
Accelerating Non-negative Matrix Factorization
Algorithms using Extrapolation, and more

i.e. How to min
W,H
‖X−WH‖F subject to W ≥ 0,H ≥ 0

Andersen Ang

Mathématique et recherche opérationnelle, UMONS, Belgium
Email: manshun.ang@umons.ac.be Homepage: angms.science

PANAMA, {INRIA,IRISA}, Rennes, France
Feburary 12, 2019

Overview

1 Introduction

2 Find (W,H) numerically
Variations on BCD
A-HALS
Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Convergence of the algorithms
Application of PALM on NMF
Convergence condition of PALM

2 / 119

Outline

1 Introduction

2 Find (W,H) numerically
Variations on BCD
A-HALS
Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Convergence of the algorithms
Application of PALM on NMF
Convergence condition of PALM

3 / 119

Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ IRm×n
+ .

A positive integer r ∈ IN.

Find :

Matrices W ∈ IRm×r
+ ,H ∈ IRr×n

+ such that X = WH.
Important : everything is non-negative.

Notation : we use WH instead of WH>.

4 / 119

Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ IRm×n
+ .

A positive integer r ∈ IN.

Find :

Matrices W ∈ IRm×r
+ ,H ∈ IRr×n

+ such that X = WH.

Important : everything is non-negative.

Notation : we use WH instead of WH>.

5 / 119

Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ IRm×n
+ .

A positive integer r ∈ IN.

Find :

Matrices W ∈ IRm×r
+ ,H ∈ IRr×n

+ such that X = WH.
Important : everything is non-negative.

Notation : we use WH instead of WH>. 6 / 119

Exact and approximate NMF

Given (X ∈ IRm×n
+ , r ∈ IN), find (W ∈ IRm×r

+ ,H ∈ IRr×n
+)

s.t. X = WH is called exact NMF.

It is NP-hard (Vavasis, 2007).
Vavasis, ”On the complexity of nonnegative matrix factorization”, SIAM J. Optim.

This talk : (Low-rank) approximate NMF

X ≈WH, 1 ≤ r ≤ min{m,n}.

7 / 119

Exact and approximate NMF

Given (X ∈ IRm×n
+ , r ∈ IN), find (W ∈ IRm×r

+ ,H ∈ IRr×n
+)

s.t. X = WH is called exact NMF.

It is NP-hard (Vavasis, 2007).
Vavasis, ”On the complexity of nonnegative matrix factorization”, SIAM J. Optim.

This talk : (Low-rank) approximate NMF

X ≈WH, 1 ≤ r ≤ min{m,n}.

8 / 119

Find (W,H) numerically

Given (X ∈ IRm×n
+ , 1 ≤ r ≤ min{m,n}), find

(W ∈ IRm×r
+ ,H ∈ IRr×n

+) s.t. X ≈WH via solving

[W, H] = arg min
W≥0,H≥0

‖X−WH‖F .

Minimizing the distance between X and the
approximator WH in F-norm†.

≥ is element-wise (not positive semi-definite).
Such minimization problem is

I Bi-variate : two variables
I Non-smooth : on the boundary between IR+ and IR−
I Non-convex
I Ill-posed and NP-hard (Vavasis, 2007)

†This talk does not consider other distance functions.

9 / 119

The scope of this talk

Solving the minimization problem

[W, H] = arg min
W≥0,H≥0

‖X−WH‖F ,

Keywords : Numerical optimization, Continuous
optimization, Algorithm, Convergence, Non-convex,
Nesterov’s Acceleration, Extrapolation

Non-keywords : Sparsity, Regularization, Applications of
NMFs, Extended Formulations, Separability, Non-negative
rank

10 / 119

4 slides on why NMF c’est bon bon

For non-NMF people : why NMF ?

Interpretability

NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on non-negative data.

Model correctness

NMF can find ground truth (under certain conditions).

Mathematical curiosity

NMF is related to some serious problems in mathematics.

My boss tell me to do it.

12 / 119

Why NMF - Hyper-spectral image application (1/2)

NMF gives good unsupervised image segmentation1

Figure: Hyper-spectral image decomposition. Figure from (Zhu,2014).

Zhu, F. et al., Spectral unmixing via data-guided sparsity. IEEE Trans. Image Processing

Comment est-ce possible ?!

1Modern fancy name : ”super resolution”

13 / 119

Why NMF - Hyper-spectral image application (2/2)

Figure: Hyper-spectral imaging. Figure modified from the slide of Nicolas Gillis.
14 / 119

Why NMF - other examples
Application side

Spectral unmixing in analytical chemistry (one of the earliest work)
Representation learning on human face (the work that popularizes NMF)
Topic modeling in text mining
Probability distribution application on identification of Hidden Markov Model
Bioinformatics : gene expression
Time-frequency matrix decompositions for neuroinformatics
(Non-negative) Blind source separation
(Non-negative) Data compression
Speech denoising
Recommender system
Face recognition
Video summarization
Radio
Forensics
Art work conservation (identify true color used in painting)
Medical imaging – image processing on small object
Mid-infrared astronomy – image processing on large object
Telling whether a banana or a fish is healthy

Theoretical numerical side
A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
Robustness analysis of algorithm
Tensor
Sparsity

Analytical side

Non-negative rank rank+ := smallest r such that

X =
r∑

i=1

Xi, : Xi rank-1 and non-negative.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X).

Extended formulations and combinatorics
Log-rank Conjecture of communication system
3-SAT, Exponential time hypothesis, P 6= NP 15 / 119

Outline

1 Introduction

2 Find (W,H) numerically
Variations on BCD
A-HALS
Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Convergence of the algorithms
Application of PALM on NMF
Convergence condition of PALM

16 / 119

Notations

Problem (P) :
Given (X, r), solve

[W, H] = arg min
W≥0,H≥0

Φ(W,H) = ‖X−WH‖F .

