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Nuclear norm minimization (NNM)

» Given a linear operator A and a vector b, find a matrix X € R™*™ by
solving the NNM

: i Xl s.t. X) =b.
(P) min |X|. st AX)

» This document: understand the uniqueness of the solution of (P).



Prerequisites / things need to know

v

Singular value decomposition USV T = X.

v

Property of convex function: if f is convex, for any x,y € domf

fy) Z2 f(x) +(Vf(x),y —x).

v

The subgradient of nuclear norm.

v

Dual characterization of nuclear norm /

The results generalizes to matrix of complex values, but for simplicity we
we stick with matrix with real values.


https://angms.science/doc/LA/nuclear_norm_characterization.pdf
https://angms.science/doc/LA/nuclear_norm_characterization.pdf

Nuclear norm minimization for Matrix Completion (MC)

» The constraint A(X) = b represents a general linear constraint on X.

» The problem of Matrix Completion (MC) is a special case of NNM,
by specifying the constraint, (P) becomes

where M is a partially-observed matrix with indices labeled by the set
Q=1[1,2,...,m] x[1,2,...,n].

» Comparing (P) and (P’), the linear operator A becomes an identity
operator for the elements (4, j) € €2, and the vector b becomes the
partially-observed matrix M.

» We will study the uniqueness condition of (P) instead of (P’) since it
is more general.



Uniqueness of the NNM

: i Xl||s s.t. X) =b.
(P) +  min |XI|. st AX)

» Theorem The matrix X is the unique minimizer of (P) if
» It is feasible: it satisfies the constraint A(X() = b.
» For MC, this translates to Xo(%,5) = M(i, j) for all (i,5) € .

» The linear operator A restricted to elements in T is injective, where T'
is a linear space defined as

T— {UXT LYV X eR™Y ¢ RW"’}.

» For MC, this translates to Il restricted to the elements in T is
injective, where II denotes projection.

» There exists a dual matrix P € R™*"™ such that IIp (A* (P)) =UvT

and || II;. (A*(P)) l2 < 1, where II denotes the projection operator,
T is the complement of T and UXV = X, is the SVD of Xj.



The complications for understanding

» Aft first glance, the following are not directly approachable:
» What is such T = {UXT LYV, X eR™TY ¢ Rmxr}?
» Why the matrix P is called dual matrix?
» Why Il (A*(P)) =UVT and | (A*(P))llz <17?

These are related to the “derivative” of || - ||..

» Before go to the derivative of || - ||+, we first understand why we need

to know it: this brings us to the proof strategy of the uniqueness of
NNM.



Proof of uniqueness by contradiction

» To show Xy is the unique minimizer to

: min X[, st AX)=Dh,
(P) +  min X st AX)

we first assume there exists another another solution X; # X to the
problem.

» Then we show that
[Xoll« # [1X1l]

This inequality contradicts to the assumption that both Xy and X
are the optimal solutions to (P), hence the assumption is false: the
minimizer has to be unique.

» For the purpose of contradiction, we let X; = Xy + A, where A #£ 0
is a perturbation added to Xj.

» Then now we have to understand A.



About the matrix A

» As both X and X; are feasible points to (P), they satisfy the
constraint A(X) = b. This gives

AXp) = AXop+ A) = AXp) + A(A) =b = A(A) =0.
In other words, A has to be inside the null space of A
A € Null(A). (1)
» For MC with the constraint
Xij = My, (i,7) €9,

then we have A;; =0, (i,7) € Q, or equivalently IIo(A) = 0.



Convexity of || - ||«

> Recall our goal is to show || X[« # [|Xo + Alls. A way to show it is
to make use of the facts surrounding the convexity of || - ||.:

1o ]« , and it is a convex function.

2. A convex function f satisfies f(y) > f(x) + (Vf(x),y — x) for any
x,y €domf. If f is not differentiable, V f(x) is replaced by
subgradient.

