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Part I.
Introduction



Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ Rm×n
+ .

A positive integer r ∈ N.

Find :

Matrices W ∈ Rm×r
+ ,H ∈ Rr×n

+ such that X = WH.
Important : everything is non-negative.

Notation : we use WH instead of WH>.
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Exact and approximate NMF

Given (X ∈ Rm×n
+ , r ∈ N), find (W ∈ Rm×r

+ ,H ∈ Rr×n
+ )

s.t. X = WH is called exact NMF, NP-hard (Vavasis, 2007).
Vavasis, ”On the complexity of nonnegative matrix factorization”, SIAM J. Optim.

Focus of this talk : (Low-rank) approximate NMF

X ≈WH, 1 ≤ r ≤ min{m,n}.
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Find (W,H) numerically

Given (X ∈ Rm×n
+ , 1 ≤ r ≤ min{m,n}), find

(W ∈ Rm×r
+ ,H ∈ Rr×n

+ ) s.t. X ≈WH via solving

[W, H] = argmin
W≥0,H≥0

‖X−WH‖F .

Minimizing the distance between X and the
approximator WH in F-norm†.

≥ is element-wise (not positive semi-definite).

Such bivariate non-convex minimization problem is
ill-posed and also NP-hard (Vavasis, 2007).

* From now on, the inequality notations ≥ 0 will be skipped.

†This talk does not consider other distance functions.
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The scope of this talk

Given (X, r), find (W,H) via solving

[W, H] = arg min
W,H

‖X−WH‖F subject to ? ,

where ? : additional constraint(s)/regularization(s) that make the problem
”better”. ? in this talk :

Nothing (this part) - NMF in the original form – NP-hard
I How to numerically solve it ... fast

Separability - to tackle the NP-hardness.
I How to numerically solve it ... fast and robust

Minimum volume - to generalize the separability.
I How to numerically solve it ... fast
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Four slides on why NMF



For non-NMF people : why NMF ?

General overview

Interpretability
NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on non-negative data.

Model correctness
NMF can find ground truth (under certain conditions).

Mathematical curiosity
NMF is related to some serious problems in mathematics.

My boss tell me to do it.
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Why NMF - Hyper-spectral image application (1/2)

Figure: Hyper-spectral image decomposition. Figure shamelessly copied from (Gillis,2014).

N. Gillis, ”The why and how of nonnegative matrix factorization”, 2014 15 / 99



Why NMF - Hyper-spectral image application (2/2)

Figure: Hyper-spectral imaging. Figure modified from N. Gillis.
16 / 99



Why NMF - other examples
Application side

Spectral unmixing in analytical chemistry (one of the earliest work)
Representation learning on human face (the work that popularizes NMF)
Topic modeling in text mining
Probability distribution application on identification of Hidden Markov Model
Bioinformatics : gene expression
Time-frequency matrix decompositions for neuroinformatics
(Non-negative) Blind source separation
(Non-negative) Data compression
Speech denoising
Recommender system
Face recognition
Video summarization
Forensics
Art work conservation (identify true color used in painting)
Medical imaging – image processing on small object
Mid-infrared astronomy – image processing on large object
Last week : Tells whether a banana or a fish is healthy by NMF

Theoretical numerical side
A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
Robustness analysis of algorithm
Tensor
Sparsity

Analytical side

Non-negative rank rank+ := smallest r such that

X =

r∑
i=1

Xi, : Xi rank-1 and non-negative.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X).

Extended formulations and combinatorics
Log-rank Conjecture of communication system
3-SAT, Exponential time hypothesis, P 6= NP
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Part II (1/2).
How to numerically solve NMF



Find (W,H) numerically

Given (X, r), find (W,H) s.t. X ≈WH via solving

[W, H] = argmin
W≥0,H≥0

‖X−WH‖F .

Equivalent objective function :
1

2
‖X−WH‖2

F .