Equivalent objective function :
1

2
‖X−WH‖2

F .

Simplify notation : hide some ≥ 0,
1

2
, F and just write

min
W,H

Φ(W,H) = ‖X−WH‖2.

17 / 119

Standard framework to solve (P)

Problem (P) : min
W,H

Φ(W,H) = ‖X−WH‖2.

Approach : BCD (Block Coordinate Descent)2

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] : do something with Φ,X,W,H.
3: Update[H] : do something with Φ,X,W,H.
4: end for

The goal of ”do something” is to achieve

Φ(Wk+1,Hk+1) ≤ Φ(Wk+1,Hk) ≤ Φ(Wk,Hk).

2Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)

18 / 119

An example

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] as W← arg min

W≥0
‖X−WH‖2F .

3: Update[H] as H← arg min
H≥0
‖X−WH‖2F .

4: end for

Symmetry : ‖X−WH‖2
F = ‖X> −H>W>‖2

F ,
→ we can use the same scheme on both variables.
We can focus on one variable, says H (or W).

If asymmetric regularization exists on W (or H) : we
have to handle them separately.

19 / 119

An example

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] as W← arg min

W≥0
‖X−WH‖2F .

3: Update[H] as H← arg min
H≥0
‖X−WH‖2F .

4: end for

Symmetry : ‖X−WH‖2
F = ‖X> −H>W>‖2

F ,
→ we can use the same scheme on both variables.
We can focus on one variable, says H (or W).

If asymmetric regularization exists on W (or H) : we
have to handle them separately.

20 / 119

Variations on BCD

Update[H] : H← arg min
H≥0
‖X−WH‖2

F

1 Block partitions : on how coordinate is being defined†.
This talk : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
This talk : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
This talk : ”exact” coordinate minimization using 1st order method
(e.g. gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants (not in this talk)

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

21 / 119

Variations on BCD

Update[H] : H← arg min
H≥0
‖X−WH‖2

F

1 Block partitions : on how coordinate is being defined†.
This talk : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
This talk : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
This talk : ”exact” coordinate minimization using 1st order method
(e.g. gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants (not in this talk)

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

22 / 119

Variations on BCD

Update[H] : H← arg min
H≥0
‖X−WH‖2

F

1 Block partitions : on how coordinate is being defined†.
This talk : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
This talk : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
This talk : ”exact” coordinate minimization using 1st order method
(e.g. gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants (not in this talk)

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

23 / 119

Variations on BCD

Update[H] : H← arg min
H≥0
‖X−WH‖2

F

1 Block partitions : on how coordinate is being defined†.
This talk : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
This talk : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
This talk : ”exact” coordinate minimization using 1st order method
(e.g. gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants (not in this talk)

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

24 / 119

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

Φ = ‖X−WH‖2
F = ‖wi‖2

2‖hi‖2
2 − 2tr 〈Xi,wihi〉+ c.

Alternating minimization using cyclic indexing
Other name : BCD with r = 2 with cyclic component selection
Domain name in NMF : HALS (Hierarchical alternating least squares†)

Update order : w1 → h1 → w2 → h2 → w3 → h3 → ...

A-HALS# (Accelerated-HALS)
A special kinds of cyclic coordinate selection

Update order : w1 → w2 → · · · → wr︸ ︷︷ ︸
several times!!

→ h1 → h2 → · · · → hr︸ ︷︷ ︸
several times!!

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.

25 / 119

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

Φ = ‖X−WH‖2
F = ‖wi‖2

2‖hi‖2
2 − 2tr 〈Xi,wihi〉+ c.

Alternating minimization using cyclic indexing
Other name : BCD with r = 2 with cyclic component selection
Domain name in NMF : HALS (Hierarchical alternating least squares†)

Update order : w1 → h1 → w2 → h2 → w3 → h3 → ...

A-HALS# (Accelerated-HALS)
A special kinds of cyclic coordinate selection

Update order : w1 → w2 → · · · → wr︸ ︷︷ ︸
several times!!

→ h1 → h2 → · · · → hr︸ ︷︷ ︸
several times!!

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.

26 / 119

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

Φ = ‖X−WH‖2
F = ‖wi‖2

2‖hi‖2
2 − 2tr 〈Xi,wihi〉+ c.

Alternating minimization using cyclic indexing
Other name : BCD with r = 2 with cyclic component selection
Domain name in NMF : HALS (Hierarchical alternating least squares†)

Update order : w1 → h1 → w2 → h2 → w3 → h3 → ...

A-HALS# (Accelerated-HALS)
A special kinds of cyclic coordinate selection

Update order : w1 → w2 → · · · → wr︸ ︷︷ ︸
several times!!

→ h1 → h2 → · · · → hr︸ ︷︷ ︸
several times!!

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.
27 / 119

A-HALS = avoids repeated computations + re-uses

Projected† gradient descent with step size t ≥ 0

wi = wi − t (‖hi‖22wi −Xih
>
i)︸ ︷︷ ︸

∇wiΦ

, hi = hi − t (‖wi‖22hi −w>
i X)︸ ︷︷ ︸

∇hi
Φ

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1)

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.
A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W
>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency,
improvement is significant for big data#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse.

28 / 119

A-HALS = avoids repeated computations + re-uses

Projected† gradient descent with step size t ≥ 0

wi = wi − t (‖hi‖22wi −Xih
>
i)︸ ︷︷ ︸

∇wiΦ

, hi = hi − t (‖wi‖22hi −w>
i X)︸ ︷︷ ︸

∇hi
Φ

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1)

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.

A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W
>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency,
improvement is significant for big data#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse.

