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What is hyperspectral imaging

Figure: Left: From HySpeed Computing. Right: From A. & Gillis, 2019

I Ordinary “image” = red green blue.
I Hyperspectral image = in x-ray, infra-red, ultraviolet, etc.

=⇒ we have an image cube with the 3rd dimension corresponds to
the wavelength dimension. 2 / 12



What is hyperspectral unmixing (HU)

I A scene has a few type of material, called endmembers.

I Examples of endmember here: tree, water, dirt, road.

I Task of HU: 1) identify these endmembers, and 2) identify the
abundance of each endmemeber in each pixel of the image.
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Reflectance (Absorbance) spectrum of material

I Why grass is green: it reflects green
light and absorb other light

I This characteristic is described by
the reflectance spectrum.

I x-axis is wavelength / wave
number / frequency

I y-axis is amount of reflection

I Reflectance = normalized amount of
reflection, with maximum value 1.

I Absorbance = 1 - reflectance.

I Reflectance or absorbance spectrum
are both nonnegative.

I Different material has its own
characteristic spectrum.

Figure: Figure comes from slide of
Nicolas Gillis. 4 / 12



Abundance of the endmember

I For a pixel that consists of 40% grass and 60% road, you expect its
spectrum is 40% grass + 60% road.

I The numbers 0.4 and 0.6 here represent the relative abundance of the
endmember in that pixel (i.e. they sum to 1). 5 / 12



Hyperspectral pixel

I Recall the data in hyperspectral imaging is a collection of images of
the same scene across different wavelengths: the data is a 3rd order
tensor of size X × Y × Z, where X and Y refer to the spatial
dimension of the image and Z refers to the wavelength dimension.

I A pixel in the data is a vector m in RZ
+ and it represent the spectral

behavior across all wavelength at that specific spatial location.
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Linear mixing model

I Suppose there are r endmembers in the scene, the spectrum profile of
each endmember is represented by a vector wi, Then a pixel m can
be expressed by the following linear model

x =
∑

iwih(i),

where h(i) ≥ 0 represents the amount of abundance of endmember
wi presented in the pixel.

I Compact notation: m = Wh.

I Let M represents the collections of pixels, then we have mi = Whi,
or equivalently

M = WH,

where M is Z-by-XY , W is Z-by-r, and H is r-by-XY .
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Image w.r.t. wavelength `5'
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Hyperspectral unmixing and NMF

I Given a hyperspectral image cube X (size Y -by-X-by-Z) or a matrix
data M (size Z-by-XY ), the goals of Hyperspectral unmixing are

I Identify the number of endmembers.
This corresponds to determine the factorization rank r in NMF.

I Identify the endmembers.
This corresponds to determine the factor matrix W in NMF.

I Identify the abundance of each endmember in all the pixels.
This corresponds to determine the factor matrix H in NMF.

I As spectrum and abundance are both nonnegative, so NMF model
naturally fits in the application of Hyperspectral unmixing.
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NMF

I Given a hyperspectral data matrix M (size Z-by-XY ), assume we
know the factorization rank r, then the NMF problem is

min
W,H

1

2
‖M−WH‖2F s.t. W ≥ 0, H ≥ 0.

I Considering the fact that columns of H encode the abundances of
endmembers in pixels, then the elements of the column sum to one,
and hence we have the additional constraint 〈hj ,1〉 = 1 for all j. In
compact notation this is H>1 = 1, and the NMF problem becomes

min
W,H

1

2
‖M−WH‖2F s.t. W ≥ 0, H ≥ 0, H>1 = 1.

I This is the basic form of NMF for hyperspectral unmixing problem.
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Assumptions on using NMF to solve hyperspectral
unmixing problem

I We assumed factorization rank r is known.
In practice, r is not known and we have to estimate it. This problem
is also known as model order selection.

I We assumed all endmembers can be presented by a rank-1
nonnegative matrix in the form of W(:, i)H(i, :).
In practice, this may not be true, and an endmember may need
multiple components to represent. Then we can consider the group
NMF model: i.e., in stead of using a rank-4 factorization with four
rank-1 components to represent four endmembers, we use a rank-r
factorization with r > 4.

I We assumed the data is relatively clean: the noise in the data is
bounded. In practice, data can be corrupted by strong noise or
contains outliers. Then we either perform denoising or use robust
NMF.
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Last page - summary

Discussed

I Brief introduction of hyperspectral imaging.

I How NMF can be used to solve hyperspectral unmixing problem.

I Assumptions made when using NMF to solve hyperspectral unmixing
problem.

Not discussed

I Other assumptions in hyperspectral unmixing problem: for example
nonlinear mixing effect, spectral variability.

I How to exactly solve the NMF minimization problem.

I Pure-pixel assumption and the minimum volume criterion.

End of document
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