Optimal Control: Linear Quadratic Regulator

Andersen Ang

First created: 2014. Last update: 2107-Feb-1

Optimal control problems include:
• Minimize the control action: \(\min u(t) \)
• Regulate output: minimize the output error \(\min y(t) - y_0 \)
• Stabilization at equilibrium point: keep \(x(t) \) close to \(x_0 \)

Consider the system

\[
\begin{align*}
\frac{dx}{dt} &= Ax + Bu \\
y &= Cx \\
x(0) &= x_0
\end{align*}
\]

The optimal control problem is to find the input \(u(t) \) that minimize the cost function

\[
J = \int_0^T \left[u'(t)Ru(t) + y'(t)Qy(t) \right] dt + x'(T)Fx(T)
\]

• Since \(J \) has quadratic term \(u'Ru \) (\(u' \) denote tranpose of \(u \)), thus such problem is called Linear Quadratic (LQ) problem.
• Matrix \(R, Q \) and \(F \) describes the cost in the control process. For example \(R \) describes the cost of control action. \(Q \) and \(F \) describe the penalties of \(y(t) \) and \(x(t) \) away from the desired \(y_0 \) and \(x_0 \).
• \(R > 0 \) (positive definite), \(Q, F \geq 0 \) (semi-positive definite)

There is two type of problems for different \(T \):
• \(T < \infty \): The problem is called Finite Time Horizon Control, the goal is to minimize \(J = \int_0^T \left[u'(t)Ru(t) + y'(t)Qy(t) \right] dt + x'(T)Fx(T) \)
• \(T = \infty \): The problem is called Infinite Time Horizon Control, the goal is to minimize \(J = \int_0^\infty \left[u'(t)Ru(t) + y'(t)Qy(t) \right] dt + x'(T)Fx(T) \)

The Finite Time Horizon Control

The input \(u(t) \) that minimizes \(J = \int_0^T \left[u'(t)Ru(t) + y'(t)Qy(t) \right] dt + x'(T)Fx(T) \) is

\[
u(t) = -R^{-1}B^TP(t)x(t)
\]

And the optimal \(J \) is thus

\[
J^* = x_0^T P(0)x_0
\]

where \(P \) is the solution of the matrix Riccati Differential Equation

\[
P'(t) + P(t)A + A^TP(t) - P(t)BR^{-1}B^TP(t) + C^TQC = 0
\]

with boundary condition

\[
P(T) = F
\]
Proof. The Finite Time Horizon control problem
Consider \(J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt + x^T(T)Fx(T) \)
By boundary condition, \(P(T) = F \)
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt + x^T(T)P(T)x(T)
\]
Then add and subtract \(J^* \)
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt + x^T(T)P(T)x(T) - J^* + J^*
\]
Since \(J^* = x_0^T P(0)x_0 \), thus
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt + x^T(T)P(T)x(T) - x^T(T)P(0)x(T) + J^*
\]
Group the \(x^T(T)P(T)x(T) \) terms
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt + x^T(T) \left[P(T) - P(0) \right] x(T) + J^*
\]
Express \(x^T(T) \left[P(T) - P(0) \right] x(T) \) as an integral
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt + \int_0^T \frac{d}{dt} \left(x^T(t)P(t)x(t) \right) dt + J^*
\]
Joint the integral together
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) + \frac{d}{dt} \left(x^T(t)P(t)x(t) \right) \right] dt + J^*
\]
Take derivative
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) + \left(Ax + Bu \right)^T \left(P(t)x(t) + x^T(t)\dot{P}(t)x(t) + x^T(t)P(t)x(t) \right) \right] dt + J^*
\]
Apply the state space model \(\dot{x} = Ax + Bu \)
\[
J = \int_0^T \left[u^T(t)Ru(t) + y^T(t)Qy(t) + \left(Ax + Bu \right)^T \left(P(t)x(t) + x^T(t)\dot{P}(t)x(t) + x^T(t)P(t)x(t) \right) \right] dt + J^*
\]
As transpose is linear \((X + Y)^T = X^T + Y^T \), so
\[
\left(Ax + Bu \right)^T = x^T A^T + u^T B^T
\]
\[
J = \int_0^T \left[u^T(t)Ru(t) + x^T C^T Q C x + \left(x^T A^T + u^T B^T \right) \left(P(t)x(t) + x^T(t)\dot{P}(t)x(t) + x^T(t)P(t)x(t) \right) \right] dt + J^*
\]
Group all \(x^T \)(.)\(x \) together
\[
J = \int_0^T \left[u^T(t)Ru(t) + x^T C^T Q C x + \left(x^T A^T + u^T B^T \right) \left(P(t)x(t) + x^T(t)\dot{P}(t)x(t) + x^T(t)P(t)x(t) \right) \right] dt + J^*
\]
Apply the Matrix Riccati Equation, \(\dot{P}(t) + P(t)A + A^T P(t) - P(t)BR^{-1}BT P(t) + C^T Q C = 0 \)
\[
J = \int_0^T \left[u^T(t)Ru(t) + x^T \left(P(t)BR^{-1}BT P(t) \right) x + u^T B^T P(t)x(t) + x^T(t)P(t)Bu \right] dt + J^*
\]
Rearrange
\[
J = \int_0^T \left[u^T(t)Ru(t) + u^T BT P(t)x(t) + x^T \left(P(t)BR^{-1}BT P(t) \right) x + x^T(t)P(t)Bu \right] dt + J^*
\]
Perform a tricky factorization
\[
J = \int_0^T \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] \left[R \left(u(t) + R^{-1}BT P(t)x(t) \right) \right] dt + J^*
\]
Since the integrand is positive definite quadratic form, so the integrand \(\geq 0 \), to minimize \(J \)
, let \(u(t) = -R^{-1}BT P(t)x(t) \), so
\[
J = \int_0^T \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] R \left[u(t) + R^{-1}BT P(t)x(t) \right] dt = 0
\]
Thus \(\min J = J^* \) is the minimum achieved.

