What's happening in Nonnegative Matrix Factorization? Models and algorithms

Andersen Ang

Mathématique et recherche opérationnelle, UMONS, Belgium

Supervisor : Nicolas Gillis

Homepage: angms.science

October 3, 2018 Structured Low-Rank Matrix/Tensor Approximation Leuven, Belgium

Part I. Introduction

Non-negative Matrix Factorization (NMF)

Given :

• A matrix $\mathbf{X} \in \mathbb{R}^{m \times n}_+$.

```
• A positive integer r \in \mathbb{N}.
Find :
```

Non-negative Matrix Factorization (NMF)

Given :

- A matrix $\mathbf{X} \in \mathbb{R}^{m \times n}_+$.
- A positive integer $r \in \mathbb{N}$.

Find :

• Matrices $\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+$ such that $\mathbf{X} = \mathbf{W}\mathbf{H}$.

Given :

- A matrix $\mathbf{X} \in \mathbb{R}^{m \times n}_+$.
- A positive integer $r \in \mathbb{N}$.

Find :

- Matrices $\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+$ such that $\mathbf{X} = \mathbf{W}\mathbf{H}$.
- Important : everything is non-negative.

Exact and approximate NMF

Given $(\mathbf{X} \in \mathbb{R}^{m \times n}_+, r \in \mathbb{N})$, find $(\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+)$ s.t. $\mathbf{X} = \mathbf{W}\mathbf{H}$ is called *exact NMF*, NP-hard (Vavasis, 2007).

Vavasis, "On the complexity of nonnegative matrix factorization", SIAM J. Optim.

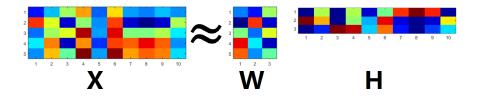
Exact and approximate NMF

Given $(\mathbf{X} \in \mathbb{R}^{m \times n}_+, r \in \mathbb{N})$, find $(\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+)$ s.t. $\mathbf{X} = \mathbf{W}\mathbf{H}$ is called *exact NMF*, NP-hard (Vavasis, 2007).

Vavasis, "On the complexity of nonnegative matrix factorization", SIAM J. Optim.

Focus of this talk : (Low-rank) approximate NMF

 $\mathbf{X} \approx \mathbf{WH}, \ 1 \le r \le \min\{m, n\}.$



Find (\mathbf{W},\mathbf{H}) numerically

Given $(\mathbf{X} \in \mathbb{R}^{m \times n}_+, 1 \le r \le \min\{m, n\})$, find $(\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+)$ s.t. $\mathbf{X} \approx \mathbf{W}\mathbf{H}$ via solving $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W} > \mathbf{0}, \mathbf{H} > \mathbf{0}}{\arg \min} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F.$

- \bullet Minimizing the distance between ${\bf X}$ and the approximator ${\bf WH}$ in F-norm^†.
- \geq is element-wise (not positive semi-definite).
- Such bivariate non-convex minimization problem is ill-posed and also NP-hard (Vavasis, 2007).
- * From now on, the inequality notations ≥ 0 will be skipped.

[†]This talk does not consider other distance functions.

Given $(\mathbf{X},r)\text{, find }(\mathbf{W},\mathbf{H})$ via solving

$$[\mathbf{W}, \ \mathbf{H}] = \underset{\mathbf{W}, \mathbf{H}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F \text{ subject to } \star,$$

Given (\mathbf{X}, r) , find (\mathbf{W}, \mathbf{H}) via solving

$$[\mathbf{W}, \ \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F$$
 subject to \star ,

where \star : additional constraint(s)/regularization(s) that make the problem "better". \star in this talk :

- Nothing (this part) NMF in the original form NP-hard
 - ▶ How to numerically solve it ... fast

Given $(\mathbf{X},r)\text{, find }(\mathbf{W},\mathbf{H})$ via solving

$$[\mathbf{W}, \ \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F$$
 subject to \star ,

where \star : additional constraint(s)/regularization(s) that make the problem "better". \star in this talk :

- Nothing (this part) NMF in the original form NP-hard
 - How to numerically solve it ... fast
- Separability to tackle the NP-hardness.
 - How to numerically solve it ... fast and robust

Given $(\mathbf{X},r)\text{, find }(\mathbf{W},\mathbf{H})$ via solving

$$[\mathbf{W}, \ \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F$$
 subject to \star ,

where \star : additional constraint(s)/regularization(s) that make the problem "better". \star in this talk :

- Nothing (this part) NMF in the original form NP-hard
 - How to numerically solve it ... fast
- Separability to tackle the NP-hardness.
 - How to numerically solve it ... fast and robust
- Minimum volume to generalize the separability.
 - How to numerically solve it ... fast

Four slides on why NMF

General overview

Interpretability

NMF beats similar tools (PCA, SVD, ICA) due to the interpretability on non-negative data.

Model correctness

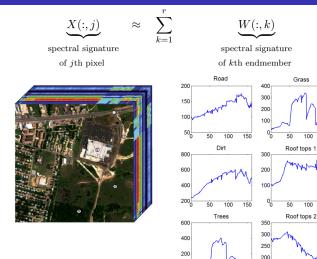
NMF can find ground truth (under certain conditions).

Mathematical curiosity

NMF is related to some serious problems in mathematics.

• My boss tell me to do it.

<u>Why NMF - Hyper-spectral image application (1/2)</u>



abundance of kth endmember

in jth pixel

150

150

100 150

150 Figure: Hyper-spectral image decomposition. Figure shamelessly copied from (Gillis,2014).

100

150,

Why NMF - Hyper-spectral image application (2/2)

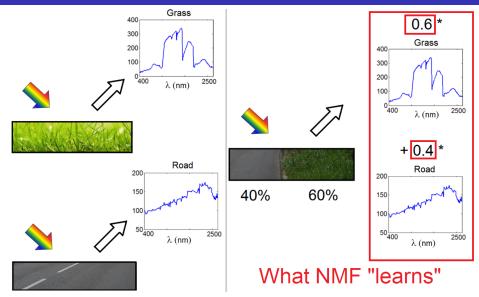


Figure: Hyper-spectral imaging. Figure modified from N. Gillis.

16/99

Why NMF - other examples

Application side

- Spectral unmixing in analytical chemistry (one of the earliest work)
- Representation learning on human face (the work that popularizes NMF)
- Topic modeling in text mining
- Probability distribution application on identification of Hidden Markov Model
- Bioinformatics : gene expression
- Time-frequency matrix decompositions for neuroinformatics
- (Non-negative) Blind source separation
- (Non-negative) Data compression
- Speech denoising
- Recommender system
- Face recognition
- Video summarization
- Forensics
- Art work conservation (identify true color used in painting)
- Medical imaging image processing on small object
- Mid-infrared astronomy image processing on large object
- Last week : Tells whether a banana or a fish is healthy by NMF

Theoretical numerical side

- A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
- Robustness analysis of algorithm
- Tensor
- Sparsity

Analytical side

Non-negative rank rank⁺ := smallest r such that

$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{X}_{i}, \quad : \; \mathbf{X}_{i} \;$$
rank-1 and non-negative.

How to find / estimate / bound rank $^+$, e.g. $\mathsf{rank}_{\mathsf{psd}}(\mathbf{X}) \leq \mathsf{rank}^+(\mathbf{X}).$

- Extended formulations and combinatorics
- Log-rank Conjecture of communication system
- 3-SAT, Exponential time hypothesis, $\mathbf{P} \neq \mathbf{NP}$

Part II (1/2). How to numerically solve NMF

Given (\mathbf{X}, r) , find (\mathbf{W}, \mathbf{H}) s.t. $\mathbf{X} \approx \mathbf{W}\mathbf{H}$ via solving $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W} \ge \mathbf{0}, \mathbf{H} \ge \mathbf{0}}{\operatorname{arg min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}.$

Given (\mathbf{X}, r) , find (\mathbf{W}, \mathbf{H}) s.t. $\mathbf{X} \approx \mathbf{W}\mathbf{H}$ via solving $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W} \ge \mathbf{0}, \mathbf{H} \ge \mathbf{0}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}.$ • Equivalent objective function : $\frac{1}{2} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}.$ • Simplify notation : hide some $\ge \mathbf{0}, \frac{1}{2}, F$

$$[\mathbf{W}, \ \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2.$$

Standard framework – 2-Block Coordinate Descent

Problem \mathcal{P} : given (\mathbf{X}, r) , solve $\min_{\mathbf{W}, \mathbf{H}} ||\mathbf{X} - \mathbf{W}\mathbf{H}||^2$. Approach : BCD (a.k.a. alternating minimization)

Standard framework – 2-Block Coordinate Descent

Problem \mathcal{P} : given (\mathbf{X}, r) , solve $\min_{\mathbf{W}, \mathbf{H}} ||\mathbf{X} - \mathbf{W}\mathbf{H}||^2$. Approach : BCD (a.k.a. alternating minimization)

Algorithm BCD framework for ${\cal P}$

Input: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ **Output:** \mathbf{W} and \mathbf{H}

- 1: for $k = 1, 2, \ldots$ do
- 2: Update[W]. e.g. exact coordinate minimization $\mathbf{W} \leftarrow \underset{\mathbf{W}>0}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.
- 3: Update[H].

e.g. exact coordinate minimization $\mathbf{H} \leftarrow \underset{\mathbf{H}>0}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.

