$\frac{\text{Matrix derivatives, Single entry matrix}}{\text{and derivatives of } \boldsymbol{X}, \boldsymbol{X}^{\top} \boldsymbol{X}, \det \boldsymbol{X}, \log \det \boldsymbol{X} \text{ and } \log \det \boldsymbol{X}^{\top} \boldsymbol{X}}$

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk

Homepage angms.science

Version: January 20, 2024 First draft: July 14, 2017 $rac{\partial m{Y}}{\partial x}$ and $rac{\partial y}{\partial m{X}}$

Single entry matrix J^{ij} as column & row selector

Content

$$egin{aligned} &rac{\partial \det oldsymbol{X}}{\partial oldsymbol{X}} = \det oldsymbol{X} \cdot oldsymbol{X}^{ op} \ &rac{\partial \mathrm{logdet} oldsymbol{X}}{\partial oldsymbol{X}} = oldsymbol{X}^{ op} \ &rac{\partial \mathrm{logdet} oldsymbol{X}^{ op} oldsymbol{X}}{\partial oldsymbol{X}} = 2oldsymbol{X} (oldsymbol{X}^{ op} oldsymbol{X})^{-1} \end{aligned}$$

Derivatives between scalar and matrix

• (Derivative of a matrix wrt. scalar) For a matrix $Y \in \mathbb{R}^{m \times n}$ and a scalar variable $x \in \mathbb{R}$

$$\frac{\partial \mathbf{Y}}{\partial x} = \frac{\partial}{\partial x} \begin{pmatrix} y_{11} & y_{12} & \dots & y_{1n} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m1} & y_{m2} & \dots & y_{mn} \end{pmatrix} = \begin{pmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \dots & \frac{\partial y_{1n}}{\partial x} \\ \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \dots & \frac{\partial y_{2n}}{\partial x} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \dots & \frac{\partial y_{mn}}{\partial x} \end{pmatrix}.$$

• (Derivative of a scalar wrt. matrix) For a scalar $y \in \mathbb{R}$ and a matrix $X \in \mathbb{R}^{m \times n}$

$$\frac{\partial y}{\partial \boldsymbol{X}} = \frac{\partial y}{\partial \left(\begin{array}{cccc} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{array} \right)} = \begin{pmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \dots & \frac{\partial y}{\partial x_{1n}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \dots & \frac{\partial y}{\partial x_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{m1}} & \frac{\partial y}{\partial x_{m2}} & \dots & \frac{\partial y}{\partial x_{mn}} \end{pmatrix}.$$

▶ What about vector: vector is just a special case of matrix.

2/13

(2)

(1)

Single Entry matrix $oldsymbol{J}^{ij}$

 $\blacktriangleright \ \boldsymbol{X} \in \mathbb{R}^{m \times n}, \text{ what is } \frac{\partial \boldsymbol{X}}{\partial \boldsymbol{X}}?$

For simplicity, consider $\frac{\partial \mathbf{X}}{\partial X_{ij}}$, where X_{ij} is the *i*th-row *j*th-column element of \mathbf{X} , which is a scalar.

• Now by (1), for (i, j) = (1, 1):

$$\frac{\partial \mathbf{X}}{\partial X_{11}} = \begin{pmatrix} \frac{\partial X_{11}}{\partial X_{11}} & \frac{\partial X_{12}}{\partial X_{11}} & \cdots & \frac{\partial X_{1n}}{\partial X_{11}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial X_{m1}}{\partial X_{11}} & \frac{\partial X_{m2}}{\partial X_{11}} & \cdots & \frac{\partial X_{mn}}{\partial X_{11}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

which is a zero matrix except a one at the position (1, 1).

• Matrix J^{ij} denotes the single entry matrix with all zeros except a one in the position (i, j).

Single entry matrix $oldsymbol{J}^{ij}$ as column & row selector

• Right-multiplication with $J^{ij} = put i$ th column to the *j*th column.

$$\boldsymbol{AJ}^{21} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} b_1 & 0 & 0 \\ b_2 & 0 & 0 \\ b_3 & 0 & 0 \end{pmatrix}$$

If i = j, right-multiplication with $J^{ii} = \text{keep } i\text{th column}$.