29 / 119

A-HALS = avoids repeated computations + re-uses

Projected† gradient descent with step size t ≥ 0

wi = wi − t (‖hi‖22wi −Xih
>
i)︸ ︷︷ ︸

∇wiΦ

, hi = hi − t (‖wi‖22hi −w>
i X)︸ ︷︷ ︸

∇hi
Φ

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1)

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.
A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W
>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency,
improvement is significant for big data#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse. 30 / 119

The projected gradient descent update

The Projected Gradient Descent update of W :

Wk+1 = ProjIR+

(
Wk − t∇Φ(Wk,H)

)
.

How to pick the step-size ?

A simple scheme t =
1

LΦW

.

In words : pick step-size as L−1
ΦW

, where LΦW
= the Lipschitz

constant of ∇WΦ (smoothness constant).

LΦW
= largest singular value of HH>

ProjIR+
is basically [·]+ = max{·, 0}.

Hence in close form :

Wk+1 =
[
Wk − 1

σmax(HH>)
∇Φ(Wk,H)

]
+
.

PGD update is much faster than the Multiplicative Update (MU).

31 / 119

The projected gradient descent update

The Projected Gradient Descent update of W :

Wk+1 = ProjIR+

(
Wk − t∇Φ(Wk,H)

)
.

How to pick the step-size ?

A simple scheme t =
1

LΦW

.

In words : pick step-size as L−1
ΦW

, where LΦW
= the Lipschitz

constant of ∇WΦ (smoothness constant).

LΦW
= largest singular value of HH>

ProjIR+
is basically [·]+ = max{·, 0}.

Hence in close form :

Wk+1 =
[
Wk − 1

σmax(HH>)
∇Φ(Wk,H)

]
+
.

PGD update is much faster than the Multiplicative Update (MU).

32 / 119

The projected gradient descent update

The Projected Gradient Descent update of W :

Wk+1 = ProjIR+

(
Wk − t∇Φ(Wk,H)

)
.

How to pick the step-size ?

A simple scheme t =
1

LΦW

.

In words : pick step-size as L−1
ΦW

, where LΦW
= the Lipschitz

constant of ∇WΦ (smoothness constant).

LΦW
= largest singular value of HH>

ProjIR+
is basically [·]+ = max{·, 0}.

Hence in close form :

Wk+1 =
[
Wk − 1

σmax(HH>)
∇Φ(Wk,H)

]
+
.

PGD update is much faster than the Multiplicative Update (MU).

33 / 119

Multiplicative Update

MU :

It takes a small step size t such that Wk+1 stays within IR+, no
projection.

Wk+1 = W. ∗ XH>

WkHH>
,

where ∗ is Hadamard product and the division is Hadamard
quotient.

It converges very slowly. In general, don’t use MU.
Pourquoi/why: to make sure W stays within IR+, MU take small
step =⇒ slow !

PGD :

It takes reasonably large step size, and IF moved outside IR+

THEN project back.

ProjIR+
practically costs nothing unless the data size is 1086.

34 / 119

MU = timid, shy person that is too cautious on making mistake.
PGD = brave person that is fine of making mistake by doing correction.

Here ”mistake” = ”outside IR+”, ”correction” = ”ProjIR+
”.
35 / 119

Outline

1 Introduction

2 Find (W,H) numerically
Variations on BCD
A-HALS
Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Convergence of the algorithms
Application of PALM on NMF
Convergence condition of PALM

36 / 119

Let’s accelerate !

The next many slides : make PGD converges even more fast

Recall : NMF is NP-Hard.
What’s the acceleration for : obtain a local solution faster.37 / 119

Recall : acceleration in single variable problem

Problem min
x∈C

f(x), C convex set.

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

PGD Update xk+1 = ProjC(xk − tk∇f(xk)).

Linear extrapolation xk+1 = ProjC(yk − tk∇f(yk)).

yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk : a single extrapolation parameter.

38 / 119

Recall : acceleration in single variable problem

Problem min
x∈C

f(x), C convex set.

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

PGD Update xk+1 = ProjC(xk − tk∇f(xk)).

Linear extrapolation xk+1 = ProjC(yk − tk∇f(yk)).

yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk : a single extrapolation parameter.

39 / 119

Recall : acceleration in single variable problem

Problem min
x∈C

f(x), C convex set.

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

PGD Update xk+1 = ProjC(xk − tk∇f(xk)).

Linear extrapolation xk+1 = ProjC(yk − tk∇f(yk)).

yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk : a single extrapolation parameter.

40 / 119

Why extrapolation : gradient descent zig-zags on ellipse

Facts : consecutive update directions of GD are orthogonal (⊥).
If the landscape is not ”spherical”, GD zig-zags → slow.
e.g. : moving along a long narrow valley.

Picture modified from http://www.nbertagnolli.com/jekyll/update/2015/10/28/Descent-Methods.html

41 / 119

An slide from my other slides

Picture from https://angms.science/doc/teaching/GDLS.pdf 42 / 119

What machine learning people do to counter zig-zag?

Do tricks on step size : don’t move with step size t but
t

damping factor
.

Length of pink segment <
length of the corresponding
red segment =⇒ points on
pink segment is closer to axis
y = 0 , gradient stronger x-
component =⇒ less oscilla-
tion along y-direction.

The idea behind AdaGrad and AdaDelta : shrink the step size when you

see zig-zag (trace of the objective function appears to plateau).

43 / 119

What optimization people do to counter zig-zag?

Do tricks on direction : by extrapolation with momentum.

Idea : apply extrapolation.
Extrapolate = add gradient history.

(1) if gradients in consecutive steps have
consistent direction
=⇒ extrapolate = accelerate.
(2) if gradients in consecutive steps oscillates
(continuously changing direction)
=⇒ extrapolate = damp oscillation =
acceleration.