4: end for

Standard framework – 2-Block Coordinate Descent

Problem \mathcal{P} : given (\mathbf{X}, r) , solve $\min_{\mathbf{W}, \mathbf{H}} ||\mathbf{X} - \mathbf{W}\mathbf{H}||^2$. Approach : BCD (a.k.a. alternating minimization)

Algorithm BCD framework for \mathcal{P}

Input: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ **Output:** \mathbf{W} and \mathbf{H}

- 1: for k = 1, 2, ... do
- 2: Update[W]. e.g. exact coordinate minimization $\mathbf{W} \leftarrow \underset{\mathbf{W}>0}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.
- 3: Update[H].

e.g. exact coordinate minimization $\mathbf{H} \leftarrow \underset{\mathbf{H}>0}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.

4: end for

* Symmetry : $\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 = \|\mathbf{X}^\top - \mathbf{H}^\top\mathbf{W}^\top\|_F^2$,

 \rightarrow focus on one variable, says ${\bf H}$ (update of ${\bf W}$ is similar).

$$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \operatorname*{arg\,min}_{\mathbf{H} \geq 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

Block partitions : on how coordinate is defined[†].
 This talk : coordinate is H (matrix) or H(i, :) (vector).

$$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \argmin_{\mathbf{H} \ge 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

- Block partitions : on how coordinate is defined[†].
 This talk : coordinate is H (matrix) or H(i,:) (vector).
- Index selection (indexing) : on how coordinate is selected[#]. This talk : cyclic indexing and A-HALS.

$$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \argmin_{\mathbf{H} \ge 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

- Block partitions : on how coordinate is defined[†].
 This talk : coordinate is H (matrix) or H(i, :) (vector).
- Index selection (indexing) : on how coordinate is selected[#]. This talk : cyclic indexing and A-HALS.
- Update scheme : on how coordinate is updated[#]. This talk : "exact" coordinate minimization using 1st order method (e.g. gradient descent). Exact = working on the original original objective function, no modification.
 - ${\sf Inexact} = {\sf working} \ {\sf on} \ {\sf modified} \ {\sf objective} \ {\sf function}. \ {\sf e.g.} \ {\sf consider} \ {\sf relaxation}.$

$$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \operatorname*{arg\,min}_{\mathbf{H} \geq 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$$

- Block partitions : on how coordinate is defined[†].
 This talk : coordinate is H (matrix) or H(i, :) (vector).
- Index selection (indexing) : on how coordinate is selected[#]. This talk : cyclic indexing and A-HALS.
- Update scheme : on how coordinate is updated[#]. This talk : "exact" coordinate minimization using 1st order method (e.g. gradient descent).

 \dot{E} xact = working on the original original objective function, no modification.

 ${\sf Inexact} = {\sf working} \ {\sf on} \ {\sf modified} \ {\sf objective} \ {\sf function}. \ {\sf e.g.} \ {\sf consider} \ {\sf relaxation}.$

• Other variants (not in this talk)

 \dagger Kim-He-Park 2014," Algo. for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework" J. Global Op.

#Shi-Xu-Yin 2016," A primer on coordinate descent algo." arXiv:1610.00040

HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

 $\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2} = \|\mathbf{W}(:,i)\|_{2}^{2}\|\mathbf{H}(i,:)\|_{2}^{2} - 2\operatorname{tr}\langle\mathbf{X}_{i},\mathbf{W}(:,i)\mathbf{H}(i,:)\rangle + c$

HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

 $\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2} = \|\mathbf{W}(:,i)\|_{2}^{2}\|\mathbf{H}(i,:)\|_{2}^{2} - 2\operatorname{tr}\langle\mathbf{X}_{i},\mathbf{W}(:,i)\mathbf{H}(i,:)\rangle + c$

Alternating minimization using cyclic indexing

Domain name in NMF : HALS (Hierarchical alternating least squares[†])

 $\mathbf{W}(:,1) \rightarrow \mathbf{H}(1,:) \rightarrow \mathbf{W}(:,2) \rightarrow \mathbf{H}(2,:) \rightarrow \mathbf{W}(:,3) \rightarrow \mathbf{H}(3,:) \rightarrow \dots$

HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

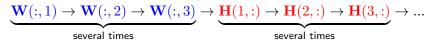
 $\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2} = \|\mathbf{W}(:,i)\|_{2}^{2}\|\mathbf{H}(i,:)\|_{2}^{2} - 2\operatorname{tr}\langle\mathbf{X}_{i},\mathbf{W}(:,i)\mathbf{H}(i,:)\rangle + c$

Alternating minimization using cyclic indexing

Domain name in NMF : HALS (Hierarchical alternating least squares[†])

 $\mathbf{W}(:,1) \to \mathbf{H}(1,:) \to \mathbf{W}(:,2) \to \mathbf{H}(2,:) \to \mathbf{W}(:,3) \to \mathbf{H}(3,:) \to \dots$

A-HALS#



† Cichocki-Zdunke-Amari 2007, "Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization", International Conf. on ICA.

Gillis-Glineur 2012, "Accelerated Multiplicative Updates and Hierarchical ALS Algo. for NMF", Neural Computation. $$30\,/\,99$$

A-HALS avoids repeated computations by reuse

Projected[†] gradient descent

$$\mathbf{w}_{i} = \mathbf{w}_{i} - t \underbrace{(\|\mathbf{h}_{i}\|_{2}^{2}\mathbf{w}_{i} - \mathbf{X}_{i}\mathbf{h}_{i}^{\top})}_{\nabla_{\mathbf{w}_{i}f}}, \quad \mathbf{h}_{i} = \mathbf{h}_{i} - t \underbrace{(\|\mathbf{w}_{i}\|_{2}^{2}\mathbf{h}_{i} - \mathbf{w}_{i}^{\top}\mathbf{X})}_{\nabla_{h_{i}f}}.$$

A-HALS avoids repeated computations by reuse

$Projected^\dagger$ gradient descent	
$\mathbf{w}_i = \mathbf{w}_i - t \left(\ \mathbf{h}_i \ _2^2 \mathbf{w}_i - \mathbf{X}_i \mathbf{h}_i^{ op} ight)$, $\mathbf{h}_i = \mathbf{h}_i - t (\ \mathbf{w}_i\ _2^2 \mathbf{h}_i - \mathbf{w}_i^\top \mathbf{X}).$
$\nabla_{\mathbf{w}_i} f$	$\nabla_{h_i} f$
Algorithm HALS	Algorithm A-HALS
$\begin{array}{l} 1: \mathbf{w}_{1} = \mathbf{w}_{1} - t(\ \mathbf{h}_{1}\ _{2}^{2}\mathbf{w}_{1} - \mathbf{X}_{1}\mathbf{h}_{1}^{\top}) \\ 2: \mathbf{h}_{1} = \mathbf{h}_{1} - t(\ \mathbf{w}_{1}\ _{2}^{2}\mathbf{h}_{1} - \mathbf{w}_{1}^{\top}\mathbf{X}_{1}) \\ 3: \mathbf{w}_{2} = \mathbf{w}_{2} - t(\ \mathbf{h}_{2}\ _{2}^{2}\mathbf{w}_{2} - \mathbf{X}_{2}\mathbf{h}_{2}^{\top}) \\ 4: \mathbf{h}_{2} = \mathbf{h}_{2} - t(\ \mathbf{w}_{2}\ _{2}^{2}\mathbf{h}_{2} - \mathbf{w}_{2}^{\top}\mathbf{X}_{2}) \\ 5: \mathbf{w}_{3} = \mathbf{w}_{3} - t(\ \mathbf{h}_{3}\ _{2}^{2}\mathbf{w}_{3} - \mathbf{X}_{3}\mathbf{h}_{3}^{\top}) \\ 6: \mathbf{h}_{3} = \mathbf{h}_{3} - t(\ \mathbf{w}_{3}\ _{2}^{2}\mathbf{h}_{3} - \mathbf{w}_{3}^{\top}\mathbf{X}_{3}) \\ 7: \dots \end{array}$	$ \begin{array}{c} 1: \mbox{ Compute } \mathbf{A} = \mathbf{H}\mathbf{H}^{\top}, \ \mathbf{B} = \mathbf{X}\mathbf{H}^{\top} \\ 2: \ \mathbf{w}_1 = \mathbf{w}_1 - t(\ \mathbf{h}_1\ _2^2\mathbf{w}_1 - \mathbf{X}_1\mathbf{h}_1^{\top}) \\ 3: \ \mathbf{w}_2 = \mathbf{w}_2 - t(\ \mathbf{h}_2\ _2^2\mathbf{w}_2 - \mathbf{X}_2\mathbf{h}_2^{\top}) \\ 4: \ \mathbf{w}_3 = \mathbf{w}_3 - t(\ \mathbf{h}_3\ _2^2\mathbf{w}_3 - \mathbf{X}_3\mathbf{h}_3^{\top}) \\ 5: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

A-HALS : Line 2-4, 6-8 repeated a few times.