Simplify notation : hide some ≥ 0,
1

2
, F

[W, H] = argmin
W,H

‖X−WH‖2.
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Standard framework – 2-Block Coordinate Descent

Problem P : given (X, r), solve min
W,H

‖X−WH‖2.

Approach : BCD (a.k.a. alternating minimization)

Algorithm BCD framework for P
Input: X ∈ Rm×n+ , r ∈ N, an initialization W ∈ Rm×r+ , H ∈ Rr×n+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W].

e.g. exact coordinate minimization W← arg min
W≥0

‖X−WH‖2F .

3: Update[H].
e.g. exact coordinate minimization H← arg min

H≥0
‖X−WH‖2F .

4: end for

* Symmetry : ‖X−WH‖2F = ‖X> −H>W>‖2F ,
→ focus on one variable, says H (update of W is similar).
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Variations of the optimization subproblem

Update[H] : H← argmin
H≥0

‖X−WH‖2
F

1 Block partitions : on how coordinate is defined†.
This talk : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is selected#.
This talk : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is updated#.
This talk : ”exact” coordinate minimization using 1st order method
(e.g. gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants (not in this talk)
† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Op.

#Shi-Xu-Yin 2016,”A primer on coordinate descent algo.” arXiv:1610.00040
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HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

‖X−WH‖2F = ‖W(:, i)‖22‖H(i, :)‖22 − 2 tr 〈Xi,W(:, i)H(i, :)〉+ c

Alternating minimization using cyclic indexing
Domain name in NMF : HALS (Hierarchical alternating least squares†)

W(:, 1)→ H(1, :)→W(:, 2)→ H(2, :)→W(:, 3)→ H(3, :)→ ...

A-HALS#

W(:, 1)→W(:, 2)→W(:, 3)︸ ︷︷ ︸
several times

→ H(1, :)→ H(2, :)→ H(3, :)︸ ︷︷ ︸
several times

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

# Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.
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A-HALS avoids repeated computations by reuse

Projected† gradient descent

wi = wi − t (‖hi‖22wi −Xih
>
i )︸ ︷︷ ︸

∇wif

, hi = hi − t (‖wi‖22hi −w>i X)︸ ︷︷ ︸
∇hif

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1 )

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2 )

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3 )

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1 )

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2 )

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3 )

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.
A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency
improvement : ”significant if big big#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse.
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Part II (2/2).
How to numerically solve NMF ... fast



Acceleration via extrapolation

Recall : NMF is NP-Hard.
Then what’s the acceleration for : obtain a local solution faster.

Recall : acceleration in one-variable problem min
x∈C

f(x).

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

GD Update xk+1 = xk − tk∇f(xk)︸ ︷︷ ︸
Update[xk]

.

Linear extrapolation xk+1 = xk − tk∇f(xk), yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk := extrapolation parameter︸ ︷︷ ︸
a single number

.
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Why extrapolation : gradient descent zig-zags on ellipse

Facts : consecutive update directions of GD are orthogonal (⊥).
If the landscape is not ”spherical”, GD zig-zags → slow.
e.g. : moving along a long narrow valley.

Picture modified from http://www.nbertagnolli.com/jekyll/update/2015/10/28/Descent-Methods.html
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What machine learning people do to counter zig-zag?

Do tricks on step size : don’t move with step size t but
t

damping factor
.

Length of pink segment <
length of the corresponding
red segment =⇒ points on
pink segment is closer to axis
y = 0 , gradient stronger x-
component =⇒ less oscilla-
tion along y-direction.

The idea behind AdaGrad and AdaDelta : shrink the step size when you

see zig-zag (trace of the objective function appears to plateau).
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What optimization people do to counter zig-zag?

Do tricks on direction : by extrapolation with momentum.

Idea : apply extrapolation.
Extrapolate = add gradient history.

(1) if gradients in consecutive steps have
consistent direction
=⇒ extrapolate = accelerate.
(2) if gradients in consecutive steps oscillates
(continuously changing direction)
=⇒ extrapolate = damp oscillation =
acceleration.

