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Nuclear norm minimization (NNM)

I Given a linear operator A and a vector b, find a matrix X ∈ Rm×n by
solving the NNM

(P) : min
X∈Rm×n

‖X‖∗ s.t. A(X) = b.

I This document: understand the uniqueness of the solution of (P).
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Prerequisites / things need to know

I Singular value decomposition UΣV> = X.

I Property of convex function: if f is convex, for any x,y ∈ domf

f(y) ≥ f(x) + 〈∇f(x),y − x〉.

I The subgradient of nuclear norm.

I Dual characterization of nuclear norm / nuclear norm is dual to the
operator norm.

The results generalizes to matrix of complex values, but for simplicity we
we stick with matrix with real values.
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Nuclear norm minimization for Matrix Completion (MC)

I The constraint A(X) = b represents a general linear constraint on X.

I The problem of Matrix Completion (MC) is a special case of NNM,
by specifying the constraint, (P) becomes

(P ′) : min
X∈Rm×n

‖X‖∗ s.t. Xij = Mij , (i, j) ∈ Ω,

where M is a partially-observed matrix with indices labeled by the set
Ω = [1, 2, . . . ,m]× [1, 2, . . . , n].

I Comparing (P) and (P ′), the linear operator A becomes an identity
operator for the elements (i, j) ∈ Ω, and the vector b becomes the
partially-observed matrix M.

I We will study the uniqueness condition of (P) instead of (P ′) since it
is more general.
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Uniqueness of the NNM

(P) : min
X∈Rm×n

‖X‖∗ s.t. A(X) = b.

I Theorem The matrix X0 is the unique minimizer of (P) if
I It is feasible: it satisfies the constraint A(X0) = b.

I For MC, this translates to X0(i, j) = M(i, j) for all (i, j) ∈ Ω.

I The linear operator A restricted to elements in T is injective, where T
is a linear space defined as

T =
{

UX> + YV>,X ∈ Rn×r,Y ∈ Rm×r
}
.

I For MC, this translates to ΠΩ restricted to the elements in T is
injective, where Π denotes projection.

I There exists a dual matrix P ∈ Rm×n such that ΠT

(
A∗(P)

)
= UV>

and ‖ΠT⊥

(
A∗(P)

)
‖2 < 1, where Π denotes the projection operator,

T⊥ is the complement of T and UΣV = X0 is the SVD of X0.
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The complications for understanding

I Aft first glance, the following are not directly approachable:

I What is such T =
{

UX> + YV>,X ∈ Rn×r,Y ∈ Rm×r
}

?

I Why the matrix P is called dual matrix?

I Why ΠT

(
A∗(P)

)
= UV> and ‖ΠT⊥

(
A∗(P)

)
‖2 < 1?

These are related to the “derivative” of ‖ · ‖∗.

I Before go to the derivative of ‖ · ‖∗, we first understand why we need
to know it: this brings us to the proof strategy of the uniqueness of
NNM.
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Proof of uniqueness by contradiction

I To show X0 is the unique minimizer to

(P) : min
X∈Rm×n

‖X‖∗ s.t. A(X) = b,

we first assume there exists another another solution X1 6= X0 to the
problem.

I Then we show that
‖X0‖∗ 6= ‖X1‖∗.

This inequality contradicts to the assumption that both X0 and X1

are the optimal solutions to (P), hence the assumption is false: the
minimizer has to be unique.

I For the purpose of contradiction, we let X1 = X0 + ∆, where ∆ 6= 0
is a perturbation added to X0.

I Then now we have to understand ∆.
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About the matrix ∆

I As both X0 and X1 are feasible points to (P), they satisfy the
constraint A(X) = b. This gives

A(X1) = A(X0 + ∆) = A(X0) +A(∆) = b =⇒ A(∆) = 0.

In other words, ∆ has to be inside the null space of A

∆ ∈ Null(A). (1)

I For MC with the constraint

Xij = Mij , (i, j) ∈ Ω,

then we have ∆ij = 0, (i, j) ∈ Ω, or equivalently ΠΩ(∆) = 0.