Figure shows the trace of points decomposed into x- and y-component.
The x-components have consistent direction while y-components are not.

44 / 119

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

45 / 119

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

46 / 119

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

47 / 119

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

48 / 119

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

49 / 119

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

50 / 119

The geometry of extrapolation

We always have

∠(xk+1 − yk)≥∠(xk+2 − xx+1)≥∠(xk+2 − yk+1)

i.e. the direction of the last step is in between the directions of previous
two gradient steps : zig-zag effect is reduced !

51 / 119

Nesterov’s acceleration

1 For convex function,

βk =
1− αk
αk+1

, αk+1 =
1 +

√
1 + 4α2

k

2
, α1 ∈ (0, 1)

2 For smooth strongly convex function with conditional number Q,

βk =
1−
√
Q

1 +
√
Q
, where Q =

L

µ
=

Smoothness parameter

Strong convexity parameter

With convergence improvement : from O(Q log 1
ε) to O(

√
Q log 1

ε)

Key : Nesterov’s acceleration has a close-form formula for βk

52 / 119

A slide from my other slides

Picture from https://angms.science/doc/teaching/GDLS.pdf

Key : Nesterov’s acceleration has a close-form formula for βk
53 / 119

Extrapolation is not monotone, nor descent, nor greedy

GD is locally optimal/greedy =⇒ extrapolation may ↑objective value

Extrapolation = a risky move

Picture from Donoghue-Candés 2015, ”Adaptive Restart for Accelerated Gradient Schemes”

Acceleration comes from doing the risky move :

”sacrifice the decreases of objective value now for the better future”

Actually also sacrifice robustness : accelerated gradient is not stable to noise (Devolder-Glineur-Nesterov 2014) 54 / 119

A slide from my other slides

Picture from https://angms.science/doc/teaching/GDLS.pdf 55 / 119

Our case : NMF is not cvx

Problem (P) :
{

Given (X, r), solve min
W,H

‖X−WH‖2,W,H ∈ IR+

}
is

non-cvx but bi-cvx.

=⇒ no strong cvx parameter µ. Cannot use expression likes βk =
1−
√
Q

1 +
√
Q

.

For the acceleration scheme of the two variables

On W

Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βWk (Wnew −Wold)

On H

Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βHk (Hnew −Hold)

Need a way (close-/no close-form) to find βk !

Approach : an ad hoc heurisitic in the ”line search” style.

56 / 119

Our case : NMF is not cvx

Problem (P) :
{

Given (X, r), solve min
W,H

‖X−WH‖2,W,H ∈ IR+

}
is

non-cvx but bi-cvx.

=⇒ no strong cvx parameter µ. Cannot use expression likes βk =
1−
√
Q

1 +
√
Q

.

For the acceleration scheme of the two variables

On W

Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βWk (Wnew −Wold)

On H

Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βHk (Hnew −Hold)

Need a way (close-/no close-form) to find βk !

Approach : an ad hoc heurisitic in the ”line search” style.

57 / 119

Our case : NMF is not cvx

Problem (P) :
{

Given (X, r), solve min
W,H

‖X−WH‖2,W,H ∈ IR+

}
is

non-cvx but bi-cvx.

=⇒ no strong cvx parameter µ. Cannot use expression likes βk =
1−
√
Q

1 +
√
Q

.

For the acceleration scheme of the two variables

On W

Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βWk (Wnew −Wold)

On H

Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βHk (Hnew −Hold)

Need a way (close-/no close-form) to find βk !

Approach : an ad hoc heurisitic in the ”line search” style.
58 / 119

Why ad hoc heuristics ?

(1) The ncvx problem is hard.

(2) No better idea.

No convergence theorem now yet (because of (1)).

What’s so good ?

Just a parameter tuning problem.

Easy to implement.

Easy to extend to other models.

Faster than state-of-the-art methods with theoretical
convergence proof !

† Xu-Yin 2013 ”A block coordinate descent method for regularized multiconvex

optimization with applications to nonnegative tensor factorization and

completion”. SIAM J. Img Sci.

59 / 119

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– minor extrapolation, effectively doing nothing

In the ”walking person metaphor” :

MU shy person walking in caution with small step size
PGD brave person walking in reasonably step size

E-PGD ambious person walking in big step size

†Line search to minimize the objective function directly – performed before the update

60 / 119

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– minor extrapolation, effectively doing nothing

In the ”walking person metaphor” :

MU shy person walking in caution with small step size
PGD brave person walking in reasonably step size

E-PGD ambious person walking in big step size

†Line search to minimize the objective function directly – performed before the update

61 / 119

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– minor extrapolation, effectively doing nothing

In the ”walking person metaphor” :

MU shy person walking in caution with small step size
PGD brave person walking in reasonably step size

E-PGD ambious person walking in big step size

†Line search to minimize the objective function directly – performed before the update

62 / 119

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– minor extrapolation, effectively doing nothing

In the ”walking person metaphor” :

MU shy person walking in caution with small step size
PGD brave person walking in reasonably step size

E-PGD ambious person walking in big step size

†Line search to minimize the objective function directly – performed before the update

63 / 119

Details : Update[βk]

Landscape of variable at each iteration is different =⇒ dynamical update

Algorithm A dynamic line search style† ad hoc heuristics

Input: Parameters 1 < γ̄ < γ < η, an initialization β1 ∈ (0, 1)
Output: βk : the extrapolation parameter

1: Set β̄ = 1 (dynamic ”upper bound” of β)
2: if error ↓ at iteration k then
3: Increase βk+1 : βk+1 = min{β̄, γβk}
4: (Increase β̄ if β̄ < 1 : β̄ = min{1, γ̄β̄})
5: else
6: Decrease βk+1 : βk+1 = βk/η
7: Set β̄ = βk
8: end if

γ, γ̄, η : growth and decay parameters

†Line search after updates of W and H – performed after the update!