Figure shows the trace of points decomposed into x- and y-component.
The x-components have consistent direction while y-components are not.
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The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).
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The geometry of extrapolation

We always have

∠(xk+1 − yk)≥∠(xk+2 − xx+1)≥∠(xk+2 − yk+1)

i.e. the direction of the last step is in between the directions of previous
two gradient steps : zig-zag effect is reduced !
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Nesterov’s acceleration

1 For convex function,

βk =
1− αk
αk+1

, αk+1 =
1 +

√
1 + 4α2

k

2
, α1 ∈ (0, 1)

2 For smooth strongly convex function with conditional number Q,

βk =
1−
√
Q

1 +
√
Q
, where Q =

L

µ
=

Smoothness parameter

Strong convexity parameter

With convergence improvement : from O(Q log 1
ε ) to O(

√
Q log 1

ε )

Key : Nesterov’s acceleration has a close-form formula for βk
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Extrapolation is not monotone, nor descent, nor greedy

GD is locally optimal/greedy =⇒ extrapolation may ↑objective value

Extrapolation = a risky move

Picture from Donoghue-Candés 2015, ”Adaptive Restart for Accelerated Gradient Schemes”

Acceleration comes from doing the risky move :

”sacrifice the decreases of objective value now for the better future”

Actually also sacrifice robustness : accelerated gradient is not stable to noise (Devolder-Glineur-Nesterov 2014) 49 / 99



Our case

Problem P is non-cvx but bi-cvx. P =
{

Given (X, r), solve min
W,H

‖X−WH‖2
}

.

=⇒ no strong cvx parameter µ. Cannot use expression likes βk =
1−
√
Q

1 +
√
Q

.

For 
On W

{
Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βW
k (Wnew −Wold)

On H

{
Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βH
k (Hnew −Hold)

,

Need a way (close-/no close-form) to find βk !

Approach : an ad hoc heurisitic in the ”line search” style.
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Details of the extrapolation

”Update-then-extrapolate” framework for the ncvx (bi-cvx) problem
On W

{
Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βW
k (Wnew −Wold)

On H

{
Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βH
k (Hnew −Hold)

The key βk
β has to be smaller than 1 (same as the convex case)
If β ∈ (0, 1) : extrapolation, doing risky step
If β = {1, 0} : doing {very risky, no} extrapolation
Can’t use line search† to find β : experimentally found β close to 0
– minor extrapolation, effectively doing nothing

Why ad hoc heuristics ?

(1) The ncvx problem is hard, (2) No better idea
No convergence theorem now.
A postdoc of SeLMA (Hien Lê) is working on it.

To optimization theorists : you can try.

†Line search to minimize the objective function directly – performed before the update
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To optimization theorists : you can try.

†Line search to minimize the objective function directly – performed before the update

55 / 99



Details of the extrapolation

”Update-then-extrapolate” framework for the ncvx (bi-cvx) problem
On W

{
Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βW
k (Wnew −Wold)

On H

{
Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βH
k (Hnew −Hold)

The key βk
β has to be smaller than 1 (same as the convex case)
If β ∈ (0, 1) : extrapolation, doing risky step
If β = {1, 0} : doing {very risky, no} extrapolation
Can’t use line search† to find β : experimentally found β close to 0
– minor extrapolation, effectively doing nothing

Why ad hoc heuristics ?

