Operation Modes of BJT and MOSFET Cutoff, Active and Saturation

Ang Man Shun December 13, 2012

Reference

Sedra and Smith *Microelectronic Circuit* Neamen *Microelectronics*

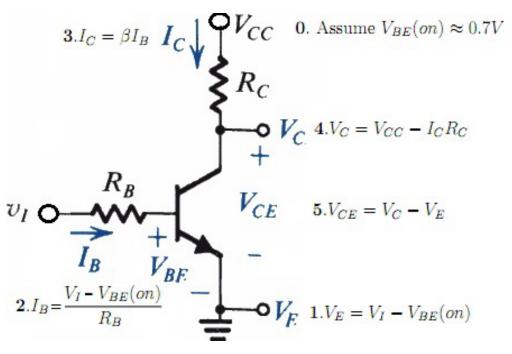
1 BJT

1.1 Cutoff Mode

• When $V_I < V_{BE}(on)$, it can not turn on the BE-Junction diode, the BJT is in cutoff mode

$$V_{CC} \quad 0.V_I < V_{BE}(on) = 0.7V$$

$$2.I_C = \beta I_B = 0, R_C = \text{short circuit}$$


$$V_C \quad 4.V_C = V_{CC}$$

 $1.I_B = 0, R_B = \text{short circuit}$

$$V_{BE}$$
 3. $I_E = (\beta + 1)I_B = 0$

1.2 Forward Active Mode

• When $V_I > V_{BE}(on)$, $I_B \neq 0$ and $V_{CE} > 0.2V$

Saturation Mode Re-consider the V_C again 1.3

n
$$V_{C} = V_{CC} - I_{C}R_{C}$$
$$= V_{CC} - \beta I_{B}R_{C} = V_{CC} - \beta R_{C} \left(\frac{V_{I} - V_{BE}(on)}{R_{B}}\right)$$
$$= \left(\underbrace{V_{CC} + \beta \frac{R_{C}}{R_{B}} V_{BE}(on)}_{Constant}\right) - \left(\underbrace{\beta \frac{R_{C}}{R_{B}}}_{Constant}\right) V_{I}$$

$$= A - BV_I$$

If V_I increase, V_C decrease

Re-consider the V_{CE} again

$$V_{CE} = V_C - V_E$$

$$= \left(\underbrace{V_{CC} + \beta \frac{R_C}{R_B} V_{BE}(on)}_{Constant}\right) - \left(\underbrace{\beta \frac{R_C}{R_B}}_{Constant}\right) V_I - [V_I - V_{BE}(on)]$$

$$= \left(\underbrace{V_{CC} + \left(\beta \frac{R_C}{R_B} + 1\right) V_{BE}(on)}_{Constant}\right) - \left(\underbrace{\beta \frac{R_C}{R_B} - 1}_{Constant}\right) V_I$$

$$= A' - B'V_I$$

If V_I increase, V_{CE} decrease

When V_{CE} drop down to a value that I_C is independent of I_B , the BJT is now working in saturation mode.

In saturation mode :

$$I_{Csat} \bigvee_{R_C} V_{CC} \quad 0.\text{Assume } V_{CE} = V_{CE}(sat) = 0.2V$$

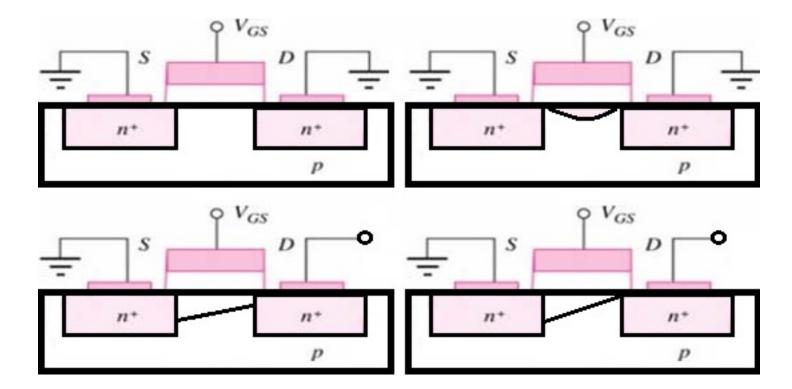
$$R_C \quad V_{BE}(on) = 0.7V$$

$$3.I_C(sat) = \frac{V_{CC} - V_{CE}(sat)}{R_C} \bigvee_{C} 4.V_C = V_{CC} - I_C(sat)R_C$$

$$+ V_C \quad 4.V_C = V_C - V_E$$

$$I_B \longrightarrow V_{E} \quad 5.V_{CE} = V_C - V_E$$

$$2.I_B = \frac{V_I - V_{BE}(on)}{R_B} \bigvee_{BE} \quad V_E \quad 1.V_E = V_I - V_{BE}(on)$$


 V_{CE} in this case will be smaller than $V_{CE}(sat) = 0.2V$:

$$V_{CE} = V_C - V_E$$
$$= (V_{CC} - I_C(sat)R_C) - (V_I - V_{BE}(on))$$
$$= (V_{CC} + V_{BE}(on)) - V_I - I_C(sat)R_C$$
$$V_{CE} = (V_{CC} + V_{BE}(on)) - V_I - \frac{V_{CC} - V_{CE}(sat)}{R_C}R_C$$
$$V_{CE} = V_{CE}(sat) - \left(\underbrace{V_I - V_{BE}(on)}_{>0}\right)$$