• Left-multiplication with $J^{ij} = put jth$ row to *i*th row.

$$m{J}^{31}m{A} \;=\; egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix} egin{pmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{pmatrix} \;=\; egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ a_1 & b_1 & c_1 \end{pmatrix}$$

If i = j, left-multiplication with $J^{ii} =$ keep *i*th row.

▶ Reference: Matrix Cookbook (444) and (445)

Matrix derivative using single entry matrix

Using single entry matrix gives $| \text{Illustrate } \frac{\partial \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial X_{ij}} = \boldsymbol{X}^{\top} \boldsymbol{J}^{ij} + \boldsymbol{J}^{ji} \boldsymbol{X} \text{ on } \boldsymbol{X} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ $\frac{\partial \mathbf{X}^{\top}}{\partial X_{ij}} = \mathbf{J}^{ji} \qquad (4) \qquad \mathbf{X}^{\top} \mathbf{X} = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ $\frac{\partial \mathbf{X}^{\top} \mathbf{X}}{\partial X_{ij}} = \mathbf{X}^{\top} \mathbf{J}^{ij} + \mathbf{J}^{ji} \mathbf{X} \qquad (5)$ $= \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 & a_1c_1 + a_2c_2 + a_3c_3\\ b_1a_1 + b_2a_2 + b_3a_3 & b_1^2 + b_2^2 + b_3^2 & b_1c_1 + b_2c_2 + b_3c_3\\ c_1a_1 + c_2a_2 + c_3a_3 & c_1b_1 + c_2b_2 + c_3b_3 & c_1^2 + c_2^2 + c_3^2 \end{pmatrix}$ These are derivatives of matrix wrt. scalar X_{ij} , not matrix X. $\frac{\partial \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial a_3} = \begin{pmatrix} 2a_3 & b_3 & c_3 \\ b_3 & 0 & 0 \\ a_3 & a_3 & a_3 \end{pmatrix}$ Reference[,] Matrix Cookbook (73), (80), (456), (457), (458) $= \begin{pmatrix} a_3 & 0 & 0 \\ b_3 & 0 & 0 \\ c_2 & 0 & 0 \end{pmatrix} + \begin{pmatrix} a_3 & b_3 & c_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $= X^{\top} J^{31} + J^{13} X$

Single entry matrix with trace

• For $oldsymbol{A} \in \mathbb{R}^{n imes m}$ and $oldsymbol{J} \in \mathbb{R}^{m imes n}$

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{J}^{ij}) = \operatorname{Tr}(\boldsymbol{J}^{ji}\boldsymbol{A}) = (\boldsymbol{A}^{\top})_{ij}$$
(6)

For
$$A \in \mathbb{R}^{n \times n}$$
 $J \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times m}$

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{J}^{ij}\boldsymbol{B}) = (\boldsymbol{A}^{\top}\boldsymbol{B}^{\top})_{ij}$$
(7)

$$Tr(\boldsymbol{A}\boldsymbol{J}^{ji}\boldsymbol{B}) = (\boldsymbol{B}\boldsymbol{A})_{ij}$$
(8)

► Illustration of (6):
$$\mathbf{X} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
, then $\operatorname{Tr}(\mathbf{X}\mathbf{J}^{23}) = \operatorname{Tr}\begin{pmatrix} 0 & 0 & a_2 \\ 0 & 0 & b_2 \\ 0 & 0 & c_2 \end{pmatrix} = c_2 = (\mathbf{X}^\top)_{23}$

▶ Reference : Matrix Cookbook equations (450-452)

Application of J^{ij} in deriving matrix derivatives

► Jacobi's formula relates the derivative of determinant of a matrix to the derivative of the matrix

$$\frac{\partial \det \boldsymbol{X}}{\partial x} = \det \boldsymbol{X} \cdot \operatorname{Tr} \left(\boldsymbol{X}^{-1} \frac{\partial \boldsymbol{X}}{\partial x} \right). \tag{J}$$

Note that

• det
$$\boldsymbol{X}$$
, x and det $\boldsymbol{X} \cdot \operatorname{Tr}\left(\boldsymbol{X}^{-1} \frac{\partial \boldsymbol{X}}{\partial x}\right)$ are all scalars.

