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Part I.
Introduction



Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ Rm×n
+ .

A positive integer r ∈ N.

Find :

Matrices W ∈ Rm×r
+ ,H ∈ Rr×n

+ such that X = WH.
Important : everything is non-negative.

Notation : we use WH instead of WH>.
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Exact and approximate NMF

Given the pair (X ∈ Rm×n
+ , r ∈ N), find the pair

(W ∈ Rm×r
+ ,H ∈ Rr×n

+ ) such that

X = WH.

This is called exact NMF, NP-hard (Vavasis, 2007).

(Low-rank) approximate NMF :

X ≈WH, 1 ≤ r ≤ min{m,n}.

Vavasis, ”On the complexity of nonnegative matrix factorization”, SIAM J. Optim.
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Find (W,H) numerically

Given (X ∈ Rm×n
+ , r ≤ min{m,n}), find

(W ∈ Rm×r
+ ,H ∈ Rr×n

+ ) s.t. X ≈WH via solving

[W, H] = argmin
W≥0,H≥0

‖X−WH‖F .

Minimizing the distance† between X and the
approximator WH in F-norm.

≥ is element-wise (not positive semi-definite).

Such non-convex minimization problem is ill-posed
and also NP-hard (Vavasis, 2007).

* From now on, the inequality notations ≥ 0 will be skipped.

†This talk does not consider other distance functions.
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The scope of this talk

Given (X, r), find (W,H) via solving

[W, H] = argmin
W,H

‖X−WH‖F subject to ? ,

where ? : additional constraint(s)/regularization(s) that make the
problem ”better”.

? in this talk :

Nothing (this part) - NMF in the original form, being a NP-hard
and ill-posed problem.

Separability (part II) - to tackle the NP-hardness.

Minimum volume (part III) - to generalize the separability.

Q : What about sparsity regularizer ?
A : Non-negativity induces sparsity (sparse NMF not covered in this talk).
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For non-NMF people : why NMF ?

Interpretability
NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on non-negative data.

Model correctness
NMF can find ground truth (under certain conditions).

Mathematical curiosity
NMF is related to some serious problems in mathematics.

My boss tell me to do it.

12 / 39



Why NMF - Hyper-spectral image application (1/2)

Figure: Hyper-spectral image decomposition. Figure shamelessly copied from (Gillis,2014).

N. Gillis, ”The why and how of nonnegative matrix factorization”, 2014 13 / 39



Why NMF - Hyper-spectral image application (2/2)

Figure: Hyper-spectral imaging. Figure modified from N. Gillis.
14 / 39



Why NMF - other examples
Application side

Spectral unmixing in analytical chemistry (one of the earliest work)
Representation learning on human face (the work that popularizes NMF)
Topic modeling in text mining
Probability distribution application on identification of Hidden Markov Model
Bioinformatics : gene expression
Time-frequency matrix decompositions for neuroinformatics
(Non-negative) Blind source separation
(Non-negative) Data compression
Speech denoising
Recommender system
Face recognition
Video summarization
Forensics
Art work conservation (identify true color used in painting)
Medical imaging – image processing on small object
Mid-infrared astronomy – image processing on large object
2 days ago : Tells whether a banana or a fish is healthy by ”looking” at them

Theoretical numerical side
A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
Robustness analysis of algorithm
Tensor
Sparsity

Analytical side

Non-negative rank rank+ := smallest r such that

X =

r∑
i=1

Xi, : Xi rank-1 and non-negative.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X).

Extended formulations and combinatorics
Log-rank Conjecture of communication system
3-SAT, Exponential time hypothesis, P 6= NP

15 / 39



Part II.
NMF geometry & Separable NMF



NMF tells a picture of a cone

Given X, the NMF X = WH tells a picture of a
(non-negative simplicial† convex) cone.

If the columns of H are normalized (sum-to-1), the cone
becomes (compressed into) a convex hull.

†Assumes W is full rank.
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NMF tells a picture of a hull

For r = 3, facing the hull we see a triangle.

NMF(H normalized) problem geometrically means ”find the vertices”.

In this case, randomized NMF methods is a bad move : sub-sampling of data points remove the important points.

19 / 39



Separable Non-negative Matrix Factorization

Algebra : X = WH,

W = X(:,J ), J index set

H = [Ir H′]Πr, columns of H′ sum-to-1.

Geometry : X (data points) are convex com-
bination (described by H) of vertices (W).

