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Incomplete matrix / matrix with missing values

Incomplete matrix : given a matrix M ∈ IRm×n that not all the
values in M are observed.

The goal of Matrix Completion (MC) : recover those missing values.
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Why the data is incomplete?

The incompleteness of data comes from various sources

Caused by nature
I Hardware failure (e.g. sensors)
I Blocked by obstacle : in Earth imaging, the cloud blocks the view of the

satellite and thus creating a large area with white in colour. By viewing
the region blocked by cloud as non-data, we have an incomplete image.

Caused by human
I The Netflix problem / use-rating data : most users only rate a few

movies but not every movie they watched
I Censorship due to political reasons
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The problem setting of MC

In a MC problem, we are given :

A partially observed matrix M ∈ IRm×n

An index set Ω labelling the observed entries where

(i, j) ∈ Ω ⇐⇒ (i, j) entry is observed.

where |Ω| ≤ mn is the number of observed entries in M.

Based on Ω, we have the complement set Ωc that

(i, j) ∈ Ωc ⇐⇒ (i, j) entry is not observed / is missing.

We construct an estimator X of M such that, for each location (i, j):
I If (i, j) ∈ Ω, we want X(i, j) = M(i, j)
I If (i, j) ∈ ΩC , we want to estimate (impute) the value X(i, j) such

that this estimation “makes sense”

However, what does this “makes sense” mean??
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Casting MC as an optimization problem

A criteria that “makes sense” is low rank : you want the estimation to be
the one with the lowest complexity out of all guesses (Occam’s razor).

argmin
X

rank (X) s.t. X(i, j) = M(i, j), ∀(i, j) ∈ Ω

The problem is a equality-constrained optimization problem

red part : among all possible X, find the one that has the lowest rank

blue part : the entries of X for (i, j) ∈ Ω has to be consistent to
those in M

The constraint X(i, j) = M(i, j), ∀(i, j) ∈ Ω can also be compactly
denoted as XΩ = MΩ

That is, we want to find an X, such that it is as low rank as possible,
subject to the constraint that entries in X agree with the observed ones in
M.
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NP-hardness of the rank minimization problem

The problem
argmin

X
rank (X) s.t. XΩ = MΩ

is NP-hard : as rank (X) is the l0 norm on singular values of X

rank (X) = ‖diag(Σ)‖0 = number of non-zero singular value of X.

As l0-norm problem has combinatorial complexity, so this problem is
NP-Hard.

Under some technical assumptions, the problem above can be solved by
solving an relaxed problem using the Nuclear norm.
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Nuclear norm

The nuclear norm of X is the sum of singular value of X.

‖X‖∗ :=
∑
i

|σi|︸ ︷︷ ︸
definition of nuclear norm

=
∑
i

σi

in which the absolute sign can be dropped as singular values are all
non-negative

It can be shown that, nuclear norm is the tightest convex relaxation
of the rank function within the unit norm ball. See the proof here.
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https://angms.science/doc/LA/NuclearNorm_cvxEnv_rank.pdf


Nuclear Norm minimization problem

Using the nuclear norm, we have

argmin
X

‖X‖∗ s.t. XΩ = MΩ

Under some technical assumptions, the solution of this problem is the
same as the solution of the rank minimization problem, so solving this
problem is meaningful

As nuclear norm is convex, this problem is much easier to solve than
the NP-hard rank minimization problem

This problem can be solved by various approaches
I Majorization-minimization method
I Proximal point method
I Augmented Lagrangian method
I Interior point method
I Semi-definite programming method
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Variations on the problem setting : noisy completion

The constraint XΩ = MΩ basically means that the solution has to
“hard-code” all entries in Ω as MΩ, which is OK for noiseless data

If data is (highly) noisy, hard-coding is harmful : you learn the noise

This suggest the use of soft penalty

argmin
X

‖X‖∗ +
λ

2

∑
(i,j)∈Ω

(
X(i, j)−M(i, j)

)2

where λ > 0 is a parameter. The model means minimize the nuclear
norm of X such that all XΩ is not too far away from MΩ.

Compact notation of the above is

argmin
X

‖X‖∗ +
λ

2
‖XΩ −MΩ‖2F
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Variations on the problem setting : more general case

The more general case of the MC problem reads

argmin
X

‖X‖∗ s.t. A(X) = b

where A : IRm×n → IRp is a generic linear operator and b ∈ IRp where
p < mn.

In fact XΩ = MΩ is just a special case of A(X) = b : here p = |Ω|,
b = vec(MΩ) and A is a operator consists of vectorization based on the
structure of Ω.
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Recoverability of MC problems

Not all MC problems are solvable : for example, if only 1 pixel is
observed, then it is almost impossible to recover the original M,
unless the true M is a constant matrix (all entries share the same
value as the observed one).

What does “solvable” means : we found the ”right thing” – assume
there is a ground truth, and the entries of XΩC are exactly the
ground truth (or very close to them).

If the entries of XΩC are exactly (or very close to) the ground truth,
we said the X recovers the missing values correctly.

There is a fundamental limit on the number |Ω| such that the
problem is solvable, or it is recoverable for those entries of MΩ.

We will discuss the recoverability issue in other documents.
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Last page - summary

What we discussed : basic understanding of matrix completion

Problem setting

Problem formulation

Not discussed – topics in matrix completion

Recoverability of MC problem – how many samples are need to
recover the ground truth

How to actually solve the MC minimization problem – algorithm
design

End of document
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