Computer Concept : Assembler

I. WHAT IS ASSEMBLER

Assembler is a program that convert assembly
language program into machine code equivalent with
information for the loader.

Assembler is machine dependent , since the
database of the assembler is machine dependent.

II. ASSEMBLER FUNCTIONALITY

« Handle assembler directives
o Assign machine address to variables and symbols

o Translate assembly opcode into machine code

III. FORWARD REFERENCING

Forward Reference : Variable definition can be
placed anywhere in the program even after being
used.

Example

LDAA APPLE
APPLE DS 1F

What it means
Line 1 : Load variable named “APPLE” into Ac-
cumulator A

Line 2 : Define storage named as “APPLE” a value
1Fge, (1 x 16" +15 x 16° = 3149)

In the above example, the variable APPLE is de-
fined after it is being used, this is forward referencing.

Forward referencing is allowed in most assembly
language to increase freedom / flexibility in program-
ming.

IV. 1-PASS AND 2-PASS

Example

PETER ORG 1000
LDAA APPLE

APPLE DS 1F
END

What it means

Line 1 : A program named as “PETER” begin
(ORG) at address 1000,

Line 2 : Load variable named “APPLE” into Ac-
cumulator A

Line 3 : Define storage named as “APPLE” a value
1FH6£E

Line 4 : END

What happen when assembler read this program

First a register called Location Counter (LOC) will
act as a pointer to keep track of the memory location
of the program

By looking at the LOC , the size of each instruction
can be known

“PETER” is the name of the whole program

“ORG” indicate the value after ORG is the starting
address of the program

10004, is the starting address, the program will be
loaded into address 1000 in the physical memory,
therefore this is an absolute program.

“END” indicate the end of the program.

When the assembler read in the program

It match the statements with the database |,
“LDAA” “ORG” “DS” “END” are pre-defined in the
database.

Line 1 : It will first know that “ORG” indicate the
start of the program, so “PETER” is the name of the
whole program.

“PETER” will be passed to loader for further
processing.

Line 2 : Next, it will know “LDAA” is a statement
that the byte after this word is a value to be loaded
into accumulator A.

But it does not understand what is “APPLE” in this
stage.

Line 3 : Then it will know that “DS” means
define storage, the byte before DS is the name of

the variable, and the byte after DS is the value to be
stored.

Line 4 : It finally know the program ended by
readimg “END”.

It can be seen that the program can not be per-
formed since the program does not know what is
“APPLE” in line 2.

Then a second reading of the program is per-
formed.

This time, the assembler know what “APPLE” is.

Therefore, this is called 2-pass assembler, it scan
the program twice.

V. FUNCTIONALITY OF 1-PASS AND 2-PASS
1-pass
o Assign address to all statements
o Assign address to all symbols at time when they
are defined
« Save address values in Symbol Table
« Process assembler directives

2-pass

o Assemble instructions (assemble instruction
start HERE !!!)

o Look up Symbol Table to fillin unknowns due
to forward reference

« Process assembler directives not being done dur-
ing Pass 1

« Write Object code with loader infomation

That is, the assembler really start to work (trans-
late assembly code into machine code) during pass-2,
not pass-1 !

VI. ABSOLUTE PROGRAM AND RELOCATABLE
PROGRAM

PETER ORG 1000 means program “PETER” need
to be loaded into memory location 1000, , this is
called absolute program

In muti-programming system, multi-programm
share computer resources (such as memory location
), then it is not good to pre-define the program
location (you don’t know is the location free or not

D)

Therefore, the actual location of the program is not
known until load time, and the location is dynami-
cally assigned by OS.

2

Then the program should contain relocating infor-
mation (to linkup the whole program body), and
these programs are relocatable program.

Program relocation can be achieve by using Mod-
ification Flag M

Example
In absolute program
PETER ORG 1000,
LDAA APPLE
APPLE DS 1F
END
Assume instruction 4byte
Line 1 is in address 1000
Line 2 is in address 1004
Line 3 is in address 1008
Line 4 is in address 1012

In relocatable program

PETER ORG X
LDAA APPLE , M =1

APPLEDS 1F , M =1
END M =1

Line 1 is in address X (assigned by OS , not
known until load time)

Line 2 is then in address X + 4

Line 3 is then in address X + 8

Line 4 is then in address X + 12

Modification flag M are used to denote that line 2
to line 4 are program that need to be relocated with
respect to line 1

VII. CONTROL SECTION AND LINKING
In a large software project, several programmer
work on different part of the program.

A control section is a subdivision of the program
that can be assembled/loaded separately.

The reason of this is that different coder has
different speed, some programmer works faster, if
those programmer need to wait for the slow guy to
do software testing then it is a waste of time.

Therefore the control section provide flexibility in
large software project.

The disadvantage of control section is that it in-
crease the integration cost in linking.

Linking = binding all subdivision into one single
system

Linker and Loader will be discussed in another
document.

—END—