A-HALS avoids repeated computations by reuse

$Projected^{\dagger}$ gradient descent	
$\mathbf{w}_i = \mathbf{w}_i - t \underbrace{(\ \mathbf{h}_i\ _2^2 \mathbf{w}_i - \mathbf{X}_i \mathbf{h}_i^{ op})}_{i}$, $\mathbf{h}_i = \mathbf{h}_i - t \underbrace{(\ \mathbf{w}_i\ _2^2 \mathbf{h}_i - \mathbf{w}_i^\top \mathbf{X})}_{i}$.
$\nabla_{\mathbf{w}_i} f$	$\nabla_{h_i} f$
Algorithm HALS	Algorithm A-HALS
1: $\mathbf{w}_1 = \mathbf{w}_1 - t(\ \mathbf{h}_1\ _2^2 \mathbf{w}_1 - \mathbf{X}_1 \mathbf{h}_1^\top)$ 2: $\mathbf{h}_1 = \mathbf{h}_1 - t(\ \mathbf{w}_1\ _2^2 \mathbf{h}_1 - \mathbf{w}_1^\top \mathbf{X}_1)$ 3: $\mathbf{w}_2 = \mathbf{w}_2 - t(\ \mathbf{h}_2\ _2^2 \mathbf{w}_2 - \mathbf{X}_2 \mathbf{h}_2^\top)$ 4: $\mathbf{h}_2 = \mathbf{h}_2 - t(\ \mathbf{w}_2\ _2^2 \mathbf{h}_2 - \mathbf{w}_2^\top \mathbf{X}_2)$ 5: $\mathbf{w}_3 = \mathbf{w}_3 - t(\ \mathbf{h}_3\ _2^2 \mathbf{w}_3 - \mathbf{X}_3 \mathbf{h}_3^\top)$ 6: $\mathbf{h}_3 = \mathbf{h}_3 - t(\ \mathbf{w}_3\ _2^2 \mathbf{h}_3 - \mathbf{w}_3^\top \mathbf{X}_3)$ 7:	1: Compute $\mathbf{A} = \mathbf{H}\mathbf{H}^{T}, \mathbf{B} = \mathbf{X}\mathbf{H}^{T}$ 2: $\mathbf{w}_{1} = \mathbf{w}_{1} - t(\ \mathbf{h}_{1}\ _{2}^{2}\mathbf{w}_{1} - \mathbf{X}_{1}\mathbf{h}_{1}^{T})$ 3: $\mathbf{w}_{2} = \mathbf{w}_{2} - t(\ \mathbf{h}_{2}\ _{2}^{2}\mathbf{w}_{2} - \mathbf{X}_{2}\mathbf{h}_{2}^{T})$ 4: $\mathbf{w}_{3} = \mathbf{w}_{3} - t(\ \mathbf{h}_{3}\ _{2}^{2}\mathbf{w}_{3} - \mathbf{X}_{3}\mathbf{h}_{3})$ 5: Compute $\mathbf{C} = \mathbf{W}^{T}\mathbf{W}, \mathbf{D} = \mathbf{W}^{T}\mathbf{X}$ 6: $\mathbf{h}_{1} = \mathbf{h}_{1} - t(\ \mathbf{w}_{1}\ _{2}^{2}\mathbf{h}_{1} - \mathbf{w}_{1}^{T}\mathbf{X}_{1})$ 7: $\mathbf{h}_{2} = \mathbf{h}_{2} - t(\ \mathbf{w}_{2}\ _{2}^{2}\mathbf{h}_{2} - \mathbf{w}_{2}^{T}\mathbf{X}_{2})$ 8: $\mathbf{h}_{3} = \mathbf{h}_{3} - t(\ \mathbf{w}_{3}\ _{2}^{2}\mathbf{h}_{3} - \mathbf{w}_{3}^{T}\mathbf{X}_{3})$ 9:

A-HALS : Line 2-4, 6-8 repeated a few times. A-HALS avoids repeated computations of *constant terms* :

$$\mathbf{H}\mathbf{H}_{(2n-1)m^2}^{\top}, \ \mathbf{X}\mathbf{H}_{(2n-1)mr}^{\top}, \ \mathbf{W}^{\top}\mathbf{W}_{(2r-1)m^2}, \ \mathbf{W}^{\top}\mathbf{X}_{(2m-1)rn},$$

33 / 99

pre-computing and re-use of these terms gain extra efficiency improvement : "significant if big $big^{\#}$ " — always A-HALS!

[†]Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse.

Part II (2/2). How to numerically solve NMF ... fast Recall : NMF is **NP-Hard**.

Then what's the acceleration for : obtain a *local* solution faster.

Recall : NMF is **NP-Hard**.

Then what's the acceleration for : obtain a *local* solution faster.

Recall : acceleration in one-variable problem $\min_{x\in \mathcal{C}} f(x).$

Recall : NMF is NP-Hard.

Then what's the acceleration for : obtain a *local* solution faster.

Recall : acceleration in one-variable problem $\min_{x\in\mathcal{C}}f(x).$ At step k :

No acceleration : $x_{k+1} = \text{Update}[x_k]$. With acceleration : $x_{k+1} = \text{Update}[y_k]$, $y_{k+1} = \text{Extrapolate}[x_{k+1}, x_k]$.

To be specific :

$$\begin{array}{ll} \mathsf{GD} \ \mathsf{Update} & x_{k+1} = \underbrace{x_k - t_k \nabla f(x_k)}_{\mathsf{Update}[x_k]}.\\ \mathsf{Update}[x_k] \end{array}$$
 Linear extrapolation $& x_{k+1} = x_k - t_k \nabla f(x_k), \quad y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k). \end{array}$

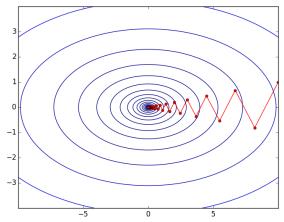
i.e. Extrapolate $[x_{k+1}, x_k]$ is modeled by $\beta_k := \text{extrapolation parameter}$.

a single number

Why extrapolation : gradient descent zig-zags on ellipse

Facts : consecutive update directions of GD are orthogonal (\perp). If the landscape is not "spherical", GD zig-zags \rightarrow slow.

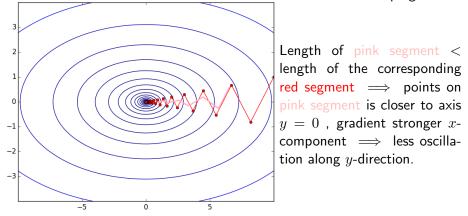
e.g. : moving along a long narrow valley.



Picture modified from http://www.nbertagnolli.com/jekyll/update/2015/10/28/Descent-Methods.html

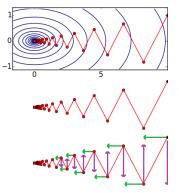
What machine learning people do to counter zig-zag?

Do tricks on step size : don't move with step size t but $\frac{\iota}{\text{damping factor}}$



The idea behind **AdaGrad** and **AdaDelta** : shrink the step size when you see zig-zag (trace of the objective function appears to plateau).

Do tricks on direction : by extrapolation with momentum.



 $\label{eq:ldea:apply} \begin{array}{ll} \mbox{Idea}: \mbox{ apply extrapolation.} \\ \mbox{Extrapolate} = \mbox{add gradient history.} \end{array}$

(1) if gradients in consecutive steps have consistent direction

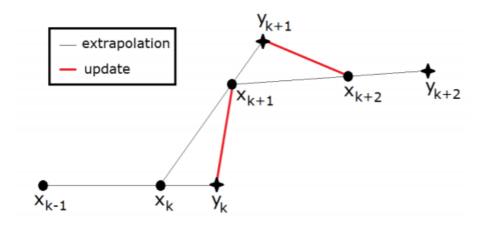
 \implies extrapolate = accelerate.

(2) if gradients in consecutive steps oscillates (continuously changing direction)

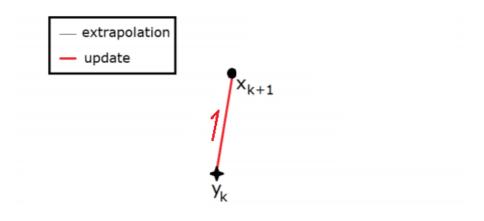
 \implies extrapolate = damp oscillation = acceleration.

Figure shows the trace of points decomposed into x- and y-component. The x-components have consistent direction while y-components are not.