• m = n here for $\boldsymbol{X} \in \mathbb{R}^{m imes n}$ since \det only works on square matrices

► To find
$$\frac{\partial \det \mathbf{X}}{\partial \mathbf{X}}$$
, use (2) gives

$$\frac{\partial \det \mathbf{X}}{\partial \mathbf{X}} \stackrel{(2)}{=} \begin{bmatrix} \frac{\partial \det \mathbf{X}}{\partial X_{11}} & \dots & \frac{\partial \det \mathbf{X}}{\partial X_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \det \mathbf{X}}{\partial X_{n1}} & \dots & \frac{\partial \det \mathbf{X}}{\partial X_{nn}} \end{bmatrix} \stackrel{(J)}{=} \begin{bmatrix} \det \mathbf{X} \cdot \operatorname{Tr} \left(\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{11}} \right) & \dots & \det \mathbf{X} \cdot \operatorname{Tr} \left(\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{1n}} \right) \\ \vdots & \ddots & \vdots \\ \det \mathbf{X} \cdot \operatorname{Tr} \left(\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{n1}} \right) & \dots & \det \mathbf{X} \cdot \operatorname{Tr} \left(\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{nn}} \right) \end{bmatrix}$$

Reference : Matrix Cookbook equations (46)

Derivative of $\det X$ wrt. matrix X

Hence

- ► Theorem [Matrix Cookbook equation 49] $\frac{\partial \det X}{\partial X} = (\det X)X^{\top}$
- ▶ **Proof** Take out the common factor $\det X$ from the last page, we get

$$\frac{\partial \det \boldsymbol{X}}{\partial \boldsymbol{X}} = \det \boldsymbol{X} \begin{bmatrix} \operatorname{Tr}\left(\boldsymbol{X}^{-1}\frac{\partial \boldsymbol{X}}{\partial X_{11}}\right) & \dots & \operatorname{Tr}\left(\boldsymbol{X}^{-1}\frac{\partial \boldsymbol{X}}{\partial X_{1n}}\right) \\ \vdots & \ddots & \vdots \\ \operatorname{Tr}\left(\boldsymbol{X}^{-1}\frac{\partial \boldsymbol{X}}{\partial X_{n1}}\right) & \dots & \operatorname{Tr}\left(\boldsymbol{X}^{-1}\frac{\partial \boldsymbol{X}}{\partial X_{nn}}\right) \end{bmatrix} \stackrel{(3)}{=} \det \boldsymbol{X} \begin{bmatrix} \operatorname{Tr}\left(\boldsymbol{X}^{-1}\boldsymbol{J}^{11}\right) & \dots & \operatorname{Tr}\left(\boldsymbol{X}^{-1}\boldsymbol{J}^{1n}\right) \\ \vdots & \ddots & \vdots \\ \operatorname{Tr}\left(\boldsymbol{X}^{-1}\frac{\partial \boldsymbol{X}}{\partial X_{n1}}\right) & \dots & \operatorname{Tr}\left(\boldsymbol{X}^{-1}\frac{\partial \boldsymbol{X}}{\partial X_{nn}}\right) \end{bmatrix}$$

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{J}^{ij}) \stackrel{(6)}{=} (\boldsymbol{A}^{\top})_{ij} \text{ gives } \operatorname{Tr}\left(\boldsymbol{X}^{-1}\boldsymbol{J}^{ij}\right) = (\boldsymbol{X}^{-1})_{ji} \text{ and thus } \frac{\partial \det \boldsymbol{X}}{\partial \boldsymbol{X}} = \det \boldsymbol{X} \begin{bmatrix} (\boldsymbol{X}^{-1})_{11} & \dots & (\boldsymbol{X}^{-1})_{n1} \\ \vdots & \ddots & \vdots \\ (\boldsymbol{X}^{-1})_{1n} & \dots & (\boldsymbol{X}^{-1})_{nn} \end{bmatrix}$$