64 / 119

Meaning

- Go further/”speed up” when suitable (error↓) : more
ambitious, make β ↑, take more risk
- Go back/”slow down” when not suitable (error↑) : less
ambitious, make β ↓, take less risk

65 / 119

The full algo of Accelerated NMF using extrapolation

Input: X, initialization W,H, parameters hp ∈ {1, 2, 3} (extrapolation/projection of H).
Output: W,H.

1: Wy = W; Hy = H; e(0) = ||X−WH||F .

2: for k = 1, 2, . . . do

3: Compute Hn by min
Hn≥0

||X−WyHn||2F using Hy as initial iterate.

4: if hp ≥ 2 then

5: Extrapolate: Hy = Hn + βk(Hn −H).

6: end if
7: if hp = 3 then

8: Project: Hy = max
(
0,Hy

)
.

9: end if
10: Compute Wn by min

Wn≥0
||X−WnHy||2F using Wy as initial iterate.

11: Extrapolate: Wy = Wn + βk(Wn −W).

12: if hp = 1 then

13: Extrapolate: Hy = Hn + βk(Hn −H).

14: end if
15: Compute error: e(k) = ||X−WnHy||F .

16: if e(k) > e(k − 1) then

17: Restart: Hy = Hn; Wy = Wn.

18: else
19: H = Hn; W = Wn.
20: end if
21: end for

Notation : Wn normal variable, Wy extrpolate variable, W previous Wn

... too hard to read !!

66 / 119

Algorithm (hp = 1), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
5: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).
6: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).

7: Compute error: e(k) = ||X−WnHy||F .
8: if e(k) > e(k − 1) then
9: Restart: Hy = Hn; Wy = Wn.

10: else
11: H = Hn; W = Wn.
12: end if
13: end for

”Up, Up, Ex, Ex”
67 / 119

Algorithm (hp = 2), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).
5: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
6: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).

7: Compute error: e(k) = ||X−WnHy||F .
8: if e(k) > e(k − 1) then
9: Restart: Hy = Hn; Wy = Wn.

10: else
11: H = Hn; W = Wn.
12: end if
13: end for

”Up, Ex, Up, Ex”
68 / 119

Algorithm (hp = 3), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).
5: Project: Hy = max (0,Hy).
6: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
7: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).

8: Compute the error: e(k) = ||X−WnHy||F .
9: if e(k) > e(k − 1) then

10: Restart: Hy = Hn; Wy = Wn.
11: else
12: H = H; W = Wn.
13: end if
14: end for

”Up, Ex, Pro, Up, Ex”
69 / 119

Summary and notes (1/3)

Extrapolation may break NN (≥ 0) constraint :

hp = 1 hp = 2 hp = 3

(Up-Up-Ex-Ex) (Up-Ex-Up-Ex) (Up-Ex-Pro-Up-Ex)

Step NN? Step NN? Step NN?

Update[Hn] Y Update[Hn] Y Update[Hn] Y
Update[Wn] Y Extrap[Hy] N Extrap[Hy] N

Project[Hy] Y
Extrap[Hy] N Update[Wn] Y Update[Wn] Y
Extrap[Wy] N Extrap[Wy] N Extrap[Wy] N

70 / 119

Summary and notes (2/3)

Update using matrix with negative values :
Update[Hn] w.r.t. Hn ≥ 0 with (X,Wy,Hn), using Hy as initial iterate
Update[Wn] wr.t. Wn ≥ 0 with (X,Wn,Hy), using Wy as initial iterate

71 / 119

Summary and notes (3/3)

Restart using e(k) as ‖X−WnHy‖F not ‖X−WnHn‖F
Why :
(i) Wn was updated according to Hy (see point 2)

(ii) it gives the algorithm some degrees of freedom to possibly increase the
objective function

(iii) computationally cheaper, as compute ‖X−WnHn‖F need O(mnr)
operations instead of O(mr2) by re-using previous computed terms :

‖X−WH‖2F = ‖X‖2F − 2
〈
W,XH>

〉
+
〈
W>W,HH>

〉
Note : if the variables converges, using Wn, Wy is effectively the same as
in W∞

n = W∞
y (after projection)

72 / 119

Experiments

Notations

A-HALS : vector-wise update, compute approximate solution
ANLS : subproblem solved exactly using active-set methods
E : extrapolation

Set up

Average error over 10 trials
W,H,X randomly generated ∼ U [0, 1], m = n = 200, r = 20
Real X from real data is also used.
Error comparisons : using lowest relative error emin across all
algorithms, at step k,

E(k) =
‖X−WkHk‖F

‖X‖F
− emin

It is possible emin = 0 and not shown
Extrapolation parmater β0 = [0.25, 0.5, 0.75]
η0 = [1.5, 2, 3]
γ, γ̄ = [1.01, 1.005], [1.05, 1.01], [1.1, 1.05]
For display : only best and worst to illustrate sensitivity (for hp = 2)73 / 119

Low-rank synthetic data Image data

Image data
Text data

Fast conclusion : E wins. 74 / 119

Compare with other method on speed (time)

Time (s.)
0 5 10 15

||X
-W

H
|| F

 /
||X

|| F
 -

 e
m

in

10-8

10-6

10-4

10-2

100

ANLS
E-ANLS (hp=1)
E-ANLS (hp=3)
A-HALS
E-A-HALS (hp=1)
E-A-HALS (hp=3)
APG-MF

Time (s.)
0 5 10 15

||X
-W

H
|| F

 /
||X

|| F
 -

 e
m

in

10-4

10-3

ANLS
E-ANLS (hp=1)
E-ANLS (hp=3)
A-HALS
E-A-HALS (hp=1)
E-A-HALS (hp=3)
APG-MF

Average err. of ANLS, A-HALS and extrapolated variants, on low-rank (left) and
full-rank (right) synthetic data.
APG-MF† = an extrapolated proximal type algorithm, with convergence proof.

