1.1

1.2

1.3

Computer Concepts

Andersen Ang
First created: 2012. Last update: 2017-Feb-1

Computer Language

1st-Generation Language : Machine Language

Also called machine code

Binary : Boolean, only 1 and 0 (or high/low , true/ false)

Machine understand machine code only

Different set of machine use different set of machine code, so machine code is machine dependent

Machine language is fastest , but it is so difficult to read
2nd Generation Language : Assembly Language
Machine code is not human readable

Assembly language is some short form / abbreviations of some English word, for human to use

Typical example of some assembly code

L | Load
A | Add
S | Store

Machine never understand assembly language, so a assembler is needed to translate assembly
language into machine language

Assembler = Assembler + Data base, since the data base is machine dependent, thus assembly

language is also machine dependent

3rd Generation Language : High Level Language

More abstract than assembly language, for example, can handle a =b+c¢c—4 ;
Thus high level language is easier to read than assembly language

Example : C, C++, Java, FORTRAN, Dephi, PASCAL, BASIC, LIPS, PROLOG
1

1.4

Machine never understand high level language, so a compliter or interpreter is needed
The speed of high level language is not as fast as machine code
Once you have the complier or the interpreter, the language works in any machine, thus high level

language is machine independent

4th Generation Language

Even more easy to use than high level language, the languae is more human like
Example : Graphical language, query language, natural languae

Natural Language is somewhat like those scene in the movie : the computer can understand the
wording such as “give me the report this week”

Such language (natural language) is a research topic

2 Registers

There some specific memory in the computer that perform specific task, those specific memory are
registers

Accumulators : A register that hold the operand to be operated
General purpose register : Just a register space for the programmer to use.

Status register / Condition code register : A register that the byte inside contains the information
of the status of the processor

Index register : A register that hold the displacement of the address

Program counter : A register that hold the address of the next byte of an instruction code to be
fetched from the memory to the CPU

Instruction register : A register that hold the op-code
Data Address register : A register that hold the address of data

Data register : A register that hold the operand, and this operand is to be added into the operand
inside accumulator

Stack Pointer : A register that hold the location of the stack data structure.

3 Addressing Mode

Computer is “processor” + “memory”
Thus there are lots of different methods for the processor to get data from the memory, these methods
are the addressing modes.

3.1 Immediate Addressing Mode

e The byte after the opcode is the operand directly : ’ Opcode ‘ Operand ‘

e Analogy example ’ Take square root of ‘ +9 ‘

e No need to do memory fetch, fastest

3.2 Direct Addressing Mode

e The byte after the opcode is the address of the operan ’ Opcode \ Address of the operand ‘

e Analogy] Read the content of \ the box in room 301 ‘

e Need to do 1 memory fetch
o Effective Address = the address

3.3 Index Addressing Mode

e The byte after the opcode is the displacement to the index register ’ Opcode \ Displacement

e Analogy ’ Go inside \ the room that is 3 room after room 301 ‘

e Need to do 1 memory fetch
e Effective address = displacement + address stored in index register

e Index addressing is often used when accessing a block of data, using loop

3.4 Relative Addressing Mode

e The byte after the opcode is the displacement to the current programme counter ’ Opcode \ Displacemen

e Analogy ’ Go inside ‘ 2 page after the page where you are reading now ‘

e Need to do 1 memory fetch

e Effective address = displacment + current address stored in programme counter

—END—