\[\square \]

The Infinite Time Horizon Control
The input \(u(t) \) that minimize \(J = \int_0^{\infty} \left[u^T(t)Ru(t) + y^T(t)Qy(t) \right] dt \) is
\[u(t) = -R^{-1}BT P(t)x(t) \]
And the optimal \(J \) is thus
\[J^* = \frac{x_0^T P x_0}{2} \]
The Infinite Time Horizon control problem

Thus

To minimize the

Also since optimal system is stable, so

Since

Evaluate the second integral

Perform a tricky factorization

Where \(P \) is the solution of the matrix Algebraic Riccati Equation

\[
PA + A^TP - PBR^{-1}B^TP + C^TCQ = 0
\]

notice that \(P \) in this case is a constant and so \(\dot{P} = 0 \)

Note that the Riccati Equation is symmetric. (Take transpose gives same equation by replacing \(P^T \) by \(P \)), thus \(P \) can be assumed to be symmetric.

Proof. The Infinite Time Horizon control problem

Consider \(J = \int_0^\infty [u^T(t)Ru(t) + y^T(t)Qy(t)] \) dt

Apply the state space model \(y = Cx \) (and thus \(y^T = x^TC^T \))

\[
J = \int_0^\infty [u^T(t)Ru(t) + x^TC^TCx] \) dt
\]

Apply the Algebraic Riccati Equation, \(PA + A^TP - PBR^{-1}B^TP + C^TCQ = 0 \)

\[
J = \int_0^\infty [u^T(t)Ru(t) + x^T[-PA - A^TP + PBR^{-1}B^TP]x] \) dt
\]

Expand

\[
J = \int_0^\infty [u^T(t)Ru(t) - x^TPAx - x^TA^TPx + x^TPBR^{-1}B^TPx] \) dt
\]

Apply state space model \(\dot{x} = Ax + Bu \)

\[
J = \int_0^\infty [u^T(t)Ru(t) - x^TP\dot{x} - x^TPBu - \dot{x}^TPx + x^TPBR^{-1}B^TPx] \) dt
\]

Expand

\[
J = \int_0^\infty [u^T(t)Ru(t) + x^TP\dot{x} - x^TPBu - \dot{x}^TPx + x^TPBR^{-1}B^TPx + u^TPBR^{-1}B^TPx] \) dt
\]

Rearrange

\[
J = \int_0^\infty [u^T(t)Ru(t) + x^TPBu + u^TPBR^{-1}B^TPx + x^TPBR^{-1}B^TPx - (x^TP\dot{x} + \dot{x}^TPx)] \) dt
\]

Perform a tricky factorization

\[
J = \int_0^\infty \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] R \left[u(t) + R^{-1}B^TP(t)x(t) \right] dt - \int_0^\infty (x^TP\dot{x} + \dot{x}^TPx) dt
\]

Evaluate the second integral

\[
J = \int_0^T \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] R \left[u(t) + R^{-1}B^TP(t)x(t) \right] dt - (x^T(0)P(0)x(0))
\]

\[
J = \int_0^T \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] R \left[u(t) + R^{-1}B^TP(t)x(t) \right] dt - (x^T(\infty)x(\infty) - x^T(0)x(0))
\]

\[
J = \int_0^T \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] R \left[u(t) + R^{-1}B^TP(t)x(t) \right] dt - x^T(\infty)x(\infty) + x^T_0P_0x_0
\]

Since \(P > 0 \) so \(x^T(\infty)x(\infty) > 0 \) and thus \(-x^T(\infty)x(\infty) < 0 \).

Also since optimal system is stable, so \(x(\infty) \rightarrow 0 \)

To minimize the \(J \), let \(u(t) = -R^{-1}B^TP(t)x(t) \), so

\[
J = \int_0^T \left[u^T(t) + x^T(t)P(t)BR^{-1} \right] R \left[u(t) + R^{-1}B^TP(t)x(t) \right] dt = 0
\]

Thus min \(J = x^T_0P_0x_0 \) is the minimum achieved.

\(-END-\)