8 / 21



Convexity of ‖ · ‖∗
I Recall our goal is to show ‖X0‖∗ 6= ‖X0 + ∆‖∗. A way to show it is

to make use of the facts surrounding the convexity of ‖ · ‖∗:
1. ‖ · ‖∗ is a norm, and it is a convex function.
2. A convex function f satisfies f(y) ≥ f(x) + 〈∇f(x),y − x〉 for any

x,y ∈domf . If f is not differentiable, ∇f(x) is replaced by
subgradient.

I We now see a proof strategy: as ‖ · ‖∗ is convex, so

‖Y‖∗ ≥ ‖X‖∗ + 〈∇‖X‖∗,Y −X〉,

where ∇‖X‖∗ has to be replaced by the subgradient (see next slide).
Put Y = X1 and X = X0 gives

‖X0 + ∆‖∗ ≥ ‖X0‖∗ + 〈∇‖X0‖∗,∆〉. (2)

I This brings us to the topic of the subgradient of ‖ · ‖∗.
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https://angms.science/doc/LA/KyFanNorm.pdf


Subgradient of ‖ · ‖∗

I As ‖ · ‖∗ is non-differentiable, we need subgradient instead of gradient.

I The subdifferential (the set of subgradient) of ‖ · ‖∗ at a point
M ∈ Rm×n is the set

∂‖M‖∗ =
{

UV> + W
∣∣∣ ‖W‖2 ≤ 1,U>W = 0,WV = 0

}
, (3)

where UΣV> = M is the SVD of M.

That is, for any matrix W, as long as it satisfies the conditions
‖W‖2 ≤ 1,U>W = 0,WV = 0, then the matrix UV> + W is a
subgradient of ‖ · ‖∗ at the point M.
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The starting inequality of the proof

I Using the subgradient of ‖ · ‖∗, Inequality (2) becomes

‖X0 + ∆‖∗ ≥ ‖X0‖∗ + 〈UV> + W,∆〉, (4)

where UΣV> = X0 and W is inside the set{
Z | ‖Z‖2 ≤ 1,U>Z = 0,ZV = 0

}
.

I As our goal is to show ‖X0 + ∆‖∗ 6= ‖X0‖∗, so we want to show

〈UV> + W,∆〉 6= 0.

To proceed, we need some tools to deal with the inner product
〈UV> + W,∆〉. This term relates to the subgradient of ‖ · ‖∗ , so
this leads us go back to the subgradient of ‖ · ‖∗ .

I For the matrix UV> + W, the matrix UV> is fix and the matrix W
is a free variable, so we need to look at the subgradient from the
perspective of this free variable.
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Equivalent expressions of the subgradient of ‖ · ‖∗
I Let UΣV> = M, recall the subdifferential of ‖ · ‖∗ at a point M is

∂‖M‖∗ =
{

UV> + W
∣∣∣ ‖W‖2 ≤ 1,U>W = 0,WV = 0

}
.

I The above set can be equivalently expressed as

∂‖M‖∗ =
{

Z
∣∣∣ ΠT (Z) = UV>, ‖ΠT⊥(Z)‖2 ≤ 1

}
,

with T is the linear space defined as

T =
{

UX> + YV>,X ∈ Rn×r,Y ∈ Rm×r
}
.

That is, for any matrix Z, if it satisfies
ΠT (Z) = UV>, ‖ΠT⊥(Z)‖2 ≤ 1, then it is a subgradient of ‖ · ‖∗ at
the point M = UΣV>.

I We show the equivalence using the dual characterization of ‖ · ‖∗.
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The geometry of the subgradient of ‖ · ‖∗

∂‖M‖∗ =
{

UV> + W
∣∣∣ ‖W‖2 ≤ 1,U>W = 0,WV = 0

}
=

{
Z
∣∣∣ ΠT (Z) = UV>, ‖ΠT⊥(Z)‖2 ≤ 1

}
,

T =
{

UX> + YV>,X ∈ Rn×r,Y ∈ Rm×r
}
.
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Dual of ‖ · ‖∗ ... (1/3)
I The dual of nuclear norm is the operator norm/ 2-norm

‖X‖∗ = sup
‖Y‖2≤1

〈Y,X〉

I To find Y that maximizes the inner product 〈Y,X〉 such that
‖Y‖2 ≤ 1, we perform orthogonal decomposition of Y as

Y = ΠS(Y) + ΠS⊥(Y).

with S is some space.