(1) The ncvx problem is hard, (2) No better idea
No convergence theorem now.
A postdoc of SeLMA (Hien Lê) is working on it.
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Details : Update[βk]

Landscape of variable at each iteration is different =⇒ dynamical update

Algorithm A dynamic line search style† ad hoc heuristics

Input: Parameters 1 < γ̄ < γ < η, an initialization β1 ∈ (0, 1)
Output: βk : the extrapolation parameter

1: Set β̄ = 1 (dynamic ”upper bound” of β)
2: if error ↓ at iteration k then
3: Increase βk+1 : βk+1 = min{β̄, γβk}
4: (Increase β̄ if β̄ < 1 : β̄ = min{1, γ̄β̄})
5: else
6: Decrease βk+1 : βk+1 = βk/η
7: Set β̄ = βk
8: end if

Meaning :
- Go further/”speed up” when suitable (error↓) : more ambitious, make β ↑, take more risk
- Go back/”slow down” when not suitable (error↑) : less ambitious, make β ↓, take less risk
- γ, γ̄, η : growth and decay parameters

†Line search after updates of W and H – performed after the update! 58 / 99



The full algo of Accelerated NMF using extrapolation

Input: X, initialization W,H, parameters hp ∈ {1, 2, 3} (extrapolation/projection of H).
Output: W,H.

1: Wy = W; Hy = H; e(0) = ||X−WH||F .

2: for k = 1, 2, . . . do

3: Compute Hn by min
Hn≥0

||X−WyHn||2F using Hy as initial iterate.

4: if hp ≥ 2 then

5: Extrapolate: Hy = Hn + βk(Hn −H).

6: end if
7: if hp = 3 then

8: Project: Hy = max
(
0,Hy

)
.

9: end if
10: Compute Wn by min

Wn≥0
||X−WnHy||2F using Wy as initial iterate.

11: Extrapolate: Wy = Wn + βk(Wn −W).

12: if hp = 1 then

13: Extrapolate: Hy = Hn + βk(Hn −H).

14: end if
15: Compute error: e(k) = ||X−WnHy||F .

16: if e(k) > e(k − 1) then

17: Restart: Hy = Hn; Wy = Wn.

18: else
19: H = Hn; W = Wn.
20: end if
21: end for

Notation : Wn normal variable, Wy extrpolate variable, W previous Wn

... too hard to read !!
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Algorithm (hp = 1), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
5: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).
6: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).

7: Compute error: e(k) = ||X−WnHy||F .
8: if e(k) > e(k − 1) then
9: Restart: Hy = Hn; Wy = Wn.

10: else
11: H = Hn; W = Wn.
12: end if
13: end for

”Up, Up, Ex, Ex”
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Algorithm (hp = 2), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).
5: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
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Algorithm (hp = 3), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).
5: Project: Hy = max (0,Hy).
6: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
7: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).

8: Compute the error: e(k) = ||X−WnHy||F .
9: if e(k) > e(k − 1) then

10: Restart: Hy = Hn; Wy = Wn.
11: else
12: H = H; W = Wn.
13: end if
14: end for

”Up, Ex, Pro, Up, Ex”
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Summary and notes (1/2)

1. Extrapolation may break NN (≥ 0) constraint :

hp = 1 hp = 2 hp = 3

(Up-Up-Ex-Ex) (Up-Ex-Up-Ex) (Up-Ex-Pro-Up-Ex)

Step NN? Step NN? Step NN?

Update[Hn] Y Update[Hn] Y Update[Hn] Y
Update[Wn] Y Extrap[Hy] N Extrap[Hy] N

Project[Hy] Y
Extrap[Hy] N Update[Wn] Y Update[Wn] Y
Extrap[Wy] N Extrap[Wy] N Extrap[Wy] N

2. Update using matrix with negative values :
Update[Hn] w.r.t. Hn ≥ 0 with (X,Wy,Hn), using Hy as initial iterate
Update[Wn] wr.t. Wn ≥ 0 with (X,Wn,Hy), using Wy as initial iterate
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Summary and notes (2/2)

1. Extrapolation may break NN (≥ 0) constraint :

hp = 1 hp = 2 hp = 3

(Up-Up-Ex-Ex) (Up-Ex-Up-Ex) (Up-Ex-Pro-Up-Ex)

Step NN? Step NN? Step NN?