» We now see a proof strategy: as || - ||« is convex, so
YL = 11X+ (VX Y =X,

where V|| X]|, has to be replaced by the subgradient (see next slide).
Put Y = X; and X = X gives

1Xo + All« = [[Xoll« + (VI Xoll, A). (2)

» This brings us to the topic of the subgradient of || - ||..


https://angms.science/doc/LA/KyFanNorm.pdf

Subgradient of || - ||

» As || - ||« is non-differentiable, we need subgradient instead of gradient.

» The subdifferential (the set of subgradient) of || - ||« at a point
M € R™*™ is the set

a|M], = {UVT W ‘ W <1,UTW =0, WV = 0}, (3)
where ULV = M is the SVD of M.
That is, for any matrix W, as long as it satisfies the conditions

[Wll2 <1, UTW = 0,WV = 0, then the matrix UV + W is a
subgradient of || - ||« at the point M.



The starting inequality of the proof
» Using the subgradient of || - ||«, Inequality (2) becomes
1Xo + All. = [Xoll. + (UVT + W, A), (4)
where ULV = X and W is inside the set
{z 11zl <1,0"z =02V = 0}.
» As our goal is to show || X + Al|« # || Xol|«, so we want to show
(UV'T + W, A) #0.

To proceed, we need some tools to deal with the inner product
(UVT + W, A). This term relates to the subgradient of || - ||« , so
this leads us go back to the subgradient of || - || .

» For the matrix UV + W, the matrix UV is fix and the matrix W
is a free variable, so we need to look at the subgradient from the
perspective of this free variable.



Equivalent expressions of the subgradient of || - ||«
» Let UXV' = M, recall the subdifferential of || - ||« at a point M is

B|[M|, = {UVT +W ’ Wi, <1, U W =0,WV = o}.
» The above set can be equivalently expressed as
oM. = {Z | r(z) = OV, Ty (Z)2 < 1},
with T is the linear space defined as
T = {UXT LYV X e R™T)Y € Rm”}.
That is, for any matrix Z, if it satisfies

7(Z) = UV |7 (Z)|]2 < 1, then it is a subgradient of || - ||, at
the point M = ULV ',

» We show the equivalence using the dual characterization of || - ||..



The geometry of the subgradient of || - ||.

M|, = {uvT 4w ’ IWils < 1,UTW =0, WV =0}
= {z | (@) = uvT | @) < 1},
T = UXT+YV1XeRmnYeRMW}
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Dual of | - ||, ... (1/3)

» The dual of nuclear norm is the operator norm/ 2-norm

X[« = sup (Y,X)
IY]2<1

» To find Y that maximizes the inner product (Y, X) such that
1Y |2 < 1, we perform orthogonal decomposition of Y as
Y = Ig(Y) + g (Y).

with S is some space.

» Based on the geometric understanding of the subgradient of nuclear
norm, the space S has to be the linear space T'. And then the inner
product becomes

(Y. X) = (IUr(Y)+ ;. (Y), X)
= (Ir(Y),X) + {7 (Y), X)
= (Ip(Y), ULV + II;.(Y), UV )

» Now we show that (IT;1 (Y), UV ") =



Dual of || - ||, ... (2/3)

» For X = UXV ', the projection operators are
» IIy : the orthogonal projection to the column space of X§.
» IIv : the orthogonal projection to the row space of Xj.
> HT (Y) = HUY + YHV — HUYHV
» 0 (Y)=(I-Ty)Y(I —1Iy)

So <HTL (Y), UEVT> - <(I )Y (I - HV),UEVT>.

v

v

As <A,UB> _ <UTA,B>, 50
<(I )Y (I - IIy), UzVT> - <UT(I ) Y(I - IIy), EVT>

v

AsIIy = U(UTU)"'UT, so

U'I-Iy) = UT -U'lly

= U'-v'vyu'uy'uT=uT-uU"T=0
A e ——
=I

v

So (I (Y),UXVT) = 0.



Dual of || - ||« ... (3/3)

» With (IT7. (Y), USVT) =0, we have (Y, X) = (IlIp(Y), UXVT).
» The inner product is maximized by setting II7(Y) = UV T, as this
gives (II7(Y), USVT) = (UVT ULV = (I,%) =Y, 07 = [|X]]..

