Derivation of an inequality of logdet $\log \det(A^T A + \delta I) \le \log \det(B^T B + \delta I) + \operatorname{Tr}((B^T B + \delta I)^{-1} A^T A) + \operatorname{constant}$

Andersen Ang

Mathématique et de Recherche opérationnelle Faculté polytechnique de Mons UMONS Mons, Belgium

> email: manshun.ang@umons.ac.be homepage: angms.science

First draft : January 30, 2018 Current draft : February 3, 2018 Given a matrix $A\in \mathbb{R}^{m\times n},$ a fix small constant $\delta>0,$ we have the following inequality

 $\log \det(A^T A + \delta I) \le \log \det(B^T B + \delta I) + \mathsf{Tr}((B^T B + \delta I)^{-1} A^T A) + \mathsf{constant},$

for any matrix $B \in \mathbb{R}^{m \times n}$.

We are going to derive this inequality.

The proof of the inequality of logdet of Gramian

Given a matrix $A \in \mathbb{R}^{m \times n}$, a fix small constant $\delta > 0$, the matrix $A^T A$ is the Gramian of A. Gramian is always symmetric positive semidefinite regardless of A.

Gramian $A^T A$ has non-negative eigenvalues. Adding δI to the $A^T A$ gives a positive definite matrix $A^T A + \delta I$ with positive eigenvalues.

The reason why adding δI to $A^T A$: let $Q = A^T A + \delta I$. As determinant of a matrix is the product of eigenvalues of that matrix, we have $\det Q = \prod \lambda_i$. So $\log \det Q = \sum \log \lambda_i$, the sum of log of eigenvalue of Q. As log only works for positive values, so it is why δI is added to $A^T A$.

It can be shown that, the matrix function $\log \det Q$ with symmetric positive definite matrix Q, is a concave function with respect to Q (not with respect to A !). For the proof, see Page 8 of this slide.

The proof of the inequality of logdet of Gram matrix

As $f(Q) = \log \det Q$ is a concave function, we can upper bound it by its first order Taylor approximation :

$$f(Q) \le f(S) + \langle \nabla f(S), Q - S \rangle$$
,

where $\nabla f(Q)$ is $Q^{-T} = (Q^{-1})^T$ and \langle , \rangle is matrix inner product with the expression $\langle X, Y \rangle = \text{Tr}(X^{-T}Y)$. So we have

$$\log \det Q \leq \log \det S + \mathsf{Tr} ((S^{-T})^T (Q - S)) = \log \det S + \mathsf{Tr} (S^{-1} (Q - S))$$

Distribute S^{-1} to Q - S:

$$\log \det Q \leq \log \det S + \mathsf{Tr} (S^{-1}Q - I_n) = \log \det S + \mathsf{Tr} (S^{-1}Q) - n$$

Put $Q = A^T A + \delta I$ and $S = B^T B + \delta I$, we have $\log \det(A^T A + \delta I) \leq \log \det(B^T B + \delta I) + \operatorname{Tr}((B^T B + \delta I)^{-1}(A^T A + \delta I)) - n$

The proof of the inequality of logdet of Gram matrix

Focus on the term $Tr((B^TB + \delta I)^{-1}(A^TA + \delta I))$

Note2. As δ

 $\operatorname{Tr}((B^T B + \delta I)^{-1}(A^T A + \delta I)) = \operatorname{Tr}((B^T B + \delta I)^{-1}A^T A) + \operatorname{Tr}((B^T B + \delta I)^{-1}\delta I)$