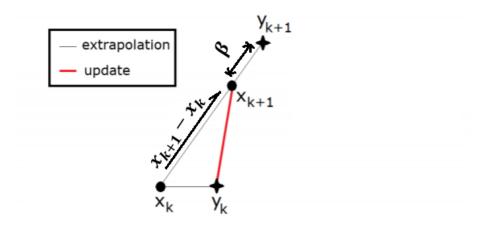
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



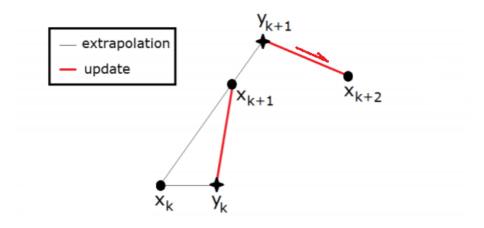
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



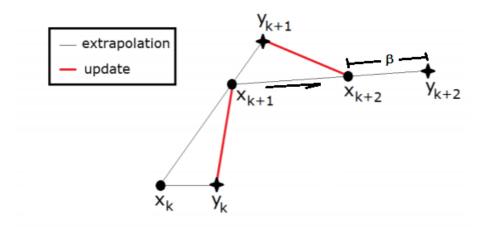
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$



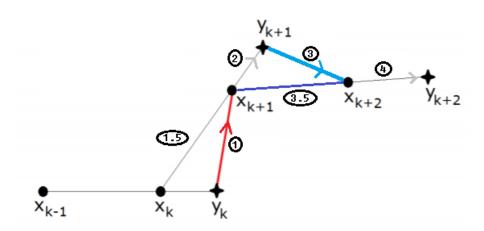
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



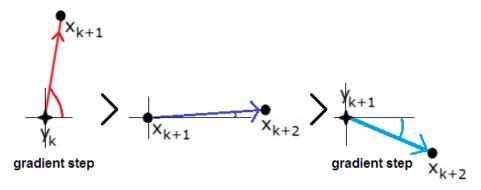
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$



We always have

 $\angle (x_{k+1} - y_k) \ge \angle (x_{k+2} - x_{k+1}) \ge \angle (x_{k+2} - y_{k+1})$

i.e. the direction of the last step is **in between** the directions of previous two gradient steps : zig-zag effect is reduced !



For convex function,

$$\beta_k = \frac{1 - \alpha_k}{\alpha_{k+1}}, \ \alpha_{k+1} = \frac{1 + \sqrt{1 + 4\alpha_k^2}}{2}, \alpha_1 \in (0, 1)$$

2 For **smooth strongly convex** function with *conditional number* Q,

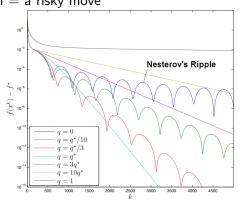
$$\beta_k = \frac{1-\sqrt{Q}}{1+\sqrt{Q}}, \text{ where } Q = \frac{L}{\mu} = \frac{\text{Smoothness parameter}}{\text{Strong convexity parameter}}$$

With convergence improvement : from $\mathcal{O}(Q \log \frac{1}{\epsilon})$ to $\mathcal{O}(\sqrt{Q} \log \frac{1}{\epsilon})$

Key : Nesterov's acceleration has a close-form formula for β_k

Extrapolation is not monotone, nor descent, nor greedy

GD is locally optimal/greedy ⇒ extrapolation may ↑objective value • Extrapolation = a risky move



Picture from Donoghue-Candés 2015, "Adaptive Restart for Accelerated Gradient Schemes" Acceleration comes from doing the risky move :

"sacrifice the decreases of objective value now for the better future"

Problem \mathcal{P} is **non-cvx** but bi-cvx. $\mathcal{P} = \{ \text{Given } (\mathbf{X}, r), \text{ solve } \min_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2 \}.$ \implies no strong cvx parameter μ . Cannot use expression likes $\beta_k = \frac{1 - \sqrt{Q}}{1 + \sqrt{Q}}.$ Problem \mathcal{P} is **non-cvx** but bi-cvx. $\mathcal{P} = \{ \text{Given} (\mathbf{X}, r), \text{ solve } \min_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2 \}.$ \implies no strong cvx parameter μ . Cannot use expression likes $\beta_k = \frac{1 - \sqrt{Q}}{1 + \sqrt{Q}}.$ For

$$\begin{cases} \mathsf{On}~\mathbf{W} & \left\{ \begin{matrix} \mathsf{U}\mathsf{p}\mathsf{date} & \mathbf{W}_\mathsf{new} = \mathsf{U}\mathsf{p}\mathsf{date}[\mathbf{Y}_\mathsf{old},\mathbf{H}_\mathsf{old}] \\ \mathsf{Extrapolate} & \mathbf{Y}_\mathsf{new} = \mathbf{W}_\mathsf{new} + \beta_k^{\mathbf{W}}(\mathbf{W}_\mathsf{new} - \mathbf{W}_\mathsf{old}) \\ \mathsf{On}~\mathbf{H} & \left\{ \begin{matrix} \mathsf{U}\mathsf{p}\mathsf{date} & \mathbf{H}_\mathsf{new} = \mathsf{U}\mathsf{p}\mathsf{date}[\mathbf{W}_\mathsf{new},\mathbf{G}_\mathsf{old}] \\ \mathsf{Extrapolate} & \mathbf{G}_\mathsf{new} = \mathbf{H}_\mathsf{new} + \beta_k^{\mathbf{H}}(\mathbf{H}_\mathsf{new} - \mathbf{H}_\mathsf{old}) \end{matrix} \right. \end{cases},$$

Need a way (close-/no close-form) to find β_k !

Problem \mathcal{P} is **non-cvx** but bi-cvx. $\mathcal{P} = \{ \text{Given} (\mathbf{X}, r), \text{ solve } \min_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2 \}.$ \implies no strong cvx parameter μ . Cannot use expression likes $\beta_k = \frac{1 - \sqrt{Q}}{1 + \sqrt{Q}}.$ For

$$\begin{cases} \mathsf{On}~\mathbf{W} & \left\{ \begin{matrix} \mathsf{U}\mathsf{p}\mathsf{date} & \mathbf{W}_\mathsf{new} = \mathsf{U}\mathsf{p}\mathsf{date}[\mathbf{Y}_\mathsf{old},\mathbf{H}_\mathsf{old}] \\ \mathsf{Extrapolate} & \mathbf{Y}_\mathsf{new} = \mathbf{W}_\mathsf{new} + \beta_k^{\mathbf{W}}(\mathbf{W}_\mathsf{new} - \mathbf{W}_\mathsf{old}) \\ \mathsf{On}~\mathbf{H} & \left\{ \begin{matrix} \mathsf{U}\mathsf{p}\mathsf{date} & \mathbf{H}_\mathsf{new} = \mathsf{U}\mathsf{p}\mathsf{date}[\mathbf{W}_\mathsf{new},\mathbf{G}_\mathsf{old}] \\ \mathsf{Extrapolate} & \mathbf{G}_\mathsf{new} = \mathbf{H}_\mathsf{new} + \beta_k^{\mathbf{H}}(\mathbf{H}_\mathsf{new} - \mathbf{H}_\mathsf{old}) \end{matrix} \right. \end{cases} \end{cases}$$

Need a way (close-/no close-form) to find β_k !

Approach : an ad hoc heurisitic in the "line search" style.

"Update-then-extrapolate" framework for the ncvx (bi-cvx) problem

$$\begin{cases} \mathsf{On}~\mathbf{W} & \begin{cases} \mathsf{Update} & \mathbf{W}_{\mathsf{new}} = \mathsf{Update}[\mathbf{Y}_{\mathsf{old}}, \mathbf{H}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{Y}_{\mathsf{new}} = \mathbf{W}_{\mathsf{new}} + \beta_k^{\mathbf{W}}(\mathbf{W}_{\mathsf{new}} - \mathbf{W}_{\mathsf{old}}) \\ \mathsf{On}~\mathbf{H} & \begin{cases} \mathsf{Update} & \mathbf{H}_{\mathsf{new}} = \mathsf{Update}[\mathbf{W}_{\mathsf{new}}, \mathbf{G}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{G}_{\mathsf{new}} = \mathbf{H}_{\mathsf{new}} + \beta_k^{\mathbf{H}}(\mathbf{H}_{\mathsf{new}} - \mathbf{H}_{\mathsf{old}}) \end{cases} \end{cases} \end{cases} \end{cases}$$

"Update-then-extrapolate" framework for the ncvx (bi-cvx) problem

$$\begin{cases} \mathsf{On}\ \mathbf{W} & \begin{cases} \mathsf{Update} & \mathbf{W}_{\mathsf{new}} = \mathsf{Update}[\mathbf{Y}_{\mathsf{old}}, \mathbf{H}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{Y}_{\mathsf{new}} = \mathbf{W}_{\mathsf{new}} + \beta_k^{\mathbf{W}}(\mathbf{W}_{\mathsf{new}} - \mathbf{W}_{\mathsf{old}}) \\ \mathsf{On}\ \mathbf{H} & \begin{cases} \mathsf{Update} & \mathbf{H}_{\mathsf{new}} = \mathsf{Update}[\mathbf{W}_{\mathsf{new}}, \mathbf{G}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{G}_{\mathsf{new}} = \mathbf{H}_{\mathsf{new}} + \beta_k^{\mathbf{H}}(\mathbf{H}_{\mathsf{new}} - \mathbf{H}_{\mathsf{old}}) \end{cases} \end{cases} \end{cases}$$

The key β_k

- β has to be smaller than 1 (same as the convex case)
- If $\beta \in (0,1)$: extrapolation, doing risky step

