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Ordinary Least Squares (OLS) : argmin %HA:;: —b|3
xcR”

e Consider
(OLS) : argmin f(z) = ~||Az — b|?2
zER" 2
A :R™ ™ is a given matrix, possible not full rank
b:R™ is a given vector
x € R" is the optimization variable
The objective function f is a R™ — R mapping

e OLSis

® the most basic regression model in statistics
® the most basic linear model in machine learning
® the most basic convex model in optimization
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Ordinary Least Squares (OLS) : argmin —HAa: —b|3

EASIG
® Summation Form in statistics/machine learning
1
OLS <— argmin 7( a;,x —bi) = argmin ( a;,x bi)
(oLs) rgmin 35 ((as.) nin

a; is the ith row of A
b; is the ith element (a scalar) of b
(as, ) is the inner product between the ith row of A and x

¢=1()%is called a lost function, and usually £:(-) = 1 ((ai,-) — b;)*

® Quadratic Programming Form
1 1
(OLS) <= argmin 7<Qa:,a:> —{p,z) + ,”ng
T ER™ 2 2
e Q=A"TA
e p=A"b
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https://angms.science/doc/teaching/GDLS.pdf
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Picture of OLS

6 |72

® We are giving a bunch of points (2D points here)
® Solving OLS is to find the blue line

® The blue line is the best fit to these points

® The word "best” refers to the sum of the length of
o 1+ the green segments is the shortest

1 1 9 3 ® Geometrically,

solve OLS <= move the line for the shortest
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Motivation of Robust LS: OLS is sensitive to outlier
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® Data is “ok”

® A point is an outlier

® The line fits all points well “on average” ® The line is dragged by that outlier
® To fit the line we should “ignore” the outlier
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Robust Least Squares (OLS) : argmin —||Aa; — b3

xzcR"™

(RLS) : argmin max fH(A—i- E)x — b3
xzeRn  leill<
® What's new: max and E
e E :R™*" is an unknown matrix, also an optimization variable here
® ¢;:R" is the ith row of E
® § € R is the max perturbation radius, it tells the max magnitude of the perturbation

® May be easier to understand RLS in summation form

S m 1 2
RL <= argmin ma; (a-Jre- x fb-)
(RLS) i ne1n<6z2 fai + e @) —bi
think of a; is “true value” and e; is “additive noise”

think of a; = a; + e; is a; corrupted by noise

|le:|l < & means how large is the noise's size

we don’t know the exact value of noise, so we consider all the possible e;
max|je,;||<s means we take the worst case among all the possible noise
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OLS vs RLS
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® Data points have “zero volume”
(I draw them thicker for visibility)

® The vertical line touches the points

RLS

20

15

In RLS

Data points are “points with volume”

Circle radius = perturbation radius §

We are now considering the largest sum
of red length touching circles

“largest sum” contains the meaning of
the “worst case”

using worst case formulation, we
magically ignore the outlier !
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Why RLS |gnores the outlier?

P 3

RLS e By definition: outlier are far away = the length is large
15 | e [f § is small, the perturbation ||e;|| < & have limited impact on the length
101 ® For inliners (non-outliers), the length is smaller
5 // ® the perturbation ||e;|| < § have larger impact on the length
| ; 7) ; > ® |f the line is moving away from the inliners, the inliners error
—-10 =5 5 10

.. 1 2
inliners error = max g — ((ai + e, x) — bi>
lle;l|[<6 . 2
i€inliners

will go up much faster than the outliners error

. 1 2 1 2
outliners error = ngﬁ)g(s ‘ Z 5 ((ai—kei, m)—bi) ~ | Z 3 ((ai, m)—bi)
i¢inliners i&inliners

therefore the argmin will pull the line towards inliners
@x
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14

~-horm version of RLS

201 19]

15+

10+

(RLS) : argmin max, fH(A E)x — b3

zeRn e <o
® Previously we used |le;||2 < §

loll = /67 + 03+ ..