Update[Hn] Y Update[Hn] Y Update[Hn] Y
Update[Wn] Y Extrap[Hy] N Extrap[Hy] N

Project[Hy] Y
Extrap[Hy] N Update[Wn] Y Update[Wn] Y
Extrap[Wy] N Extrap[Wy] N Extrap[Wy] N

3. Restart using e(k) as ‖X−WnHy‖F not ‖X−WnHn‖F
Why : (i) Wn was updated according to Hy (see point 2)
(ii) it gives the algorithm some degrees of freedom to possibly increase the
objective function
(iii) computationally cheaper, as compute ‖X−WnHn‖F need O(mnr)
operations instead of O(mr2) by re-using previous computed terms :
‖X−WH‖2F = ‖X‖2F − 2

〈
W,XH>

〉
+
〈
W>W,HH>

〉
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Experiments

Notations

A-HALS : vector-wise update, compute approximate solution
ANLS : subproblem solved exactly using active-set methods
E : extrapolation

Set up

Average error over 10 trials
W,H,X randomly generated ∼ U [0, 1], m = n = 200, r = 20
Error comparisions : using lowest relative error emin across all
algorithms, at step k,

E(k) =
‖X−WkHk‖F

‖X‖F
− emin

It is possible emin = 0 and not shown
Extrapolation parmater β0 = [0.25, 0.5, 0.75]
η0 = [1.5, 2, 3]
γ, γ̄ = [1.01, 1.005], [1.05, 1.01], [1.1, 1.05]
For display : only best and worst to illustrate sensitivity (for hp = 2)
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Low-rank synthetic data Image data

Image data
Text data

Fast conclusion : E wins. 66 / 99



Compare with other method on speed (time)

Time (s.)
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Average err. of ANLS, A-HALS and extrapolated variants, on low-rank (left) and
full-rank (right) synthetic data. APG-MF = an extrapolated proximal type
algorithm, with convergence proof.

Fast conclusion : E wins and beats APG-MF†.

† Xu-Yin 2013 ”A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion”. SIAM J. Img Sci.
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Overall results : E wins!
Method Data Ex wins?

A-HALS

Low/full rank synthetic data YES
Dense Image data† YES
Sparse text data# YES

ANLS

Low/full rank synthetic data YES
Dense Image data† YES
Sparse text data# YES

† ORL, Umist, CBCL, Frey, # Zhong-Ghosh 2005. Generative model-based document clustering: a comparative study

Conclusions

No matter what method XXX, E-XXX > XXX.

E-XXX > APG-MF (an extrapolated proximal-type method).

Between E-ANLS vs E-A-HALS : no clear winner
I Low rank synthetic data : E-ANLS � everything
I Dense data : E-A-HALS ≈ E-ANLS, although A-HALS > ANLS
I Sparse data : E-A-HALS � everything

Between different hp
I Up-Ex-Up-Ex (hp = 2) seems worst
I Up-Up-Ex-Ex (hp = 1) or Up-Ex-Pro-Up-Ex (hp = 3) are better

Don’t trust me ? Go https://arxiv.org/abs/1805.06604, try the code!
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Part III (a).
NMF geometry, Separable NMF

and the SPA algorithm



NMF tells a picture of a cone

Given X, the NMF X = WH tells a picture of a
(non-negative simplicial† convex) cone.

If the columns of H are normalized (sum-to-1), the cone
becomes (compressed into) a convex hull.

†Assumes W is full rank.
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NMF tells a picture of a hull

For r = 3, facing the hull we see a triangle.

NMF(H normalized) problem geometrically means ”find the vertices”.

In this case, randomized NMF method is a bad move : sub-sampling of data points remove the important points.
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Separable Non-negative Matrix Factorization

Algebra : X = WH,

W = X(:,J ), J index set

H = [Ir H′]Πr, columns of H′ sum-to-1.

Geometry : X (points) are cvx combination
(described by H) of vertices (W).

Problem : find W ⇐⇒ find vertices from data cloud.

Not NP-hard anymore, solvable
Algorithm : LP, SPA, X-ray, SNPA, ...