Fast conclusion : E wins and beats APG-MF†.

† Xu-Yin 2013 ”A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion”. SIAM J. Img Sci.

75 / 119

Overall results : E wins!
Method Data Ex wins?

A-HALS

Low/full rank synthetic data YES
Dense Image data† YES
Sparse text data# YES

ANLS

Low/full rank synthetic data YES
Dense Image data† YES
Sparse text data# YES

† ORL, Umist, CBCL, Frey.
Zhong-Ghosh 2005. Generative model-based document clustering: a comparative study

Conclusions

No matter what method XXX, E-XXX > XXX.

E-XXX > APG-MF (an extrapolated proximal-type method).

Between E-ANLS vs E-A-HALS : no clear winner
I Low rank synthetic data : E-ANLS � everything
I Dense data : E-A-HALS ≈ E-ANLS, although A-HALS > ANLS
I Sparse data : E-A-HALS � everything

Between different hp
I Up-Ex-Up-Ex (hp = 2) seems worst
I Up-Up-Ex-Ex (hp = 1) or Up-Ex-Pro-Up-Ex (hp = 3) are better

Don’t trust me ? Go https://arxiv.org/abs/1805.06604, try the code!
76 / 119

A quick-and-dirty test on tensor

77 / 119

Outline

1 Introduction

2 Find (W,H) numerically
Variations on BCD
A-HALS
Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Convergence of the algorithms
Application of PALM on NMF
Convergence condition of PALM

78 / 119

Does it converge?

How to show the sequence {(Wk,Hk)}k∈IN produced by
the framework converges?

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W]

matrix-wise projected-gradient
W = [W − t∇Φ(W,H))]+

vector-wise A-HALS
w1 = [w1 − t(‖h1‖22w1 −X1h

>
1)]+

w2 = [w2 − t(‖h2‖22w2 −X2h
>
2)]+

...

3: Update[H] similarly
4: end for

79 / 119

The problem setting

min
x∈IRn,y∈IRm

Φ(x, y) = f(x) + g(y) +H(x, y)

f , g are extended value functions : e.g. f : IRn → IR ∪+∞
H is smooth (partially Lipschitz)

No convexity will be assumed on f, g,H

For NMF :

x, y are W,H

f , g are indicator functions of the non-negative constraints ≥ 0

H is the data fitting term ‖X−WH‖

For other models

The 2-variable case is extendable to n-variable Φ(x1, ..., xn)
e.g. Tri-factorization, tensors

80 / 119

Classical convergence result of BCD

For the BCD approach

xk+1 ∈ arg min
x

Φ(x, yk)

yk+1 ∈ arg min
y

Φ(xk+1, y),

the sequence
{

(xk, yk)
}
k∈IN

converges to critΦ (critical point3 of Φ), if

Φ is convex and differentiable

Φ(x) and Φ(y) are strictly convex
I Φ is strictly convex if one argument is fix.
I The minimizer of a strictly convex function is unique, if it exists.

So strict convexity =⇒ at most one global minimum
I If fact the strict convexity is imposed for the uniquqness of solution for

minx Φ(x) and miny Φ(y)

3a.k.a. stationary point.

81 / 119

How classical result does not fit modern applications

Φ has to be convex and differentiable

For NMF, Φ is not convex nor differentiable because indicator
function is not smooth

Φ(x) and Φ(y) are strictly convex.

For NMF, it means W and H are full rank.

What if no strict convexity?

82 / 119

What if not strictly convex — use proximal

Proximal term relaxes the strict convexity assumption

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck
2
‖x− xk‖2

}
, ck ∈ IR+

yk+1 ∈ arg min
x

{
Φ(xk+1, y) +

dk
2
‖y − yk‖2

}
, dk ∈ IR+

By adding the quadratic term (with a sufficiently large ck, dk), the

functions Φ(x, yk) +
ck
2
‖x− xk‖2 and Φ(xk+1, y) +

dk
2
‖y − yk‖2 are

strictly convex. Also,

Fact 1.
{

(xk, yk)
}
k∈IN

produced by such proximal regularized
iteration is non-increasing in Φ.
Direct proof by definition : Φ(xk+1, yk+1) ≤ Φ(xk+1, yk) ≤ Φ(xk, yk).

Fact 2.
{

Φ(xk, yk)
}
k∈IN

is bounded below by inf Φ.

83 / 119

What if not strictly convex — use proximal

Proximal term relaxes the strict convexity assumption

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck
2
‖x− xk‖2

}
, ck ∈ IR+

yk+1 ∈ arg min
x

{
Φ(xk+1, y) +

dk
2
‖y − yk‖2

}
, dk ∈ IR+

By adding the quadratic term (with a sufficiently large ck, dk), the

functions Φ(x, yk) +
ck
2
‖x− xk‖2 and Φ(xk+1, y) +

dk
2
‖y − yk‖2 are

strictly convex. Also,

Fact 1.
{

(xk, yk)
}
k∈IN

produced by such proximal regularized
iteration is non-increasing in Φ.
Direct proof by definition : Φ(xk+1, yk+1) ≤ Φ(xk+1, yk) ≤ Φ(xk, yk).

Fact 2.
{

Φ(xk, yk)
}
k∈IN

is bounded below by inf Φ.