I Based on the geometric understanding of the subgradient of nuclear
norm, the space S has to be the linear space T . And then the inner
product becomes

〈Y,X〉 = 〈ΠT (Y) + ΠT⊥(Y),X〉
= 〈ΠT (Y),X〉+ 〈ΠT⊥(Y),X〉
= 〈ΠT (Y),UΣV>〉+ 〈ΠT⊥(Y),UΣV>〉

I Now we show that 〈ΠT⊥(Y),UΣV>〉 = 0.
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Dual of ‖ · ‖∗ ... (2/3)
I For X = UΣV>, the projection operators are

I ΠU : the orthogonal projection to the column space of X0.
I ΠV : the orthogonal projection to the row space of X0.
I ΠT (Y) = ΠUY + YΠV −ΠUYΠV

I ΠT⊥(Y) = (I−ΠU)Y(I−ΠV)

I So
〈

ΠT⊥(Y),UΣV>
〉

=
〈

(I−ΠU)Y(I−ΠV),UΣV>
〉

.

I As
〈
A,UB

〉
=
〈
U>A,B

〉
, so〈

(I−ΠU)Y(I−ΠV),UΣV>
〉

=
〈
U>(I−ΠU)Y(I−ΠV),ΣV>

〉
I As ΠU = U(U>U)−1U>, so

U>(I−ΠU) = U> −U>ΠU

= U> −U>U(U>U)−1︸ ︷︷ ︸
=I

U> = U> −U> = 0

I So 〈ΠT⊥(Y),UΣV>〉 = 0.
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Dual of ‖ · ‖∗ ... (3/3)

I With 〈ΠT⊥(Y),UΣV>〉 = 0, we have 〈Y,X〉 = 〈ΠT (Y),UΣV>〉.
I The inner product is maximized by setting ΠT (Y) = UV>, as this

gives 〈ΠT (Y),UΣV>〉 = 〈UV>,UΣV>〉 = 〈I,Σ〉 =
∑

i σi = ‖X‖∗.
I Furthermore, any W ∈ T⊥ such that ‖W‖2 ≤ 1 can be added inside

Y, and the maximum does not change. So now we have
‖ΠT⊥(Y)‖2 = ‖W‖2 ≤ 1.

I The discussion above showed that the matrix Y such that
ΠT (Y) = UV> and ‖ΠT⊥(Y)‖2 ≤ 1 is a subgradient of the nuclear
norm at X. i.e., we showed the subdifferential of nuclear norm can be
expressed as

∂‖M‖∗ =
{

Z
∣∣∣ ΠT (Z) = UV>, ‖ΠT⊥(Z)‖2 ≤ 1

}
,

with T =
{

UX> + YV>,X ∈ Rn×r,Y ∈ Rm×r
}

.
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The proof of uniqueness of the solution NNM
I We are now ready to prove the uniqueness of the solution NNM.

I Let X0 be an optimal solution to Problem (P). For the purpose of
contradiction, let X1 = X0 + ∆ be another optimal solution to (P).
Further assume there exists P ∈ Im(A>) such that

ΠT (P) = UV>, ‖ΠT⊥(P)‖2 ≤ 1.

And also assume that A restricted to the element in T is injective.

I First, based on the fact that nuclear norm is convex, then

‖X0 + ∆‖∗ ≥ ‖X0‖∗ + 〈UV> + W,∆〉, (5)

where W satisfies the conditions ‖W‖2 ≤ 1,U>W = 0,WV = 0.