Separability (Donoho-Stodden, 2004)
”When does non-negative matrix factorization give a correct decomposition into parts”, NIPS

Other names : pure pixel, anchord words, extreme ray, extreme point, generators.
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Fast and robust algorithm for separable NMF

Problem : [W,H] = arg min
W,H

‖X−WH‖F s.t. W = X(:,J ),H = [IrH′]Πr,H′>1 ≤ 1 .

Successive Projection Algorithm

Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm.
Now we have W = [x1].

Step 2 : project the remaining columns in X onto the subspace of the
orthogonal complement of the selected columns.

Projection matrix : I− x1x
>
1

x>1 x1

Step 3, 4, ... : repeat step 1-2, until W has r columns.

How to get H : with (X,W), do a non-negative least sqaures.

77 / 99



Fast and robust algorithm for separable NMF

Problem : [W,H] = arg min
W,H

‖X−WH‖F s.t. W = X(:,J ),H = [IrH′]Πr,H′>1 ≤ 1 .

Successive Projection Algorithm

Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm.
Now we have W = [x1].

Step 2 : project the remaining columns in X onto the subspace of the
orthogonal complement of the selected columns.

Projection matrix : I− x1x
>
1

x>1 x1

Step 3, 4, ... : repeat step 1-2, until W has r columns.

How to get H : with (X,W), do a non-negative least sqaures.

78 / 99



Fast and robust algorithm for separable NMF

Problem : [W,H] = arg min
W,H

‖X−WH‖F s.t. W = X(:,J ),H = [IrH′]Πr,H′>1 ≤ 1 .

Successive Projection Algorithm

Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm.
Now we have W = [x1].

Step 2 : project the remaining columns in X onto the subspace of the
orthogonal complement of the selected columns.

Projection matrix : I− x1x
>
1

x>1 x1

Step 3, 4, ... : repeat step 1-2, until W has r columns.

How to get H : with (X,W), do a non-negative least sqaures.

79 / 99



Fast and robust algorithm for separable NMF

Problem : [W,H] = arg min
W,H

‖X−WH‖F s.t. W = X(:,J ),H = [IrH′]Πr,H′>1 ≤ 1 .

Successive Projection Algorithm

Step 1 : find the column in X with the largest norm.

Geometry : the point furthest away has largest norm.
Now we have W = [x1].

Step 2 : project the remaining columns in X onto the subspace of the
orthogonal complement of the selected columns.

Projection matrix : I− x1x
>
1

x>1 x1

Step 3, 4, ... : repeat step 1-2, until W has r columns.

How to get H : with (X,W), do a non-negative least sqaures.

80 / 99



Successive Projection Algorithm (SPA)

Probably the ”best” method for this kind of problem because :

Robust
I It can find the vertices under bounded additive noise.
I Theorem. (Gillis-Vavasis, 2014)

Gillis-Vavasis, Fast and Robust Recursive Algorithmsfor Separable Nonnegative Matrix Factorization, 2014.

If ε ≤ O
( σmin

W√
rκ2W

)
, SPA satisfies

max
k
‖W(:, k)−X(:,J (k))‖ ≤ O(εκ2W).

In English : if noise is bounded, then the worse case fitting error is bounded.

Fast
I Computing W : just a modified Gram-Schmidt with column pivoting
I Computing H : a 1st-order optimization method with Nesterov’s

acceleration in O( 1
k2 ).

Few methods† exist that achieve both, many only one of the two.

However, the success of SPA is based on the separability assumption :

”Vertices W are presented in observed data X”

What if this is false ?
†Two examples : SNPA and preconditioned SPA by Gillis et al.
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I Computing W : just a modified Gram-Schmidt with column pivoting
I Computing H : a 1st-order optimization method with Nesterov’s

acceleration in O( 1
k2 ).

Few methods† exist that achieve both, many only one of the two.