» Furthermore, any W € T such that ||[W]||2 < 1 can be added inside
Y, and the maximum does not change. So now we have
[Mps (Y)[l2 = [[Wll2 < 1.

» The discussion above showed that the matrix Y such that
M7(Y) =UVT and ||[TI;.(Y)|]2 < 1 is a subgradient of the nuclear
norm at X. i.e., we showed the subdifferential of nuclear norm can be
expressed as

oMl = {Z | 17(Z) = UV, [Ty (Z)2 < 1},

with T = {UXT LYV, X e R™TY € Rmxr}_



The proof of uniqueness of the solution NNM
» We are now ready to prove the uniqueness of the solution NNM.

» Let X be an optimal solution to Problem (P). For the purpose of
contradiction, let X; = X 4+ A be another optimal solution to (P).
Further assume there exists P € Im(A") such that

I7(P)=UV', [y (P)[2 < 1.

And also assume that A restricted to the element in T is injective.

» First, based on the fact that nuclear norm is convex, then
IXo + Allx > [Xoll« + (UVT + W, A), (5)

where W satisfies the conditions [W|j; < 1, UTW =0, WV = 0.
» Next, using P = IIp(P) + IIp. (P) and the assumption, we have

UV’ =P — 1. (Y), put this into (5)

1Xo+ Al = [ Xoll« + (P =1z (P) + W, A)
= [|Xo|l« + (P,A) + (W —II;.. (P), A).



The proof ... 2/4

» By assumption, P € Im(AT). By the fact that X, and X; are
feasible solutions, A € Null(A). Using the linear algebra fact that
null space of A is orthogonal to the range of AT, the term (P, A) is
zero, and hence

1Xo + Al = [[Xolls + (W = TI7.(P), A)

» As W € T and hence W = I1;.. (W), therefore

1Xo + Al = [[Xoll« + (g (W) — Tl (P), A)

<
= [ Xolls + (T (W — P), A)
S Xl + (W — P, T (A))
= [ Xolls + (W, Ty (A)) — (P, T (A))

» So
X0 + Alls = [ X[}« = (W, g1 (A)) — (P, 171 (A)).

> (*) In next slide we show (IT. (A),B) = (A, 111 (B))



Showing (II;+(A), A) = (A, I, (B))

Direct proof.

(7. (A),B) = ((I-Ty)A(-TIly),B)
= (A, (I-Ty) " BI—-TIIy)"
= (A7 -TH)BAT ~11)
= (A.(I-Tly)B(I-1Iv))

= (AIlp.(B))

where

Iy =UU U 'U"T = IIy, = IIy.



The proof ... 3/4

» As W is a free variable (as long as it satisfies the conditions of
subgradient of nuclear norm at Xg), we can set it using P as

W = I (P), (6)

where II7(P) = UV and ||TI;. (P)||2 < 1. Such a dual matrix P
always exists because of the dual characterization

X[}« = sup (P,X). (7)
[P[la<1
» Using (7),
1Xo + Al = X[« = (W, TIpL(A)) = (P, 171 (A)).
D (I (P). T (A)) = (P Ty (A))
Dy () — (P (A))
= 7L (A)llx = (lz(P) + Ty (P), s (A))
» Using the same logic as in slide 15, (II7(P), 171 (A)) = 0, hence

1Xo + Alle = X[« = gL (A)]ls = (Tps (P), Hgs (A)).



The proof ... 4/4

» Using inequality for dual norms
(Hpo (P), Hpo (A)) < [Ty (P)ll2 - [Hpe (A)]«

Hence

1Xo + Alls — [[X]]

V

WL () = [T ()] - [T ()]
(1= I (P2 T (A) -

» By assumption [[II71 (P)|l2 < 1 so || X + A« > [|X]||« unless
[T7s (A)]« = 0.

> If [Ty (A)]l» = 0, then A € T. Then A(A) 2 0 implies A = 0 due
to injectivity assumption on A.

» Therefore, || Xo + Allx > [|X]|« unless A = 0. The proof of
uniqueness is completed.

End of document.



