Prove $||X||_F \ge ||X||_2$

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: May 16, 2019 Last update : October 16, 2019

Frobenius Norm

Given a real (complex) n-by-n square matrices X, the **Frobenius Norm** of X is the sum of the (absolute) squares of its elements of X

$$\|X\|_F = \sqrt{\sum_{ij} X_{ii}^2}.$$

• It can be considered as vector norm

$$\|X\|_F=\|\mathrm{vec}(X)\|_2$$

• It can be defined by trace

$$\|X\|_F = \sqrt{\operatorname{Tr}(X^\top X)}$$

• It can be defined by singular value

$$\|X\|_F = \sqrt{\sum_i \sigma_i^2(X)}$$

Given a real (complex) *n*-by-*n* square matrices X, the **Spectral Norm** of X is the square root of the largest eigenvalue of $X^{\top}X$.

$$\|X\|_2 = \sqrt{\lambda_1(X^\top X)} = \sqrt{\sigma_1(X)}.$$

- If X is complex, transpose become conjugate transpose.
- It is induced by the vector L_2 norm

$$\|X\|_2 = \max_{v \neq 0} \frac{\|Xv\|_2}{\|v\|_2}$$

Given a real (complex) n-by-n square matrices X,

 $||X||_F \le ||X||_2.$

How to prove :

- Proof using eigenvalue
- Proof using inequality

Proof using eigenvalue

Tools we need :

• Trace of a matrix equal to the sum of all eigenvalues of that matrix.

$$\operatorname{Tr}(X) = \sum_{i} \lambda_i(X)$$

- $X^{\top}X$ is a positive semi-definite
- $\bullet\,$ Eigenvalues of positive semi-definite matrix are all non-negative $\lambda_i(X^\top X) \geq 0$

Hence $||X||_F = \sqrt{\operatorname{Tr}(X^\top X)}$ $= \sqrt{\sum_i \lambda_i(X^\top X)}$ $= \sqrt{\lambda_1(X^\top X) + \underbrace{\lambda_2(X^\top X) + \lambda_3(X^\top X) + \dots}_{\geq 0}}$ $\geq \sqrt{\lambda_1(X^\top X)}$ $= ||X||_2 \square$

Proof using inequality

Tools we need :

(T

- Triangle inequality $||x + y||_2 \le ||x||_2 + ||y||_2$
- \bullet Norm inequality with scalar multiplication $\|cX\|_2 \leq |c|\|X\|_2$
- Cauchy-Schwartz inequality $\left(\sum_i a_i b_i\right)^2 \le \left(\sum_i a_i^2\right) \left(\sum_i b_i^2\right)$

Start with $||Xv||_2^2$ with v normalized : $v = \sum_i c_i e_i$ that $\sum_i |c_i|^2 = 1$

$$\|Xv\|_{2}^{2} = \|X\left(\sum_{i} c_{i}e_{i}\right)\|_{2}^{2} = \|\sum_{i} c_{i}Xe_{i}\|_{2}^{2}$$

riangle inequality) $\leq \sum_{i} \|c_{i}Xe_{i}\|_{2}^{2}$
(norm inequality) $\leq \sum_{i} |c_{i}|\|Xe_{i}\|_{2}^{2}$
(C.S. inequality) $\leq \underbrace{\left(\sum_{i} |c_{i}|^{2}\right)}_{=1} \underbrace{\left(\sum_{i} \|Xe_{i}\|_{2}^{2}\right)}_{\|X\|_{2}^{2}} \square$