-

Linear Algebra 101: $(X^{-1})_{ij}$ is the cofactor C_{ij} of X divided by $\det X$

$$\begin{bmatrix} (\boldsymbol{X}^{-1})_{11} & \dots & (\boldsymbol{X}^{-1})_{n1} \\ \vdots & \ddots & \vdots \\ (\boldsymbol{X}^{-1})_{1n} & \dots & (\boldsymbol{X}^{-1})_{nn} \end{bmatrix} = \frac{1}{\det \boldsymbol{X}} \begin{bmatrix} C_{11} & \dots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \dots & C_{nn} \end{bmatrix}^{\top} = \boldsymbol{X}^{\top}$$

we proved $\frac{\partial \det \boldsymbol{X}}{\partial \boldsymbol{X}} = \det \boldsymbol{X} \cdot \boldsymbol{X}^{\top}$. \Box

Derivative of $\mathrm{log}\mathrm{det}\boldsymbol{X}$ wrt. matrix \boldsymbol{X}

▶ Theorem [Matrix cookbook equation 57] For positive definite matrix X, then $\frac{\partial \text{logdet}X}{\partial X} = X^{\top}$

Proof Use the previous result and chain rule

$$\frac{\partial \operatorname{logdet} \boldsymbol{X}}{\partial \boldsymbol{X}} = \frac{\partial \operatorname{logdet} \boldsymbol{X}}{\partial \operatorname{det} \boldsymbol{X}} \frac{\partial \operatorname{det} \boldsymbol{X}}{\partial \boldsymbol{X}}$$

Note that $\frac{\partial \operatorname{logdet} \boldsymbol{X}}{\partial \boldsymbol{X}}$ and $\frac{\partial \operatorname{det} \boldsymbol{X}}{\partial \boldsymbol{X}}$ are matrices and $\frac{\partial \operatorname{logdet} \boldsymbol{X}}{\partial \operatorname{det} \boldsymbol{X}}$ is scalar.

So the expression is "matrix = scalar \times matrix". Furthermore,

$$\blacktriangleright \det \mathbf{X} \text{ is scalar so } \frac{\partial \text{logdet} \mathbf{X}}{\partial \det \mathbf{X}} \text{ is just simply } \frac{1}{\det \mathbf{X}}$$

Combines the two gives

$$\frac{\partial \text{logdet} \boldsymbol{X}}{\partial \boldsymbol{X}} = \boldsymbol{X}^{\top}.$$
(9)

Chain Rule with Frobenius inner product

• Chain Rule Let U = f(X) be a matrix-valued function of matrix variable X and g(U) be a scalar-valued function of matrix variable U, then we have

$$\frac{\partial g(\boldsymbol{U})}{\partial x} = \frac{\partial g(f(\boldsymbol{X}))}{\partial x} = \operatorname{Tr}\left\{\left(\frac{\partial g(\boldsymbol{U})}{\partial \boldsymbol{U}}\right)^{\top} \frac{\partial \boldsymbol{U}}{\partial x}\right\}.$$
(10)

• Important: note that the expression $\frac{\partial g(U)}{\partial x} = \frac{\partial g(U)}{\partial U} \frac{\partial U}{\partial x}$ is wrong

1.
$$g(oldsymbol{U})$$
 and x are scalar $\implies rac{\partial g(oldsymbol{U})}{\partial x}$ is scalar

2.
$$U$$
 is matrix $\implies \frac{\partial g(U)}{\partial U}$, $\frac{\partial U}{\partial x}$ and the product $\frac{\partial g(U)}{\partial U} \frac{\partial U}{\partial x}$ are matrices.

- 3. Matrix \neq scalar (unless the matrix is of size 1-by-1).
- 4. It is the trace operator turns the matrix into a scalar to fit the equality.
- 5. As Tr(A^TB) = ||AB||_F, equation (10) tells that for the derivative of a scalar-valued function wrt. a scalar, when a matrix is introduced by chain rule, Frobenius inner product has to be applied to the result of the chain rule (which is a matrix) to change it back to scalar.