® Here we used [|ei]|cc < &

oloo = max {Juul, [eal, .. }

® There is also ||e;||1 < d

[vlly = [oi] + fo2| + ...
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Min-max Optimization

1 2
(RLS) : argmin max fH(A + E)x —b||3 = argmin max 7<<ai +e;,x) — bi>
zern el <o wern lled|<s & 2

® RLS is an example of min-max optimization

(Min-max) : minmax f(z,y)
x oy

® Goal of solving min-max problem: find saddle point (x*,y")
f@"y) < f@"y") < flz,y)

® Where will you see Min-max optimization

Robust optimization

Dual-based optimization

Game Theory

Machine Learning using robustness and adversarial training
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What is a saddle point

(Min-max) : minmax f(x,y)
z oy

Goal of solving min-max problem: find saddle point (z*,y*)

f(x",y) < fl2",y") < f(z,y")

® " is minimizer if you view along x-axis

® ™ is maximizer if you view along y-axis

w‘f"f"». A"{ﬂ'v'
ey
i

i

e (x* y*) is x-min y-max if we view x-axis y-axis together
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General theory of Min-max optimization

(Min-max) : minmax f(x,y) Saddle point: f(z*,y) < f(z*,y*) < f(x,y")

reX yey
fisR* x R™ - R
® VVon Neumann’s Minimax Theorem If f is convex in & and concave in y, then

min max [(x,y) = max min f(z,y)

® Subgradient 1st-order optimality
0 € 0z (f(w*,y*) +tx(x”, y*)>7 Om € 0y (f(a7*: y) + L]/(w*,y*))
e Alternating Optimization: Gradient Descent-Ascent (GDA)

Tpt1 = @ — aVg f(xk, yr) followed by proj, prox ect

Yi+1 = Yk + aVy f(xk, yr) followed by proj, prox ect
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How to solve RLS

m

1 2

RLS) : argmin max —||(A+ E)x — b||3 = argmin max —({a; +e;,x) —b;
2

xR |lei|<6 xzeR?  |leil|<o i—1 2

® Alternating Optimization: repeat
1. Update « with a fix E

2. Update E with a fix @

® x-update: gradient descent

Tpr1 = Tk — a((A +E) (A+E)x, — (A+ E)Tb)

® E-update: projected gradient ascent

. 1 2
€i,k+1 = PIOJ|e| <5 (ei,k + ave§ ((az + e, $> — bi) )
(change DEscent to AScent)
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https://angms.science/doc/teaching/GDLS.pdf
https://angms.science/doc/CVX/CVX_PGD.pdf
https://angms.science/doc/CVX/Proj_l2.pdf
https://angms.science/doc/CVX/Proj_l1.pdf

Find V, ((a + ) ¢ —b)’
flx) = ((a+m)Tc— b)2 = (aTc+a:Tc— b)2

¢ letu=a'ct+x'c—b, then f(x) =u

Chain rule

g 8u
ox 8w

With — =
It . c

ﬁ:2uc—2(a c+zx c—b) 2((a+m)TC—b)C

Final gradient:
2
Yle— b) = ((a +x) ec— b) c=2f(x)c

19/23



Alternating optimization solve RLS

m

1 2
(RLS) : argmin max f||(A + E)x — b||2 = argmin max = ((ai +ei,x) — bi)
xR [eil|<6 zeRn  leil|<6 4= 2

® x-update:
Tpy1l = Tk — a((A + E)T(A +E)x, — (A+ E)Tb)

® E-update:
ksl =€k + a((m +eik, Tr) — bi)-rk

€ k+1

€kl }
1 JLLES L Nt 1 §
max{ , 5

€ik+1 = PIOj|o|<s (éi,lﬂ—l) =
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Quick-dirty-done MATLAB code
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Effect of the radius §

1
(RLS) : arger]gin ”renﬁii(é §H(A + E)x — b3
TR il >

e If § — 0, then E — 0, and RLS — OLS
® Decreasing 6 makes RLS back to OLS

® Increasing § makes the inliner “more important”
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