However, the success of SPA is based on the separability assumption :

”Vertices W are presented in observed data X”

What if this is false ?
†Two examples : SNPA and preconditioned SPA by Gillis et al.
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Part III (b).
Volume regularized NMFs



SPA fails when separability is false

Why fail : recall the first col. of W is extract as the col. of X with largest
norm.

How to solve it ??

Idea : minimum volume hull fitting : Click me.
(URL : http://angms.science/eg ”underscore” SNPA ”underscore” ini ”dot” gif)
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Volume regularized NMF

Idea : fit with minimum volume.

How to do : volume regularization.

Problem : [W,H] = arg min
W,H

‖X−WH‖F + λV(W),

where V(.) is a prox function that measures the vol. of the cvx hull of W.

determinant of Gramian det(W>W)

log-determinant of Gramian log det(W>W + δIr)

rectangular box
∏r
i=1 /

∑r
i=1 ‖wi‖22

nuclear norm ball ‖W‖∗

Theoretical ground on recoverability : (Lin-Ma-Chi-Ambikapathi, 2015)
”Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing:

The No-Pure-Pixel Case”, IEEE trans. Geosci. Remote Sensing, 2015.

What is it : guarantee of finding global solution.
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Solving the volume regularized NMF (high level idea)

Problem : [W,H] = arg min
W,H

‖X−WH‖F + λV(W), where V :

det(W>W)
I equivalent to quadratic form w>i Awi

I A is dense matrix : projection onto the Col⊥
(
unselected col

)
I BCD : vector-by-vector, exact coordinate minimization
I Tried Nesterov’s ACDM (random indexing with coordinate

extrapolation), no significant speed up

log det(W>W + δIr)
I non-convex
I Lipschitz constant of gradient hard to compute
I Inexact BCD, model relaxation

F Taylor bound : log det(W>W + δIr) ≤ tr(DW>W) + c
F Eigenvalue bound : log det(W>W + δIr) ≤ ν tr(W>W) + c

box
∏r
i=1 /

∑r
i=1 ‖wi‖22

I Hadamard’s inequality – bounding box geometry
I Weakest bound but simplest structure ... fast

A.-Gillis, ”Volume regularized non-negative matrix factorizations”, IEEE WHISPERS18,

Sep23-26, 2018, Amsterdam, NL.
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Summary



What are not discussed & open problems

Fast and robust algorithm for volume regularized NMF
Related work : recent paper Javadi-Montanari 2017, ”Non-negative Matrix Factorization

via Archetypal Analysis”

Tuning of the regularization parameter λ
For volume regularization, λ should be small and becoming smaller.

Other ideas
I Non-negative tensor factorizations
I NMF + Sparsity : e.g. Cohen-Gillis, 2018, submitted
I Non-negative rank rank+ := smallest r such that

X =

r∑
i=1

Xi, : Xi rank-1 and non-negative.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X).
I Combinatorial optimzation, extended formulations.
I Log-rank Conjecture, Exponential time hypothesis, P 6= NP.
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What are discussed

Non-negative Matrix Factorization
I What is it, and why
I How to solve it
I How to solve it fast

Separable Non-negative Matrix Factorization
I What is it, and why
I How to solve it fast and robust (model identifiability)

Volume regularized Non-negative Matrix Factorization
I What is it, and why
I (Not in detail) model identifiability
I How to solve it ... fast
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Last page

Non-negative Matrix Factorization, Why NMF
See my boss.

How to solve NMF fast
A.-Gillis, ”Accelerating Non-negative matrix factorization by extrapolation”, to appear in

Neural Computation, 2018.

Geometry of NMF, Separable NMF, how to solve it fast and robust
See my boss.

When separability fails, minimum volume NMF, how to solve it fast
A.-Gillis, ”Volume regularized non-negative matrix factorizations”, IEEE WHISPERS18,

Sep23-26, 2018, Amsterdam, NL.

Ideas are simple, devils in details.
END OF PRESENTATION.

Slide, code, preprint in angms.science

ACK : my boss Nicolas Gillis, European Research Council Grant #679515.
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