84 / 119

Fact 1 + Fact 2 in one line

inf Φ ≤ · · · ≤ Φ(xk+1, yk+1) ≤ Φ(xk, yk) ≤ · · · ≤ Φ(x1, y1) ≤ Φ(x0, y0)

Cauchy Sequence argument : Under fact 1 + 2
IF inf Φ > −∞
THEN

{
Φ(xk, yk)

}
k∈IN

converges to a real number.

Note that it only tells
{

Φ(xk, yk)
}
k∈IN

converge, but it does not tell where
it will converge!!!!

85 / 119

Convergence of the proximal regularized algorithms

Theorem (Attouch10†)
If function Φ fulfill the Kurdyka – Lojasiewicz property, all bounded4

sequences generated by proximal regularized iteration converge to critΦ.

† Proximal alternating minimization and projection methods for nonconvex problems: An
approach based on the Kurdyka-Lojasiewicz inequality
H Attouch, J Bolte, P Redont, A Soubeyran
Mathematics of Operations Research 35 (2), 438-457,2010

No convexity is required.

critΦ is the first order stationary point (i.e. local minima), not the
global optima because ncvx problems are generally NP-Hard under
numerical descent schemes.

Good for problem that local minima are almost as good as global
minima — when non-convex problem becomes not scary

4If the seuqence is not bounded then it will diverge to ∞
86 / 119

Drawback of proximal regularized GS iteration

The proximal regularized iterations produces
{

(xk, yk)
}
k∈IN

via

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck

2
‖x− xk‖2

}
, yk+1 ∈ arg min

x

{
Φ(xk+1, y) +

dk

2
‖y − yk‖2

}
,

which requires exact minimization of Φ(x, y) = f(x) + g(y) +H(x, y).
For a non-convex and non-smooth Φ, such exact minimization of may be
hard/impossible.

Naming : Proximal regularized Gauss-Seidel iteration (prGSi)

How to improve prGSi : bypass such difficulty via approximating prGSi via
proximal linearization of each subproblem — Proximal Alternating
Linearized Minimization (PALM) algorithm

Why PALM : a useful framework covers many algorithms

87 / 119

Proximal Alternating Linearized Minimization (PALM)

Problem : Φ(x, y) = f(x) + g(y) +H(x, y)

Note : no constraint as they are moved into f, g.

BCD / Gauss-Seidel iteration

xk+1 ∈ arg min
x

Φ(x, yk), yk+1 ∈ arg min
x

Φ(xk+1, y)

Proximal regulared GS iteration (prGSi)

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ(xk+1, y) +

dk
2
‖y − yk‖2

}
PALM

xk+1 ∈ arg min
x

{
Φ̂(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ̂(xk+1, y) +

dk
2
‖y − yk‖2

}
i.e. PALM replaces Φ in prGSi by approximation Φ̂

88 / 119

Proximal Alternating Linearized Minimization (PALM)

Problem : Φ(x, y) = f(x) + g(y) +H(x, y)

Note : no constraint as they are moved into f, g.

BCD / Gauss-Seidel iteration

xk+1 ∈ arg min
x

Φ(x, yk), yk+1 ∈ arg min
x

Φ(xk+1, y)

Proximal regulared GS iteration (prGSi)

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ(xk+1, y) +

dk
2
‖y − yk‖2

}
PALM

xk+1 ∈ arg min
x

{
Φ̂(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ̂(xk+1, y) +

dk
2
‖y − yk‖2

}
i.e. PALM replaces Φ in prGSi by approximation Φ̂

89 / 119

Proximal Alternating Linearized Minimization (PALM)

Problem : Φ(x, y) = f(x) + g(y) +H(x, y)

Note : no constraint as they are moved into f, g.

BCD / Gauss-Seidel iteration

xk+1 ∈ arg min
x

Φ(x, yk), yk+1 ∈ arg min
x

Φ(xk+1, y)

Proximal regulared GS iteration (prGSi)

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ(xk+1, y) +

dk
2
‖y − yk‖2

}

PALM

xk+1 ∈ arg min
x

{
Φ̂(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ̂(xk+1, y) +

dk
2
‖y − yk‖2

}
i.e. PALM replaces Φ in prGSi by approximation Φ̂

90 / 119

Proximal Alternating Linearized Minimization (PALM)

Problem : Φ(x, y) = f(x) + g(y) +H(x, y)

Note : no constraint as they are moved into f, g.

BCD / Gauss-Seidel iteration

xk+1 ∈ arg min
x

Φ(x, yk), yk+1 ∈ arg min
x

Φ(xk+1, y)

Proximal regulared GS iteration (prGSi)

xk+1 ∈ arg min
x

{
Φ(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ(xk+1, y) +

dk
2
‖y − yk‖2

}
PALM

xk+1 ∈ arg min
x

{
Φ̂(x, yk) +

ck
2
‖x− xk‖2

}
yk+1 ∈ arg min

x

{
Φ̂(xk+1, y) +

dk
2
‖y − yk‖2

}
i.e. PALM replaces Φ in prGSi by approximation Φ̂

91 / 119

The linear approximation Φ̂ in PALM

Setting : assume H is smooth, f, g not necessarily smooth5 for

Φ(x, y) = f(x) + g(y) +H(x, y),

Recall first order Taylor approximation

H(x)≈ H(xk)︸ ︷︷ ︸
constant

+
〈
x− xk,∇xH(xk, yk)

〉
︸ ︷︷ ︸

important part

PALM : i.e. approximate H by the linearized H

Φ̂(x, yk) = f(x) + g(y) +
〈
x− xk,∇xH(xk, yk)

〉
Φ̂(xk, y) = f(x) + g(y) +

〈
y − yk,∇yH(xk, yk)