I Next, using P = ΠT (P) + ΠT⊥(P) and the assumption, we have
UV> = P−ΠT⊥(Y), put this into (5)

‖X0 + ∆‖∗ ≥ ‖X0‖∗ + 〈P−ΠT⊥(P) + W,∆〉
= ‖X0‖∗ + 〈P,∆〉+ 〈W −ΠT⊥(P),∆〉.
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The proof ... 2/4

I By assumption, P ∈ Im(A>). By the fact that X0 and X1 are
feasible solutions, ∆ ∈ Null(A). Using the linear algebra fact that
null space of A is orthogonal to the range of A>, the term 〈P,∆〉 is
zero, and hence

‖X0 + ∆‖∗ ≥ ‖X0‖∗ + 〈W −ΠT⊥(P),∆〉

I As W ∈ T⊥ and hence W = ΠT⊥(W), therefore

‖X0 + ∆‖∗ ≥ ‖X0‖∗ + 〈ΠT⊥(W)−ΠT⊥(P),∆〉
= ‖X0‖∗ + 〈ΠT⊥(W −P),∆〉
(∗)
= ‖X0‖∗ + 〈W −P,ΠT⊥(∆)〉
= ‖X0‖∗ + 〈W,ΠT⊥(∆)〉 − 〈P,ΠT⊥(∆)〉

I So
‖X0 + ∆‖∗ − ‖X‖∗ ≥ 〈W,ΠT⊥(∆)〉 − 〈P,ΠT⊥(∆)〉.

I (*) In next slide we show 〈ΠT⊥(A),B〉 = 〈A,ΠT⊥(B)〉
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Showing 〈ΠT⊥(A),∆〉 = 〈A,ΠT⊥(B)〉

Direct proof.

〈ΠT⊥(A),B〉 =
〈

(I−ΠU)A(I−ΠV),B
〉

=
〈
A, (I−ΠU)>B(I−ΠV)>

〉
=

〈
A, (I> −Π>U)B(I> −Π>V)

〉
=

〈
A, (I−ΠU)B(I−ΠV)

〉
= 〈A,ΠT⊥(B)〉

where
ΠU = U(U>U)−1U> =⇒ Π>U = ΠU.
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The proof ... 3/4
I As W is a free variable (as long as it satisfies the conditions of

subgradient of nuclear norm at X0), we can set it using P as

W = ΠT⊥(P), (6)

where ΠT (P) = UV> and ‖ΠT⊥(P)‖2 ≤ 1. Such a dual matrix P
always exists because of the dual characterization

‖X‖∗ = sup
‖P‖2≤1

〈P,X〉. (7)

I Using (7),

‖X0 + ∆‖∗ − ‖X‖∗ ≥ 〈W,ΠT⊥(∆)〉 − 〈P,ΠT⊥(∆)〉.
(6)
= 〈ΠT⊥(P),ΠT⊥(∆)〉 − 〈P,ΠT⊥(∆)〉
(7)
= ‖ΠT⊥(∆)‖∗ − 〈P,ΠT⊥(∆)〉
= ‖ΠT⊥(∆)‖∗ − 〈ΠT (P) + ΠT⊥(P),ΠT⊥(∆)〉

I Using the same logic as in slide 15, 〈ΠT (P),ΠT⊥(∆)〉 = 0, hence

‖X0 + ∆‖∗ − ‖X‖∗ ≥ ‖ΠT⊥(∆)‖∗ − 〈ΠT⊥(P),ΠT⊥(∆)〉.
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The proof ... 4/4

I Using inequality for dual norms

〈ΠT⊥(P),ΠT⊥(∆)〉 ≤ ‖ΠT⊥(P)‖2 · ‖ΠT⊥(∆)‖∗

Hence

‖X0 + ∆‖∗ − ‖X‖∗ ≥ ‖ΠT⊥(∆)‖∗ − ‖ΠT⊥(P)‖2 · ‖ΠT⊥(∆)‖∗
=

(
1− ‖ΠT⊥(P)‖2

)
‖ΠT⊥(∆)‖∗.

I By assumption ‖ΠT⊥(P)‖2 < 1 so ‖X0 + ∆‖∗ > ‖X‖∗ unless
‖ΠT⊥(∆)‖∗ = 0.

I If ‖ΠT⊥(∆)‖∗ = 0, then ∆ ∈ T . Then A(∆)
(1)
= 0 implies ∆ = 0 due

to injectivity assumption on A.

I Therefore, ‖X0 + ∆‖∗ > ‖X‖∗ unless ∆ = 0. The proof of
uniqueness is completed.

End of document.
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