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Incomplete matrix / matrix with missing values

e Incomplete matrix : given a matrix M € IR"™*" that not all the
values in M are observed.

Complete image Image with 50% entr

@ The goal of Matrix Completion (MC) : recover those missing values.

2/12



Why the data is incomplete?

The incompleteness of data comes from various sources

o Caused by nature

» Hardware failure (e.g. sensors)

> Blocked by obstacle : in Earth imaging, the cloud blocks the view of the
satellite and thus creating a large area with white in colour. By viewing
the region blocked by cloud as non-data, we have an incomplete image.

o Caused by human
» The Netflix problem / use-rating data : most users only rate a few
movies but not every movie they watched
» Censorship due to political reasons
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The problem setting of MC

In a MC problem, we are given :
@ A partially observed matrix M € IR"™*"™

@ An index set € labelling the observed entries where
(1,7) € @ < (i,7) entry is observed.

where |2 < mn is the number of observed entries in M.

@ Based on 2, we have the complement set 2¢ that
(i,j) € Q° < (i, ) entry is not observed / is missing.

e We construct an estimator X of M such that, for each location (i, j):
> If (4,5) € Q, we want X(4, ) = M(4, )
» If (i,5) € Q°, we want to estimate (impute) the value X(i, j) such
that this estimation “makes sense”

@ However, what does this “makes sense” mean??
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Casting MC as an optimization problem

A criteria that “makes sense” is low rank : you want the estimation to be
the one with the lowest complexity out of all guesses (Occam’s razor).

argmin rank (X) s.t. X(4,7) = M(4,7), V(i,7) €
X
@ The problem is a equality-constrained optimization problem
@ red part : among all possible X, find the one that has the lowest rank

@ blue part : the entries of X for (7,7) € € has to be consistent to
those in M

@ The constraint X(i,7) = M(4,7), Y(i,7) € Q can also be compactly
denoted as X = Mg

That is, we want to find an X, such that it is as low rank as possible,
subject to the constraint that entries in X agree with the observed ones in
M.
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NP-hardness of the rank minimization problem

The problem
argmin rank (X) s.t. Xq = Mg
X
is NP-hard : as rank (X) is the [y norm on singular values of X

rank (X) = ||diag(X)|[o = number of non-zero singular value of X.

As lg-norm problem has combinatorial complexity, so this problem is
NP-Hard.

Under some technical assumptions, the problem above can be solved by
solving an relaxed problem using the Nuclear norm.
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Nuclear norm

@ The nuclear norm of X is the sum of singular value of X.

X =Sl =Y
7

7

definition of nuclear norm

in which the absolute sign can be dropped as singular values are all
non-negative

@ It can be shown that, nuclear norm is the tightest convex relaxation
of the rank function within the unit norm ball. See the proof here.
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https://angms.science/doc/LA/NuclearNorm_cvxEnv_rank.pdf

Nuclear Norm minimization problem

Using the nuclear norm, we have
argmin [|X||, s.t. Xo = Mg
X

@ Under some technical assumptions, the solution of this problem is the
same as the solution of the rank minimization problem, so solving this
problem is meaningful

@ As nuclear norm is convex, this problem is much easier to solve than
the NP-hard rank minimization problem

@ This problem can be solved by various approaches

» Majorization-minimization method
» Proximal point method

» Augmented Lagrangian method

> Interior point method

» Semi-definite programming method
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Variations on the problem setting : noisy completion

@ The constraint Xq = Mg basically means that the solution has to
“hard-code” all entries in Q as Mg, which is OK for noiseless data

o If data is (highly) noisy, hard-coding is harmful : you learn the noise

@ This suggest the use of soft penalty

. A . -2
argmin X[ + 5 > (X(5.4) — M(i.))
X (i.4)€Q

where A > 0 is a parameter. The model means minimize the nuclear
norm of X such that all X is not too far away from Mg,.

@ Compact notation of the above is

) A
argmin [IX[l. + 5{1Xa - Ma||7:
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Variations on the problem setting : more general case

The more general case of the MC problem reads

argmin || X/, s.t. A(X)=Db
X

where A : IR™*™ — IR? is a generic linear operator and b € IR? where
p < mn.

In fact Xo = Mg is just a special case of A(X) =Db : here p = |Q],

b = vec(Mg) and A is a operator consists of vectorization based on the
structure of .
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Recoverability of MC problems

@ Not all MC problems are solvable : for example, if only 1 pixel is
observed, then it is almost impossible to recover the original M,
unless the true M is a constant matrix (all entries share the same
value as the observed one).

@ What does “solvable” means : we found the "right thing” — assume
there is a ground truth, and the entries of Xc are exactly the
ground truth (or very close to them).

o If the entries of Xc are exactly (or very close to) the ground truth,
we said the X recovers the missing values correctly.

@ There is a fundamental limit on the number || such that the
problem is solvable, or it is recoverable for those entries of Mq.

@ We will discuss the recoverability issue in other documents.
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Last page - summary

What we discussed : basic understanding of matrix completion
@ Problem setting

@ Problem formulation

Not discussed — topics in matrix completion

@ Recoverability of MC problem — how many samples are need to
recover the ground truth

@ How to actually solve the MC minimization problem — algorithm
design

End of document
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