"Update-then-extrapolate" framework for the ncvx (bi-cvx) problem

$$\begin{cases} \mathsf{On}\ \mathbf{W} & \begin{cases} \mathsf{Update} & \mathbf{W}_{\mathsf{new}} = \mathsf{Update}[\mathbf{Y}_{\mathsf{old}}, \mathbf{H}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{Y}_{\mathsf{new}} = \mathbf{W}_{\mathsf{new}} + \beta_k^{\mathbf{W}}(\mathbf{W}_{\mathsf{new}} - \mathbf{W}_{\mathsf{old}}) \\ \mathsf{On}\ \mathbf{H} & \begin{cases} \mathsf{Update} & \mathbf{H}_{\mathsf{new}} = \mathsf{Update}[\mathbf{W}_{\mathsf{new}}, \mathbf{G}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{G}_{\mathsf{new}} = \mathbf{H}_{\mathsf{new}} + \beta_k^{\mathbf{H}}(\mathbf{H}_{\mathsf{new}} - \mathbf{H}_{\mathsf{old}}) \end{cases} \end{cases} \end{cases}$$

The key β_k

- β has to be smaller than 1 (same as the convex case)
- If $\beta \in (0,1)$: extrapolation, doing risky step
- If $\beta = \{1,0\}$: doing {very risky, no} extrapolation

"Update-then-extrapolate" framework for the ncvx (bi-cvx) problem

$$\begin{cases} \mathsf{On}\ \mathbf{W} & \begin{cases} \mathsf{Update} & \mathbf{W}_{\mathsf{new}} = \mathsf{Update}[\mathbf{Y}_{\mathsf{old}}, \mathbf{H}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{Y}_{\mathsf{new}} = \mathbf{W}_{\mathsf{new}} + \beta_k^{\mathbf{W}}(\mathbf{W}_{\mathsf{new}} - \mathbf{W}_{\mathsf{old}}) \\ \mathsf{On}\ \mathbf{H} & \begin{cases} \mathsf{Update} & \mathbf{H}_{\mathsf{new}} = \mathsf{Update}[\mathbf{W}_{\mathsf{new}}, \mathbf{G}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{G}_{\mathsf{new}} = \mathbf{H}_{\mathsf{new}} + \beta_k^{\mathbf{H}}(\mathbf{H}_{\mathsf{new}} - \mathbf{H}_{\mathsf{old}}) \end{cases} \end{cases} \end{cases}$$

The key β_k

- β has to be smaller than 1 (same as the convex case)
- If $\beta \in (0,1)$: extrapolation, doing risky step
- If $\beta = \{1,0\}$: doing {very risky, no} extrapolation
- Can't use line search[†] to find β : experimentally found β close to 0
 - minor extrapolation, effectively doing nothing

"Update-then-extrapolate" framework for the ncvx (bi-cvx) problem

 $\begin{cases} \mathsf{On}~\mathbf{W} & \begin{cases} \mathsf{Update} & \mathbf{W}_{\mathsf{new}} = \mathsf{Update}[\mathbf{Y}_{\mathsf{old}}, \mathbf{H}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{Y}_{\mathsf{new}} = \mathbf{W}_{\mathsf{new}} + \beta_k^{\mathbf{W}}(\mathbf{W}_{\mathsf{new}} - \mathbf{W}_{\mathsf{old}}) \\ \mathsf{On}~\mathbf{H} & \begin{cases} \mathsf{Update} & \mathbf{H}_{\mathsf{new}} = \mathsf{Update}[\mathbf{W}_{\mathsf{new}}, \mathbf{G}_{\mathsf{old}}] \\ \mathsf{Extrapolate} & \mathbf{G}_{\mathsf{new}} = \mathbf{H}_{\mathsf{new}} + \beta_k^{\mathbf{H}}(\mathbf{H}_{\mathsf{new}} - \mathbf{H}_{\mathsf{old}}) \end{cases} \end{cases} \end{cases}$

The key β_k

- β has to be smaller than 1 (same as the convex case)
- If $\beta \in (0,1)$: extrapolation, doing risky step
- If $\beta = \{1,0\}$: doing {very risky, no} extrapolation
- Can't use line search[†] to find β : experimentally found β close to 0

- minor extrapolation, effectively doing nothing

Why ad hoc heuristics ?

- (1) The ncvx problem is hard, (2) No better idea
- No convergence theorem now.

A postdoc of SeLMA (Hien Lê) is working on it.

To optimization theorists : you can try.

Details : Update[β_k]

Landscape of variable at each iteration is different \implies dynamical update

Algorithm A dynamic line search style[†] ad hoc heuristics

Input: Parameters $1 < \bar{\gamma} < \gamma < \eta$, an initialization $\beta_1 \in (0, 1)$

Output: β_k : the extrapolation parameter

- 1: Set $\bar{\beta} = 1$ (dynamic "upper bound" of β)
- 2: if error \downarrow at iteration k then
- 3: Increase $\beta_{\underline{k+1}} : \beta_{k+1} = \min\{\overline{\beta}, \gamma\beta_k\}$
- 4: (Increase $\bar{\beta}$ if $\bar{\beta} < 1$: $\bar{\beta} = \min\{1, \bar{\gamma}\bar{\beta}\}$)
- 5: **else**
- 6: Decrease β_{k+1} : $\beta_{k+1} = \beta_k/\eta$
- 7: Set $\bar{\beta} = \beta_k$
- 8: end if

Meaning :

- Go further/"speed up" when suitable (error \downarrow) : more ambitious, make $\beta \uparrow$, take more risk
- Go back/" slow down" when not suitable (error \uparrow) : less ambitious, make $\beta\downarrow$, take less risk
- γ , $\bar{\gamma}$, η : growth and decay parameters

 \dagger Line search after updates of W and H – performed after the update!

The full algo of Accelerated NMF using extrapolation

Input: X, initialization W, H, parameters $hp \in \{1, 2, 3\}$ (extrapolation/projection of H). Output: W, H. 1: $\mathbf{W}_{u} = \mathbf{W}; \mathbf{H}_{u} = \mathbf{H}; e(0) = ||\mathbf{X} - \mathbf{W}\mathbf{H}||_{F}$. 2: for $k = 1, 2, \ldots$ do 3: Compute \mathbf{H}_n by $\min_{\mathbf{H}_n \geq 0} ||\mathbf{X} - \mathbf{W}_y \mathbf{H}_n||_F^2$ using \mathbf{H}_y as initial iterate. 4: 5: 6: 7: 8: 9: 10: if hp > 2 then Extrapolate: $\mathbf{H}_{u} = \mathbf{H}_{n} + \beta_{k}(\mathbf{H}_{n} - \mathbf{H}).$ end if if hp = 3 then Project: $\mathbf{H}_{y} = \max(0, \mathbf{H}_{y}).$ end if Compute \mathbf{W}_n by $\min_{\mathbf{W}_n>0} ||\mathbf{X} - \mathbf{W}_n \mathbf{H}_y||_F^2$ using \mathbf{W}_y as initial iterate. 11: Extrapolate: $\mathbf{W}_{u} = \mathbf{W}_{n} + \beta_{k}(\mathbf{W}_{n} - \mathbf{W}).$ 12: if hp = 1 then 13: Extrapolate: $\mathbf{H}_{u} = \mathbf{H}_{n} + \beta_{k}(\mathbf{H}_{n} - \mathbf{H}).$ 14: end if 15: Compute error: $e(k) = ||\mathbf{X} - \mathbf{W}_n \mathbf{H}_u||_F$. 16: if e(k) > e(k-1) then 17: Restart: $\mathbf{H}_{u} = \mathbf{H}_{n}$; $\mathbf{W}_{u} = \mathbf{W}_{n}$. 18: 19: 20: else $\mathbf{H} = \mathbf{H}_n$: $\mathbf{W} = \mathbf{W}_n$. end if 21: end for

Notation : \mathbf{W}_n normal variable, \mathbf{W}_y extrpolate variable, \mathbf{W} previous \mathbf{W}_n ... too hard to read !!

Algorithm (hp = 1), simplified

Input: \mathbf{X} , initialization \mathbf{W} , \mathbf{H} Output: \mathbf{W} , \mathbf{H}

1:
$$\mathbf{W}_y = \mathbf{W}$$
; $\mathbf{H}_y = \mathbf{H}$; $e(0) = ||\mathbf{X} - \mathbf{W}\mathbf{H}||_F$.

2: for
$$k = 1, 2, ...$$
 do

- 3: **Up**date[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n$ using \mathbf{H}_y as initial iterate.
- 4: **Up**date[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y$ using \mathbf{W}_y as initial iterate.
- 5: **Extrapolate**[\mathbf{W}_{y}] : $\mathbf{W}_{y} = \mathbf{W}_{n} + \beta_{k}(\mathbf{W}_{n} \mathbf{W})$.
- 6: **Extrapolate** $[\mathbf{H}_y]$: $\mathbf{H}_y = \mathbf{H}_n + \beta_k (\mathbf{H}_n \mathbf{H}).$

7: Compute error:
$$e(k) = ||\mathbf{X} - \mathbf{W}_n \mathbf{H}_y||_F$$
.