Derivative of $logdet X^{\top} X$ wrt. matrix X

 $\blacktriangleright \ \ \mathsf{Let} \ g({\boldsymbol X}) = \mathrm{logdet} f({\boldsymbol X}) \ \mathsf{and} \ f({\boldsymbol X}) = {\boldsymbol X}^\top {\boldsymbol X} \ (\mathsf{so} \ g({\boldsymbol X}) = \mathrm{logdet} {\boldsymbol X}^\top {\boldsymbol X})$

• Consider the derivative wrt. x. As g and x are scalar so $\frac{\partial g}{\partial r}$ should be a scalar, and it is wrong to write

$$\frac{\partial g(\boldsymbol{X})}{\partial x} = \frac{\partial \text{logdet} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial \det \boldsymbol{X}^{\top} \boldsymbol{X}} \frac{\partial \det \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial \boldsymbol{X}^{\top} \boldsymbol{X}} \frac{\partial \det \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial x}$$

as $\frac{\partial \det X^\top X}{\partial X^\top X}$ and $\frac{\partial \det X^\top X}{\partial x}$ are matrices.

► The correct way is to apply (10):

$$\frac{\partial \operatorname{logdet} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial x} = \frac{\partial \operatorname{logdet} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}} \operatorname{Tr} \left[\left(\frac{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial \boldsymbol{X}^{\top} \boldsymbol{X}} \right)^{\top} \frac{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial x} \right] \\ = \frac{1}{\operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}} \operatorname{Tr} \left[\left(\frac{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial \boldsymbol{X}^{\top} \boldsymbol{X}} \right)^{\top} \frac{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial x} \right] \\ \frac{\partial \operatorname{det} \boldsymbol{X}}{\partial \boldsymbol{X}} = \operatorname{det} \boldsymbol{X} \cdot \boldsymbol{X}^{\top} \qquad \frac{1}{\operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}} \operatorname{Tr} \left[\operatorname{det} (\boldsymbol{X}^{\top} \boldsymbol{X}) \left(\boldsymbol{X}^{\top} \boldsymbol{X} \right)^{-1} \frac{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial x} \right] \\ = \operatorname{Tr} \left[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \frac{\partial \operatorname{det} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial x} \right]$$

Derivative of $logdet X^{\top} X$ wrt. matrix $X \dots 2$

Now put $x = X_{ij}$, we have

$$\begin{aligned} \frac{\partial \text{logdet} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial X_{ij}} &= \text{Tr}\Big[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \frac{\partial \det \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial X_{ij}} \Big] \\ \text{by (5)} &= \text{Tr}\Big[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{J}^{ij} + \boldsymbol{J}^{ji} \boldsymbol{X}) \Big] \\ &= \text{Tr}\Big[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{J}^{ij} \Big] + \text{Tr}\Big[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{J}^{ji} \boldsymbol{X} \Big] \\ \text{by (6,8)} &= \Big[(\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \Big]_{ij}^{\top} + \Big[\boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \Big]_{ij} \\ &= \Big[\boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \Big]_{ij} + \Big[\boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \Big]_{ij} \\ &= 2 \Big[\boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \Big]_{ij} \end{aligned}$$

By (2), we finally have

$$\frac{\partial \text{logdet} \boldsymbol{X}^{\top} \boldsymbol{X}}{\partial \boldsymbol{X}} = 2\boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} = 2(\boldsymbol{X}^{\dagger})^{\top}$$

where ${\bm X}^{\dagger} = ({\bm X}^{\top} {\bm X})^{-1} {\bm X}^{\top}$ is the left inverse of ${\bm X}$

Last page - summary

• Derivatives involving matrices : $\frac{\partial Y}{\partial x}$ and $\frac{\partial y}{\partial X}$

Single entry matrix :
$$\frac{\partial X}{\partial X_{ij}} = J^{ij}$$
 and some of its properties.

Showed the following

$$\begin{array}{l} \bullet \quad \frac{\partial \det X}{\partial X} = \det X \cdot X^{\top} \\ \bullet \quad \frac{\partial \operatorname{logdet} X}{\partial X} = X^{\top} \\ \bullet \quad \frac{\partial \operatorname{logdet} X^{\top} X}{\partial X} = 2X(X^{\top}X)^{-1} \end{array}$$

End of document