Assume the SVD of the matrix B is $U\Sigma V^T$, then $B^TB = V\Sigma^2 V^T$. Based on the property of SVD, we have $V^T = V^{-1}$ and

$$\begin{aligned} \mathsf{Tr}\big((B^TB+\delta I)^{-1}\delta I\big) &= \delta\mathsf{Tr}\big((V\Sigma^2 V^T+\delta I_n)^{-1}I\big) \\ &= \delta\mathsf{Tr}\big((V\Sigma^2 V^T+\delta I_n)^{-1}\big) \\ (I_n = VV^T) &= \delta\mathsf{Tr}\big((V\Sigma^2 V^T+\delta VV^T)^{-1}\big) \\ (factorization) &= \delta\mathsf{Tr}\big((V(\Sigma^2+\delta I_n)V^T)^{-1}\big) \\ (take inverse) &= \delta\mathsf{Tr}\big(V(\Sigma^2+\delta I_n)^{-1}V^T\big) \\ (trace is invariant to V) &= \delta\mathsf{Tr}\big((\Sigma^2+\delta I_n)^{-1}\big) \\ &= \sum_{i=1}^n \frac{\delta}{\sigma_i^2+\delta} \end{aligned}$$

Note. Recall that $(\Sigma^2+\delta I_n)^{-1} \neq (\Sigma^{-2}+\delta^{-1}I_n).$
Note2. As $\delta > 0$ and $\sigma_i \ge 0$, $\frac{\delta}{\sigma_i^2+\delta} = \frac{1}{\frac{\sigma_i^2}{\tau_i^2}+1} \le 1 \Longrightarrow \sum_{i=1}^n \frac{\delta}{\sigma_i^2+\delta} \le n \end{aligned}$

5/8

The proof of the inequality of logdet of Gram matrix

So, we have

$$\begin{split} \log \det(A^T A + \delta I) &\leq \log \det(B^T B + \delta I) + \mathsf{Tr} \big((B^T B + \delta I)^{-1} A^T A \big) \\ &+ \sum_{i=1}^n \frac{\delta}{\sigma_i^2 + \delta} - n \end{split}$$

Note : if A = B and SVD of the matrix B is $U\Sigma V^T$, $\operatorname{Tr}((B^T B + \delta I)^{-1} B^T B) = \operatorname{Tr}((\Sigma^2 + \delta I_n)^{-1} \Sigma^2) = \sum_{i=1}^n \frac{\sigma_i^2}{\sigma_i^2 + \delta}$

Thus

$$\operatorname{Tr}\left((B^{T}B+\delta I)^{-1}A^{T}A\right)+\sum_{i=1}^{n}\frac{\delta}{\sigma_{i}^{2}+\delta}-n=0$$

and the equality is established.

The inequality as a convexification of logdet of Gram

The inequality we have

$$\log \det(A^T A + \delta I) \le \log \det(B^T B + \delta I) + \mathsf{Tr}\left((B^T B + \delta I)^{-1} A^T A\right) + \sum_{i=1}^n \frac{\delta}{\sigma_i^2 + \delta} - n \delta I + \sum_{i=1}^n \frac{\delta}{\sigma_i^2 + \delta}$$

If we ignoring all the terms that are independent of $\boldsymbol{A},$ we have

$$\log \det(A^T A + \delta I) \le \mathsf{Tr}\big((B^T B + \delta I)^{-1} A^T A\big) + \mathsf{constants}$$

Let $(B^T B + \delta I)^{-1} = D$, we have

$$\log \det(A^T A + \delta I) \leq \operatorname{Tr}(DA^T A) + \operatorname{constants} \\ = \|A\|_D^2 + \operatorname{constants}$$

That is, logdet is upper bounded by a weighted F-norm. As norm is convex with respect to matrix A while logdet is not¹, the inequality can be used as a **convex relaxation** of logdet.

¹logdet of a symmetric positive definite matrix is concave, but logdet of $A^TA + \delta I$ w.r.t. A is not concave nor convex

Last page - summary

Given a matrix $A \in \mathbb{R}^{m \times n}$, a fix small constant $\delta > 0$, we have the following inequality for any matrix $B \in \mathbb{R}^{m \times n}$:

 $\log \det(A^T A + \delta I) \le \log \det(B^T B + \delta I) + \mathsf{Tr}((B^T B + \delta I)^{-1} A^T A) + \mathsf{c},$

Let σ_i be the singular value of B, the constant c is

$$c = \sum_{i=1}^{n} \frac{\delta}{\sigma_i^2 + \delta} - n \le 0$$

Equality is established when B = A.

The inequality is a convex relaxation of $\log \det$ of Grammian.

End of document