Problem : find W ⇐⇒ find vertices from data cloud.

Not NP-hard anymore, solvable
Algorithm : LP, SPA, X-ray, SNPA, ...

Separability (Donoho-Stodden, 2004)
”When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts”,

NIPS, 2014

Other names : pure pixel, anchord words, extreme ray, extreme point, generators.
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Fast and robust algorithm for separable NMF

Problem : [W,H] = argmin
W,H

‖X−WH‖F s.t. W = X(:,J ),H = [IrH′]Πr,H′>1 ≤ 1 .

Successive Projection Algorithm (Gillis-Vavasis, 2014)

Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm.
Now we have W = [x1].

Step 2 : project the remaining columns in X onto the subspace of the
orthogonal complement of the selected columns.

Projection matrix : I− x1x
>
1

x>1 x1

Step 3, 4, ... : repeat step 1-2, until W has r columns.
How to get H : with (X,W), do a non-negative least sqaures.

Gillis-Vavasis, Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization, 2014.
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Successive Projection Algorithm (SPA)

Probably the ”best” method for this kind of problem because :

Robust
I It can find the vertices under bounded additive noise.

I Theorem. (Gillis-Vavasis,14) If ε ≤ O
( σmin

W√
rκ2W

)
, SPA satisfies

max
k
‖W(:, k)−X(:,J (k))‖ ≤ O(εκ2W).

In English : if noise is bounded, then the worse case fitting error is bounded.

Fast
I Computing W : just a modified Gramn-Schmidt with column pivoting
I Computing H : a 1st-order optimization method with Nesterov’s

acceleration.

Few methods† exist that achieve both of these goals, many only one
of the two.”

However, the success of SPA is based on the separability assumption :

”Vertices W are presented in observed data X”

What if this is false ?
†Two examples : SNPA and preconditioned SPA by Gillis et al.
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Part III.
Volume regularized NMFs



SPA fails when separability is false

Why fail : recall the first col. of W is extract as the col. of X with largest
norm.

How to solve it ??

Idea : minimum volume hull fitting : Click me.
(URL : http://angms.science/eg ”underscore” SNPA ”underscore” ini ”dot” gif)

33 / 39
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Volume regularized NMF

Idea : fitting with minimum volume.
Problem : [W,H] = argmin

W,H
‖X−WH‖F + λV(W),

where V(.) is a prox function that measures the vol. of the cvx hull of W.

determinant of Gramian† det(W>W)

log-determinant of Gramian† log det(W>W + δIr)

rectangular box†
∏r
i /
∑r

i=1 ‖wi‖22
nuclear norm ball ‖W‖∗

Theoretical ground on recoverability : (Lin-Ma-Chi-Ambikapathi, 2015)
”Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing:

The No-Pure-Pixel Case”, IEEE trans. Geosci. Remote Sensing, 2015.

† On which V is ”computationally” better : (A.-Gillis, 2018)
”Volume regularized non-negative matrix factorizations”,

IEEE WHISPERS18, Sep23-26, 2018, Amsterdam, NL.

Open problem : fast and robust algorithm for volume regularized NMF.
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What are not discussed & open problems

How to actually solve NMF (and solve it fast) - algorithm design
e.g. People now still keep using the slow multiplicative update
Gillis-Glineur, ”Accelerated Multiplicative Updates and Hierarchical ALS Algorithms for
Nonnegative Matrix Factorization”, 2011.

A.-Gillis, ”Accelerating Non-negative matrix factorization by extrapolation”, to appear in

Neural Computation, 2018.

Tuning of the regularization parameter λ
For volume regularization, λ should be small and becoming smaller.

Other ideas
I Non-negative tensor factorizations
I NMF + Sparsity (Cohen-Gillis, 2018, submitted)
I Non-negative rank rank+ := smallest r such that

X =

r∑
i=1

Xi, : Xi rank-1 and non-negative.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X).
I Combinatorial optimzation, extended formulations.
I Log-rank Conjecture, Exponential time hypothesis, P 6= NP.

38 / 39



Last page - summary

Non-negative Matrix Factorization.

Why NMF.

Geometry of NMF.

Separable NMF.

When separability fails : minimum volume NMF.

Ideas are simple, devils in details.
END OF PRESENTATION.

slide in angms.science

ACK : my boss Nicolas Gillis, European Research Council Grant #679515.
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