Coercive function, and

- Strongly convex function implies coerciveness
- Coerciveness implies existence of global minimum
- ► Weierstrass's theorem
- Euclidean projection problem always has a unique solution.

Andersen Ang

Mathématique et recherche opérationnelle, UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: March 13, 2020 Last update: December 22, 2020

Definition of coercive function in optimization

 \blacktriangleright A continuous function $f:\mathbb{R}^n\to\bar{\mathbb{R}}$ is coercive if

$$\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = \infty.$$

Meaning : f goes very big if x grows.

- ► As x grows larger in size, it can "walk pass" any values, that's why f has to be *continuous* in the definition.
- ► As we have ∞ as the output in f, the image of f is R
 instead of R. The set R
 is the extended real line

$$\bar{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}.$$

An $\epsilon - \delta$ explanation: for any constant M > 0, no matter how large is M, there always exists a constant R_M (radius corresponds to M) such that $||f(\mathbf{x})|| > M$ whenever $||\mathbf{x}|| > R_M$ (when \mathbf{x} has size larger than the norm-ball with radius R_M).

f has to approach $+\infty$ in all directions to be coercive

▶ In the definition $\lim_{\|\mathbf{x}\|\to\infty} f(\mathbf{x}) = \infty$, there is no limitation on "how \mathbf{x} should grow in size". This means that f has to approach $+\infty$ in all possible ways \mathbf{x} grows. Geometrically, f has to approach $+\infty$ for any direction \mathbf{x} moves.

• For example
$$f(\mathbf{x}) = x_1^2 + x_2^2$$
 is coercive since

$$\lim_{x_1 \to \infty} f(\mathbf{x}) = \infty, \quad \lim_{x_2 \to \infty} f(\mathbf{x}) = \infty, \quad \lim_{(x_1, x_2) \to \infty} f(\mathbf{x}) = \infty.$$

►
$$f(\mathbf{x}) = x_1^2 - 2x_1x_2 + x_2^2 = (x_1 - x_2)^2$$
 is not coercive:
$$\lim_{x_1 \to \infty} f(\mathbf{x}) = \infty, \quad \lim_{x_2 \to \infty} f(\mathbf{x}) = \infty, \quad \lim_{(x_1, x_2) \to \infty} f(\mathbf{x}) \neq \infty.$$

Super-coercive

 \blacktriangleright A continuous function $f:\mathbb{R}^n\to\bar{\mathbb{R}}$ is super-coercive if

$$\lim_{\|\mathbf{x}\| \to \infty} \frac{f(\mathbf{x})}{\|\mathbf{x}\|} = \infty.$$

- ► Super-coercive implies coercive.
- ► If *f* is strongly convex, i.e.,

$$f(\mathbf{x}) - rac{lpha}{2} \|\mathbf{x}\|$$
 is convex

or equivalently

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\alpha}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

then f is super-coercive¹.

¹For proof, see Corollary 11.17 in "Convex Analysis and Monotone Operator Theory in Hilbert Spaces" by Bauschke and Combettes.

What's so special about coercive function

- **Theorem** If f is coercive, f must has a global minimum.
- Proof As f is coercive, meaning that the value of f goes large when x moves away from the point y = 0, there for there exists a radius R_y such that for all x located outside the ball with such radius, the function value at x will be larger than or equal to f(y). Put this mathematically,

 $\exists R > 0 \text{ s.t. } f(\mathbf{x}) \geq f(\mathbf{y}), \ \forall \|\mathbf{x}\| \geq R_{\mathbf{y}}.$ (1) By Weierstrass extreme value theorem², there is a global minimum \mathbf{x}^* on the closed ball B centered at \mathbf{y} with radius $R_{\mathbf{y}}$. Mathematically, $\exists \mathbf{x}^* \in \bar{B}(\mathbf{y}, R_{\mathbf{y}})$. Note that \mathbf{x}^* is a minimum, by definition of minimum, we have $f(\mathbf{x}^*) \leq f(\mathbf{y})$ and thus $f(\mathbf{x}^*) \stackrel{(1)}{\leq} f(\mathbf{x}), \ \forall \|\mathbf{x}\| \geq R_{\mathbf{y}}.$ So \mathbf{x}^* is a global minimum. \Box

► Note that the point y is a free variable, Ry is also a free variable associated with y, so Ry can be arbitrarily small (or large).

²A continuous function f on a closed bounded domain has a global minimum and maximum.

Application of coerciveness: Weierstrass's theorem

- Theorem For $f : \mathbb{R}^n \to (-\infty, \infty]$
 - f is closed, proper function.
 - dom f is compact.
 - ► f is coercive.

• There exists a scalar γ such that the γ -level set $\{\mathbf{x} \mid f(\mathbf{x}) \leq \gamma\}$ is nonempty and compact.

Then the set of minima of f, denoted as \mathcal{X}^* , is nonempty and compact.

• Proof: let $\{\gamma_k\}$ be a decreasing sequence $\lim_{k \to \infty} \gamma = f_* := \inf_{\mathbf{x}} f(\mathbf{x})$, then the set \mathcal{X}^* is the intersection of all γ_k -level set. Mathematically

$$\mathcal{X}^* = \bigcap_{k=0}^{\infty} \Big\{ \mathbf{x} \mid f(\mathbf{x}) \le \gamma_k \Big\}.$$

By assumption, each $\{\mathbf{x} \mid f(\mathbf{x}) \leq \gamma_k\}$ is nonempty and compact, so \mathcal{X}^* is the intersection of a nested sequence of nonempty and compact sets. Hence \mathcal{X}^* is nonempty and compact.

Application of coerciveness: projection exists

- ▶ Theorem For all $\mathbf{x} \in \mathbb{R}^n$, there exists a unique vector $P_C(\mathbf{x})$ that minimizes $\|\mathbf{z} \mathbf{x}\|$ over all $\mathbf{z} \in C$.
- Proof: fix x and let w be some element of C. Minimizing ||x z|| over all z ∈ C is equivalent to minimizing the continuous function g(z) = ||z x||² over the set of all z ∈ C such that ||x z|| ≤ ||x w||, which is a compact set. Hence there exists a minimizing vector by Weierstrass, which is unique since || · ||² is strictly convex.
- ► Special case: if || · || is the Euclidean norm, the following problem always has a unique minimizer

$$\underset{\mathbf{z}\in C}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{z} - \mathbf{x}\|_2^2,$$

where C is nonempty and compact set.

▶ Proof: $\|\mathbf{z} - \mathbf{x}\|_2^2$ is 1-strongly convex, so it is coercive.

Last page - summary

- Coercive function
- Strongly convex function implies coerciveness
- Coerciveness implies existence of global minimum
- ► Weierstrass's theorem
- Euclidean projection problem always has a unique solution.

End of document