero all the time, zero gradient, zero Hessian, zero Lipschitz ...

• The message:
any “find a point problem” is an optimization problem

Now you should understand why I said this problem is actually not simple at all in page 5
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Any “find a point problem” is an optimization problem in the form of CFP

• Given a broken image b, we want to recover the image as

find x ∈
⋂
i

Ci

• C1 : {∥Ax− b∥2 ≤ ϵ} the recovered image Ax “looks like” the broken image

• C2 : {max
i

(Ax)i ≤ u} the brightest pixel in the recovered image cannot be brighter than a limit u

• C3 : {max
i

(Ax)i ≥ l} the darkest pixel in the recovered image cannot be darker than a limit l

• C4 : {max
i

∥∇x∥ ≥ σ} the recovered image cannot be too spiky

• Solve this CFP you solve image recovery problem
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Don’t think that projection is something trivial: this is a research area
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Douglas-Rachford operator (1950s)

reflectC(x) := 2projC(x)− x, DRC1,C2(x) :=
x+ reflectC2

(
reflectC1(xk)

)
2

Dykstra’s method is a special case of Douglas-Rachford 29 / 31



Consensus optimization

• Big-sum minimization
argmin

x
f1(x) + f2(x) + . . .+ fN (x)

we have one variable x shared over N functions

• consensus optimization

argmin
x1,x2,...,xN

f1(x1) + f2(x2) + . . .+ fN (xN )

s.t. (x1,x2, . . . ,xN ) ∈ C :=
{
v1,v2, . . . ,vN : v1 = v2 = . . . = vN

}
Distributed algorithm

• step 1: N parallel updates
• step 2: coordination
• step 3: go back to step 1
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