8: **if**
$$e(k) > e(k-1)$$
 then

9: Restart:
$$\mathbf{H}_y = \mathbf{H}_n$$
; $\mathbf{W}_y = \mathbf{W}_n$

10: else

11:
$$\mathbf{H} = \mathbf{H}_n; \ \mathbf{W} = \mathbf{W}_n.$$

- 12: end if
- 13: end for

"Up, Up, Ex, Ex"

Algorithm (hp = 2), simplified

Input: \mathbf{X} , initialization \mathbf{W}, \mathbf{H} Output: \mathbf{W}, \mathbf{H}

- 1: $\mathbf{W}_y = \mathbf{W}$; $\mathbf{H}_y = \mathbf{H}$; $e(0) = ||\mathbf{X} \mathbf{W}\mathbf{H}||_F$.
- 2: for k = 1, 2, ... do
- 3: **Up**date[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n$ using \mathbf{H}_y as initial iterate.
- 4: **Extrapolate** $[\mathbf{H}_y]$: $\mathbf{H}_y = \mathbf{H}_n + \beta_k (\mathbf{H}_n \mathbf{H}).$
- 5: **Up**date[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y$ using \mathbf{W}_y as initial iterate.
- 6: **E**xtrapolate[\mathbf{W}_{y}] : $\mathbf{W}_{y} = \mathbf{W}_{n} + \beta_{k}(\mathbf{W}_{n} \mathbf{W})$.
- 7: Compute error: $e(k) = ||\mathbf{X} \mathbf{W}_n \mathbf{H}_y||_F$.
- 8: if e(k) > e(k-1) then

9: Restart:
$$\mathbf{H}_y = \mathbf{H}_n$$
; $\mathbf{W}_y = \mathbf{W}_n$

- 10: else
- 11: $\mathbf{H} = \mathbf{H}_n; \ \mathbf{W} = \mathbf{W}_n.$
- 12: end if
- 13: end for

"Up, Ex, Up, Ex"

Algorithm (hp = 3), simplified

Input: \mathbf{X} , initialization \mathbf{W}, \mathbf{H} Output: \mathbf{W}, \mathbf{H}

- 1: $\mathbf{W}_y = \mathbf{W}$; $\mathbf{H}_y = \mathbf{H}$; $e(0) = ||\mathbf{X} \mathbf{W}\mathbf{H}||_F$.
- 2: for k = 1, 2, ... do
- 3: **Up**date[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n$ using \mathbf{H}_y as initial iterate.
- 4: **Extrapolate** $[\mathbf{H}_y]$: $\mathbf{H}_y = \mathbf{H}_n + \beta_k (\mathbf{H}_n \mathbf{H}).$
- 5: **Project**: $\mathbf{H}_y = \max(0, \mathbf{H}_y)$.
- 6: **Up**date[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y$ using \mathbf{W}_y as initial iterate.
- 7: **Extrapolate** $[\mathbf{W}_y]$: $\mathbf{W}_y = \mathbf{W}_n + \beta_k (\mathbf{W}_n \mathbf{W}).$
- 8: Compute the error: $e(k) = ||\mathbf{X} \mathbf{W}_n \mathbf{H}_y||_F$.
- 9: **if** e(k) > e(k-1) **then**
- 10: Restart: $\mathbf{H}_y = \mathbf{H}_n$; $\mathbf{W}_y = \mathbf{W}_n$.
- 11: else
- 12: $\mathbf{H} = \mathbf{H}; \ \mathbf{W} = \mathbf{W}_n.$
- 13: end if
- 14: end for

"Up, Ex, Pro, Up, Ex"

Summary and notes (1/2)

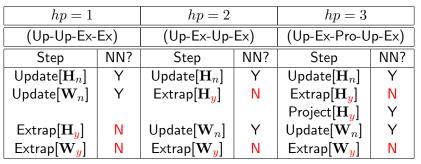
1. Extrapolation may break NN ($\geq 0)$ constraint :

hp = 1		hp = 2		hp = 3	
(Up-Up-Ex-Ex)		(Up-Ex-Up-Ex)		(Up-Ex-Pro-Up-Ex)	
Step	NN?	Step	NN?	Step	NN?
Update $[\mathbf{H}_n]$	Y	$Update[\mathbf{H}_n]$	Y	$Update[\mathbf{H}_n]$	Y
$Update[\mathbf{W}_n]$	Y	$Extrap[\mathbf{H}_{y}]$	N	$Extrap[\mathbf{H}_y]$	Ν
				$Project[\mathbf{H}_y]$	Y
Extrap $[\mathbf{H}_{y}]$	N	$Update[\mathbf{W}_n]$	Y	$Update[\mathbf{W}_n]$	Y
$Extrap[\mathbf{W}_y]$	Ν	$Extrap[\mathbf{W}_{y}]$	Ν	$Extrap[\mathbf{W}_{y}]$	N

2. Update using matrix with negative values : Update[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $(\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n)$, using \mathbf{H}_y as initial iterate Update[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $(\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y)$, using \mathbf{W}_y as initial iterate

Summary and notes (2/2)

1. Extrapolation may break NN (≥ 0) constraint :



3. Restart using e(k) as $\|\mathbf{X} - \mathbf{W}_n \mathbf{H}_y\|_F$ not $\|\mathbf{X} - \mathbf{W}_n \mathbf{H}_n\|_F$ Why : (i) \mathbf{W}_n was updated according to \mathbf{H}_y (see point 2) (ii) it gives the algorithm some degrees of freedom to possibly increase the objective function

(iii) computationally cheaper, as compute $\|\mathbf{X} - \mathbf{W}_n \mathbf{H}_n\|_F$ need O(mnr) operations instead of $O(mr^2)$ by re-using previous computed terms : $\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 = \|\mathbf{X}\|_F^2 - 2\langle \mathbf{W}, \mathbf{X}\mathbf{H}^\top \rangle + \langle \mathbf{W}^\top \mathbf{W}, \mathbf{H}\mathbf{H}^\top \rangle$ 64 / 99

Experiments

Notations

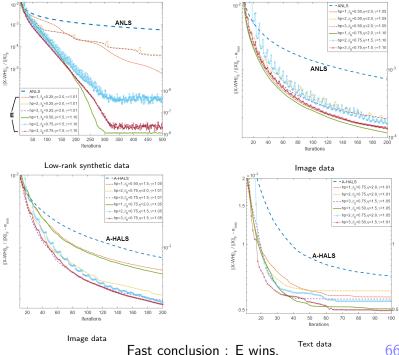
- A-HALS : vector-wise update, compute approximate solution
- ANLS : subproblem solved exactly using active-set methods
- E : extrapolation

Set up

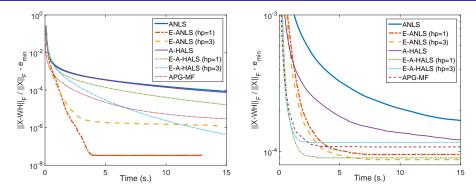
- Average error over 10 trials
- $\mathbf{W}, \mathbf{H}, \mathbf{X}$ randomly generated $\sim \mathcal{U}[0, 1]$, m = n = 200, r = 20
- Error comparisions : using lowest relative error e_{\min} across all algorithms, at step k,

$$E(k) = \frac{\|\mathbf{X} - \mathbf{W}^k \mathbf{H}^k\|_F}{\|\mathbf{X}\|_F} - e_{\min}$$

- It is possible $e_{\min} = 0$ and not shown
- Extrapolation parmater $\beta_0 = [0.25, 0.5, 0.75]$
- $\eta_0 = [1.5, 2, 3]$
- $\gamma, \bar{\gamma} = [1.01, 1.005], [1.05, 1.01], [1.1, 1.05]$
- For display : only best and worst to illustrate sensitivity (for hp = 2)



Compare with other method on speed (time)



Average err. of ANLS, A-HALS and extrapolated variants, on low-rank (left) and full-rank (right) synthetic data. APG-MF = an extrapolated proximal type algorithm, with convergence proof.

Fast conclusion : E wins and beats $APG-MF^{\dagger}$.

† Xu-Yin 2013 "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion". SIAM J. Img Sci.

Overall results : E wins!

Method	Data	Ex wins?
	Low/full rank synthetic data	YES
A-HALS	Dense Image data [†]	YES
	Sparse text data $^{\#}$	YES
	Low/full rank synthetic data	YES
ANLS	Dense Image data [†]	YES
	Sparse text data $^{\#}$	YES

 \dagger ORL, Umist, CBCL, Frey, $^{\#}$ Zhong-Ghosh 2005. Generative model-based document clustering: a comparative study ${\color{black} \textbf{Conclusions}}$

- No matter what method XXX, E-XXX > XXX.
- E-XXX > APG-MF (an extrapolated proximal-type method).

Between E-ANLS vs E-A-HALS : no clear winner

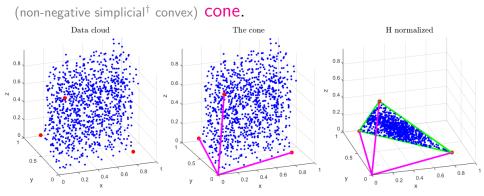
- Low rank synthetic data : E-ANLS \gg everything
- ▶ Dense data : E-A-HALS \approx E-ANLS, although A-HALS > ANLS
- Sparse data : E-A-HALS \gg everything
- Between different hp
 - Up-Ex-Up-Ex (hp = 2) seems worst
 - Up-Up-Ex-Ex (hp = 1) or Up-Ex-Pro-Up-Ex (hp = 3) are better

Don't trust me ? Go https://arxiv.org/abs/1805.06604, try the code!