 $V_{I}>V_{BE}(on)$, otherwise, cutoff mode (contradiction !), thus $V_{I}-V_{BE}(on)>0$, and thus

$$V_{CE} = V_{CE}(sat) - \left(\underbrace{V_I - V_{BE}(on)}_{>0}\right) < V_{CE}(sat)$$
$$V_{CE} < V_{CE}(sat) \approx 0.2V$$

2 MOSFET

2.1 MOSFET Device

2.1.1 Cutoff

When $V_{GS} = 0$, the MOSFET is just like two back-to-back diode, no current, so cut off. $I_{DS} = 0$

When $V_{GS} > 0$ but $V_{GS} < V_{TN}$, since the MOSFET structure looks like a capacitor, there is some positive charge stored in the metal plate, while in the semiconductor, there is some negative charge. Since the V_{GS} is not large enough, so there is no "*n*-channel", there is still no current.

2.1.2 Triode / Active

When $V_{GS} > V_{TN}$, there is enough voltage or E-field attraction to establish a *n*-channel in the semiconductor, so the 2 n-semiconductor can now have current pass through. $I_{DS} \neq 0$

- The E-field that cause the current to drift : $E_{DS} = \frac{V_{DS}}{L}$
- Thus the drift velocity is $v_d = \mu_n E_{DS} = \mu_n \frac{V_{DS}}{L}$
- Thus the drift current density (in A/m) is $J_d = Qv_d = Q_{Cap}\mu_n \frac{V_{DS}}{L}$
- Where the Q (in C/m) is the charge that drift in the *n*-channel, it comes from the charges stored in MOS capacitor Q_{Cap}

Cosider the MOS capacitor $Q_{Cap} = CV_{cap}$

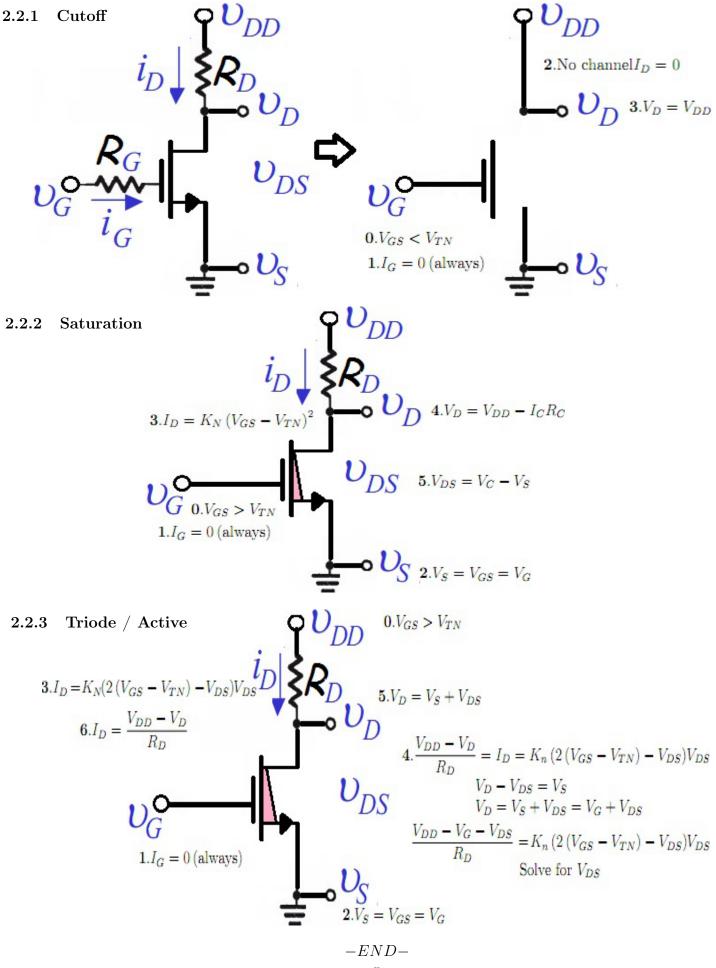
The V_{Cap} is the excess voltage of V_{GS} : $V_{Cap} = V_{GS} - V_{TN}$

$$Q_{Cap} = C (V_{GS} - V_{TN})$$

$$J_d = C (V_{GS} - V_{TN}) \mu_n \frac{V_{DS}}{L}$$

$$I = J_d W = C \mu_n \frac{W}{L} (V_{GS} - V_{TN}) V_{DS} = k_n \frac{W}{L} (V_{GS} - V_{TN}) V_{DS}$$
(In the S-side)
$$I = J_d W = C \mu_n \frac{W}{L} (V_{GS} - V_{TN}) V_{DS} = k_n \frac{W}{L} (V_{GS} - V_{TN} - V_{DS}) V_{DS}$$
(In the D-side)

In the middle of the device, assume linear relationship, the average current


$$I_{DS} = k_n \frac{W}{L} \left(V_{GS} - V_{TN} - \frac{V_{DS}}{2} \right) V_{DS}$$

2.1.3 Saturation

When $V_{DS} = V_{GS} - V_{TN}$

$$I_{DS} = k_n \frac{W}{L} \left(V_{GS} - V_{TN} - \frac{V_{GS} - V_{TN}}{2} \right) \left(V_{GS} - V_{TN} \right) = \frac{k_n W}{2} \left(V_{GS} - V_{TN} \right)^2 = K_n \left(V_{GS} - V_{TN} \right)^2$$

2.2 MOSFET Circuit Operation

