
Computer Concepts

Andersen Ang

First created: 2012. Last update: 2017-Feb-1

1 Computer Language

1.1 1st-Generation Language : Machine Language

• Also called machine code

• Binary : Boolean, only 1 and 0 (or high/low , true/false)

• Machine understand machine code only

• Different set of machine use different set of machine code, so machine code is machine dependent

• Machine language is fastest , but it is so difficult to read

1.2 2nd Generation Language : Assembly Language

• Machine code is not human readable

• Assembly language is some short form / abbreviations of some English word, for human to use

• Typical example of some assembly code

•
L Load
A Add
S Store

• Machine never understand assembly language, so a assembler is needed to translate assembly
language into machine language

• Assembler = Assembler + Data base, since the data base is machine dependent, thus assembly
language is also machine dependent

1.3 3rd Generation Language : High Level Language

• More abstract than assembly language, for example, can handle a = b+ c− 4 ;

• Thus high level language is easier to read than assembly language

• Example : C, C++, Java, FORTRAN, Dephi, PASCAL, BASIC, LIPS, PROLOG
1

• Machine never understand high level language, so a compliter or interpreter is needed

• The speed of high level language is not as fast as machine code

• Once you have the complier or the interpreter, the language works in any machine, thus high level
language is machine independent

1.4 4th Generation Language

• Even more easy to use than high level language, the languae is more human like

• Example : Graphical language, query language, natural languae

• Natural Language is somewhat like those scene in the movie : the computer can understand the
wording such as “give me the report this week”

• Such language (natural language) is a research topic

2 Registers

There some specific memory in the computer that perform specific task, those specific memory are
registers

• Accumulators : A register that hold the operand to be operated

• General purpose register : Just a register space for the programmer to use.

• Status register / Condition code register : A register that the byte inside contains the information
of the status of the processor

• Index register : A register that hold the displacement of the address

• Program counter : A register that hold the address of the next byte of an instruction code to be
fetched from the memory to the CPU

• Instruction register : A register that hold the op-code

• Data Address register : A register that hold the address of data

• Data register : A register that hold the operand, and this operand is to be added into the operand
inside accumulator

• Stack Pointer : A register that hold the location of the stack data structure.

3 Addressing Mode

Computer is “processor” + “memory”
Thus there are lots of different methods for the processor to get data from the memory, these methods

are the addressing modes.

2

3.1 Immediate Addressing Mode

• The byte after the opcode is the operand directly : Opcode Operand

• Analogy example Take square root of +9

• No need to do memory fetch, fastest

3.2 Direct Addressing Mode

• The byte after the opcode is the address of the operan Opcode Address of the operand

• Analogy Read the content of the box in room 301

• Need to do 1 memory fetch

• Effective Address = the address

3.3 Index Addressing Mode

• The byte after the opcode is the displacement to the index register Opcode Displacement

• Analogy Go inside the room that is 3 room after room 301

• Need to do 1 memory fetch

• Effective address = displacement + address stored in index register

• Index addressing is often used when accessing a block of data, using loop

3.4 Relative Addressing Mode

• The byte after the opcode is the displacement to the current programme counter Opcode Displacement

• Analogy Go inside 2 page after the page where you are reading now

• Need to do 1 memory fetch

• Effective address = displacment + current address stored in programme counter

−END−

3