Part III (a). NMF geometry, Separable NMF and the SPA algorithm

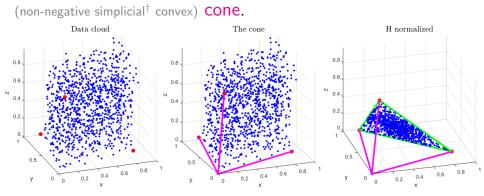
NMF tells a picture of a cone

Given \mathbf{X} , the NMF $\mathbf{X} = \mathbf{W}\mathbf{H}$ tells a picture of a



NMF tells a picture of a cone

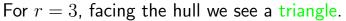
Given \mathbf{X} , the NMF $\mathbf{X} = \mathbf{W}\mathbf{H}$ tells a picture of a

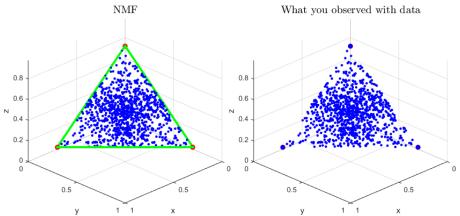


If the columns of H are normalized (sum-to-1), the cone becomes (compressed into) a convex hull.

[†]Assumes W is full rank.

NMF tells a picture of a hull





 $NMF_{(H normalized)}$ problem geometrically means "find the vertices".

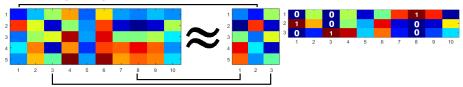
In this case, randomized NMF method is a bad move : sub-sampling of data points remove the important points.

- Algebra : $\mathbf{X} = \mathbf{W}\mathbf{H}$,
 - $\mathbf{W} = \mathbf{X}(:, \mathcal{J})$, \mathcal{J} index set

$\mathsf{Algebra} : \mathbf{X} = \mathbf{W}\mathbf{H},$

• $\mathbf{W} = \mathbf{X}(:, \mathcal{J})$, \mathcal{J} index set

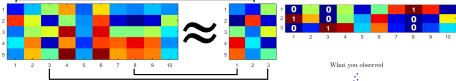
• $\mathbf{H} = [\mathbf{I}_r \ \mathbf{H}'] \mathbf{\Pi}_r$, columns of \mathbf{H}' sum-to-1.



Algebra : $\mathbf{X} = \mathbf{W}\mathbf{H}$,

• $\mathbf{W} = \mathbf{X}(:, \mathcal{J})$, \mathcal{J} index set

• $\mathbf{H} = [\mathbf{I}_r \ \mathbf{H}'] \mathbf{\Pi}_r$, columns of \mathbf{H}' sum-to-1.

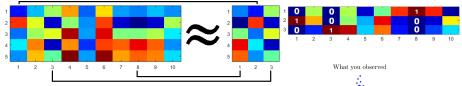


Geometry : \mathbf{X} (points) are cvx combination (described by \mathbf{H}) of vertices (\mathbf{W}).

Algebra : $\mathbf{X} = \mathbf{W}\mathbf{H}$,

• $\mathbf{W} = \mathbf{X}(:,\mathcal{J})$, \mathcal{J} index set

• $\mathbf{H} = [\mathbf{I}_r \ \mathbf{H}'] \mathbf{\Pi}_r$, columns of \mathbf{H}' sum-to-1.



Geometry : \mathbf{X} (points) are cvx combination (described by \mathbf{H}) of vertices (\mathbf{W}).

Problem : find $\mathbf{W} \iff$ find vertices from data cloud.

- Not NP-hard anymore, solvable
- Algorithm : LP, SPA, X-ray, SNPA, ...

Separability (Donoho-Stodden, 2004)

"When does non-negative matrix factorization give a correct decomposition into parts", NIPS

76 / 99

Other names : pure pixel, anchord words, extreme ray, extreme point, generators.

 $\begin{array}{l} \mathsf{Problem} \ : \ [\mathbf{W},\mathbf{H}] = \mathop{\arg\min}\limits_{\mathbf{W},\mathbf{H}} \|\mathbf{X}-\mathbf{W}\mathbf{H}\|_F \ \mathsf{s.t.} \ \mathbf{W} = \mathbf{X}(:,\mathcal{J}), \mathbf{H} = [\mathbf{I}_r\mathbf{H}']\mathbf{\Pi}_r, \mathbf{H}'^{\top}\mathbf{1} \leq \mathbf{1} \ . \end{array}$

Successive Projection Algorithm

 $\begin{array}{l} \mathsf{Problem} \ : \ [\mathbf{W},\mathbf{H}] = \mathop{\arg\min}\limits_{\mathbf{W},\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F \ \mathsf{s.t.} \ \mathbf{W} = \mathbf{X}(:,\mathcal{J}), \mathbf{H} = [\mathbf{I}_r\mathbf{H}']\mathbf{\Pi}_r, \mathbf{H}'^{\top}\mathbf{1} \leq \mathbf{1} \ . \end{array}$

Successive Projection Algorithm

• Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm. Now we have $\mathbf{W} = [\mathbf{x}_1]$.

 $\begin{array}{l} \mathsf{Problem} \ : \ [\mathbf{W},\mathbf{H}] = \mathop{\arg\min}\limits_{\mathbf{W},\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F \ \mathsf{s.t.} \ \mathbf{W} = \mathbf{X}(:,\mathcal{J}), \mathbf{H} = [\mathbf{I}_r\mathbf{H}']\mathbf{\Pi}_r, \mathbf{H}'^{\top}\mathbf{1} \leq \mathbf{1} \ . \end{array}$

Successive Projection Algorithm

• Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm. Now we have $\mathbf{W}=[\mathbf{x}_1].$

• Step 2 : project the remaining columns in X onto the subspace of the orthogonal complement of the selected columns.

 $\label{eq:projection matrix} \mathsf{Projection matrix}: \ \mathbf{I} - \frac{\mathbf{x}_1 \mathbf{x}_1^\top}{\mathbf{x}_1^\top \mathbf{x}_1}$

 $\begin{array}{l} \mathsf{Problem} \ : \ [\mathbf{W},\mathbf{H}] = \mathop{\arg\min}\limits_{\mathbf{W},\mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F \ \mathsf{s.t.} \ \mathbf{W} = \mathbf{X}(:,\mathcal{J}), \mathbf{H} = [\mathbf{I}_r\mathbf{H}']\mathbf{\Pi}_r, \mathbf{H}'^{\top}\mathbf{1} \leq \mathbf{1} \ . \end{array}$

Successive Projection Algorithm

• Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm. Now we have $\mathbf{W}=[\mathbf{x}_1].$

- Step 2 : project the remaining columns in X onto the subspace of the orthogonal complement of the selected columns.
 Projection matrix : I x₁x₁/x₁
- Step 3, 4, ... : repeat step 1-2, until $\mathbf W$ has r columns.
- How to get H : with (X, W), do a non-negative least sqaures.

Probably the "best" method for this kind of problem because :

Probably the "best" method for this kind of problem because :

- Robust
 - It can find the vertices under bounded additive noise.
 - Theorem. (Gillis-Vavasis, 2014)

Gillis-Vavasis, Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization, 2014.

If
$$\epsilon \leq \mathcal{O}\left(\frac{\sigma_{\mathbf{W}}^{\min}}{\sqrt{r\kappa_{\mathbf{W}}^2}}\right)$$
, SPA satisfies

 $\max_{k} \|\mathbf{W}(:,k) - \mathbf{X}(:,\mathcal{J}(k))\| \le \mathcal{O}(\epsilon \kappa_{\mathbf{W}}^2).$

In English : if noise is bounded, then the worse case fitting error is bounded.

Probably the "best" method for this kind of problem because :

- Robust
 - It can find the vertices under bounded additive noise.
 - Theorem. (Gillis-Vavasis, 2014)

Gillis-Vavasis, Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization, 2014.

If
$$\epsilon \leq \mathcal{O}\left(\frac{\sigma_{\mathbf{W}}^{\min}}{\sqrt{r\kappa_{\mathbf{W}}^2}}\right)$$
, SPA satisfies

 $\max_{k} \|\mathbf{W}(:,k) - \mathbf{X}(:,\mathcal{J}(k))\| \le \mathcal{O}(\epsilon \kappa_{\mathbf{W}}^2).$

In English : if noise is bounded, then the worse case fitting error is bounded.

Fast

- \blacktriangleright Computing W : just a modified Gram-Schmidt with column pivoting
- ► Computing H : a 1st-order optimization method with Nesterov's acceleration in O(¹/_{k²}).

• Few methods[†] exist that achieve **both**, many only one of the two. However,

Probably the "best" method for this kind of problem because :

- Robust
 - It can find the vertices under bounded additive noise.
 - Theorem. (Gillis-Vavasis, 2014)

Gillis-Vavasis, Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization, 2014.

If
$$\epsilon \leq \mathcal{O}\left(\frac{\sigma_{\mathbf{W}}^{\min}}{\sqrt{r\kappa_{\mathbf{W}}^2}}\right)$$
, SPA satisfies

 $\max_{k} \|\mathbf{W}(:,k) - \mathbf{X}(:,\mathcal{J}(k))\| \le \mathcal{O}(\epsilon \kappa_{\mathbf{W}}^2).$

In English : if noise is bounded, then the worse case fitting error is bounded.

Fast

- \blacktriangleright Computing ${\bf W}$: just a modified Gram-Schmidt with column pivoting
- Computing H : a 1st-order optimization method with Nesterov's acceleration in $\mathcal{O}(\frac{1}{k^2})$.

• Few methods[†] exist that achieve **both**, many only one of the two. However, the success of SPA is based on the separability assumption :

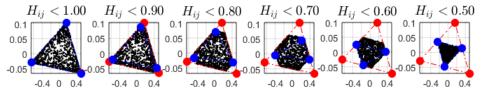
"Vertices $\mathbf W$ are *presented* in observed data $\mathbf X$ "

What if this is false ?

[†]Two examples : SNPA and preconditioned SPA by Gillis et al.

Part III (b). Volume regularized NMFs

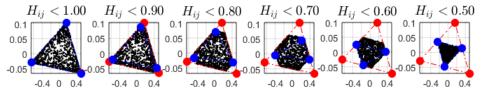
SPA fails when separability is false



Why fail : recall the first col. of ${\bf W}$ is extract as the col. of ${\bf X}$ with largest norm.

How to solve it ??

SPA fails when separability is false



Why fail : recall the first col. of ${\bf W}$ is extract as the col. of ${\bf X}$ with largest norm.

How to solve it ??

Idea : minimum volume hull fitting : Click me.

(URL : http://angms.science/eg "underscore" SNPA "underscore" ini "dot" gif)

87 / 99

Volume regularized NMF

Idea : fit with minimum volume.

How to do : volume regularization.

 $\mathsf{Problem}: \ [\mathbf{W}, \mathbf{H}] = \mathop{\mathrm{arg\,min}}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F + \lambda \mathcal{V}(\mathbf{W}),$

where $\mathcal{V}(.)$ is a prox function that measures the vol. of the cvx hull of \mathbf{W} .

Volume regularized NMF

Idea : fit with minimum volume.

How to do : volume regularization.

$$\mathsf{Problem}: \ [\mathbf{W}, \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F + \lambda \mathcal{V}(\mathbf{W}),$$

where $\mathcal{V}(.)$ is a prox function that measures the vol. of the cvx hull of **W**.

- determinant of Gramian $det(\mathbf{W}^{\top}\mathbf{W})$
- log-determinant of Gramian $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$
- rectangular box $\prod_{i=1}^r / \sum_{i=1}^r \|\mathbf{w}_i\|_2^2$
- nuclear norm ball $\|\mathbf{W}\|_*$

Volume regularized NMF

Idea : fit with minimum volume.

How to do : volume regularization.

$$\mathsf{Problem}: \ [\mathbf{W}, \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F + \lambda \mathcal{V}(\mathbf{W}),$$

where $\mathcal{V}(.)$ is a prox function that measures the vol. of the cvx hull of **W**.

- determinant of Gramian $det(\mathbf{W}^{\top}\mathbf{W})$
- log-determinant of Gramian $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$
- rectangular box $\prod_{i=1}^r / \sum_{i=1}^r \|\mathbf{w}_i\|_2^2$
- nuclear norm ball $\|\mathbf{W}\|_*$

Theoretical ground on recoverability : (Lin-Ma-Chi-Ambikapathi, 2015)

"Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case", IEEE trans. Geosci. Remote Sensing, 2015.

What is it : guarantee of finding global solution.

Solving the volume regularized NMF (high level idea)

Problem : $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W}, \mathbf{H}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F + \lambda \mathcal{V}(\mathbf{W})$, where \mathcal{V} :

- $det(\mathbf{W}^{\top}\mathbf{W})$
 - equivalent to quadratic form $\mathbf{w}_i^{ op} \mathbf{A} \mathbf{w}_i$
 - ► A is dense matrix : projection onto the Col[⊥](unselected col)
 - BCD : vector-by-vector, exact coordinate minimization
 - Tried Nesterov's ACDM (random indexing with coordinate extrapolation), no significant speed up

Solving the volume regularized NMF (high level idea)

Problem : $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W}, \mathbf{H}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F + \lambda \mathcal{V}(\mathbf{W})$, where \mathcal{V} :

- $det(\mathbf{W}^{\top}\mathbf{W})$
 - equivalent to quadratic form $\mathbf{w}_i^{ op} \mathbf{A} \mathbf{w}_i$
 - ► A is dense matrix : projection onto the Col[⊥] (unselected col)
 - BCD : vector-by-vector, exact coordinate minimization
 - Tried Nesterov's ACDM (random indexing with coordinate extrapolation), no significant speed up
- $\log \det(\mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r)$
 - non-convex
 - Lipschitz constant of gradient hard to compute
 - Inexact BCD, model relaxation
 - ★ Taylor bound : $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) \leq \operatorname{tr}(\mathbf{D}\mathbf{W}^{\top}\mathbf{W}) + c$
 - ★ Eigenvalue bound : $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) \le \nu \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) + c$

Solving the volume regularized NMF (high level idea)

 $\mathsf{Problem}: \ [\mathbf{W}, \mathbf{H}] = \operatorname*{arg\,min}_{\mathbf{W}, \mathbf{H}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F + \lambda \mathcal{V}(\mathbf{W}) \text{, where } \mathcal{V}:$

- $det(\mathbf{W}^{\top}\mathbf{W})$
 - equivalent to quadratic form $\mathbf{w}_i^{ op} \mathbf{A} \mathbf{w}_i$
 - ► A is dense matrix : projection onto the Col[⊥](unselected col)
 - BCD : vector-by-vector, exact coordinate minimization
 - Tried Nesterov's ACDM (random indexing with coordinate extrapolation), no significant speed up
- $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$
 - non-convex
 - Lipschitz constant of gradient hard to compute
 - Inexact BCD, model relaxation
 - ★ Taylor bound : $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) \leq \operatorname{tr}(\mathbf{D}\mathbf{W}^{\top}\mathbf{W}) + c$
 - ★ Eigenvalue bound : $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) \le \nu \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) + c$
- box $\prod_{i=1}^{r} / \sum_{i=1}^{r} \|\mathbf{w}_{i}\|_{2}^{2}$
 - Hadamard's inequality bounding box geometry
 - Weakest bound but simplest structure ... fast

A.-Gillis, "Volume regularized non-negative matrix factorizations", IEEE WHISPERS18, Sep23-26, 2018, Amsterdam, NL.

Summary

What are not discussed & open problems

• Fast and robust algorithm for volume regularized NMF

Related work : recent paper Javadi-Montanari 2017, "Non-negative Matrix Factorization via Archetypal Analysis"

• Tuning of the regularization parameter λ

For volume regularization, λ should be small and becoming smaller.

Other ideas

- Non-negative tensor factorizations
- ▶ NMF + Sparsity : e.g. Cohen-Gillis, 2018, submitted
- ▶ Non-negative rank rank⁺ := smallest *r* such that

$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{X}_{i}, \quad : \; \mathbf{X}_{i} \; \mathsf{rank-1} \; \mathsf{and} \; \mathsf{non-negative.}$$

How to find / estimate / bound rank⁺, e.g. rank_{psd}(\mathbf{X}) \leq rank⁺(\mathbf{X}).

- Combinatorial optimization, extended formulations.
- Log-rank Conjecture, Exponential time hypothesis, $\mathbf{P} \neq \mathbf{NP}$.

What are discussed

Non-negative Matrix Factorization

- What is it, and why
- How to solve it
- How to solve it fast

What are discussed

Non-negative Matrix Factorization

- What is it, and why
- How to solve it
- How to solve it fast
- Separable Non-negative Matrix Factorization
 - What is it, and why
 - How to solve it fast and robust (model identifiability)

Non-negative Matrix Factorization

- What is it, and why
- How to solve it
- How to solve it fast
- Separable Non-negative Matrix Factorization
 - What is it, and why
 - How to solve it fast and robust (model identifiability)
- Volume regularized Non-negative Matrix Factorization
 - What is it, and why
 - (Not in detail) model identifiability
 - How to solve it ... fast

Last page

Non-negative Matrix Factorization, Why NMF

See my boss.

• How to solve NMF fast

A.-Gillis, "Accelerating Non-negative matrix factorization by extrapolation", to appear in *Neural Computation*, 2018.

- Geometry of NMF, Separable NMF, how to solve it fast and robust See my boss.
- When separability fails, minimum volume NMF, how to solve it *fast* A.-Gillis, "Volume regularized non-negative matrix factorizations", IEEE WHISPERS18, Sep23-26, 2018, Amsterdam, NL.

Ideas are simple, devils in details. END OF PRESENTATION.

Slide, code, preprint in angms.science

ACK : my boss Nicolas Gillis, European Research Council Grant #679515.