〉
,

* In convex case Taylor approximation is under-estimator so ≈ becomes ≥
5If f, g include the indicator function then they are non-smooth

92 / 119

Altenrating minimization in PALM

Function Φ(x, y) = f(x) + g(y) +H(x, y) has 2 variables.
So alternating minimization scheme gives

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) + g(yk) +

〈
x− xk,∇xH(xk, yk)

〉}

= arg min
x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
f(xk+1) + g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
,

= arg min
y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

i.e. we have

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

93 / 119

Altenrating minimization in PALM

Function Φ(x, y) = f(x) + g(y) +H(x, y) has 2 variables.
So alternating minimization scheme gives

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) + g(yk) +

〈
x− xk,∇xH(xk, yk)

〉}
= arg min

x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}

arg min
y

Φ̂(xk+1, y) = arg min
y

{
f(xk+1) + g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
,

= arg min
y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

i.e. we have

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

94 / 119

Altenrating minimization in PALM

Function Φ(x, y) = f(x) + g(y) +H(x, y) has 2 variables.
So alternating minimization scheme gives

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) + g(yk) +

〈
x− xk,∇xH(xk, yk)

〉}
= arg min

x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
f(xk+1) + g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
,

= arg min
y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

i.e. we have

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

95 / 119

Altenrating minimization in PALM

Function Φ(x, y) = f(x) + g(y) +H(x, y) has 2 variables.
So alternating minimization scheme gives

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) + g(yk) +

〈
x− xk,∇xH(xk, yk)

〉}
= arg min

x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
f(xk+1) + g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
,

= arg min
y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

i.e. we have

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

96 / 119

Altenrating minimization in PALM

Function Φ(x, y) = f(x) + g(y) +H(x, y) has 2 variables.
So alternating minimization scheme gives

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) + g(yk) +

〈
x− xk,∇xH(xk, yk)

〉}
= arg min

x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
f(xk+1) + g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
,

= arg min
y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

i.e. we have

arg min
x

Φ̂(x, yk) = arg min
x

{
f(x) +

〈
x− xk,∇xH(xk, yk)

〉}
arg min

y
Φ̂(xk+1, y) = arg min

y

{
g(y) +

〈
y − yk,∇yH(xk+1, yk)

〉}
.

97 / 119

Proximal operator in PALM

Add proximal term and apply proximal operator on Φ = f + g︸ ︷︷ ︸
non-smooth

+H :

xk = arg min
x

f(x) +
〈
x− xk,∇xH(xk, yk)

〉
+
ck
2
‖x− xk‖22︸ ︷︷ ︸

ψx

yk = arg min

y

g(y) +
〈
y − yk,∇yH(xk+1, yk)

〉
+
dk
2
‖y − yk‖22︸ ︷︷ ︸

ψy

 .

Like FISTA, minimizer of the smooth parts ψ is the gradient step :

set ∇xψx = 0 get x = xk − 1

ck
∇xH(xk, yk), ck > 0

set ∇yψy = 0 get y = yk − 1

dk
∇yH(xk+1, yk), dk > 0

From theory of gradient descent, (ck, dk) can be set to be the partial
Lipschitz constant of ∇H 98 / 119

Proximal operator in PALM

Apply proximal operator on the non-smooth parts we have

xk ∈ proxf,ck

(
xk − 1

ck
∇xH(xk, yk)

)
, ck > 0,

yk ∈ proxg,dk

(
yk − 1

dk
∇xH(xk+1, yk)

)
, dk > 0.

Recall, at a point u, the poximal map associated to a function σ(x) is

proxσ,t(u) = arg min
x

{
σ(x) +

t

2
‖x− u‖22

}

The standard gradient descent step xk − 1

ck
∇xH(xk, yk) is the ”forward

step”. The proximal step is the ”backward step”.

Therefore PALM = alternating proximal forward backward method

99 / 119

Short summary

Problem : minimize Φ(x, y) = f(x) + g(y) +H(x, y).

Starts wtih (x0, y0) ∈ domΦ, PALM generate (xk, yk) as

xk ∈ proxf,ck

(
xk − 1

ck
∇xH(xk, yk)

)
,

yk ∈ proxg,dk

(
yk − 1

dk
∇xH(xk+1, yk)

)
,

for some γ1,2 > 1, the parameters ck, dk are selected as

ck = γ1L1(yk), dk = γ2L2(xk+1).

In words :

on x, perform gradient update on the smooth part of Φ

on x, perform proximal update on the non-smooth part of Φ

on y, perform gradient update on the smooth part of Φ

on y, perform proximal update on the non-smooth part of Φ

ck,dk are partial Lipschitz constants of H magnified

100 / 119

PALM on NMF

Recall f, g in Φ(x, y) = f(x) + g(x) +H(x, y) are extended valued.

Consider the non-regularized NMF problem

NMF : Φ(X,Y) =
1

2
‖M −XY ‖2F , X ≥ 0, Y ≥ 0

Non-negativity constraint represented by indicator function

IX≥0(X) =

{
0 X ≥ 0
∞ X < 0

IY≥0(Y) =

{
0 Y ≥ 0
∞ Y < 0

NMF problem in unconstrained form

arg min
X,Y

Φ(X,Y) =
1

2
‖M −XY ‖2F + IX≥0(X) + IY≥0(Y)

101 / 119

PALM on NMF

Recall f, g in Φ(x, y) = f(x) + g(x) +H(x, y) are extended valued.

Consider the non-regularized NMF problem

NMF : Φ(X,Y) =
1

2
‖M −XY ‖2F , X ≥ 0, Y ≥ 0

Non-negativity constraint represented by indicator function

IX≥0(X) =

{
0 X ≥ 0
∞ X < 0

IY≥0(Y) =

{
0 Y ≥ 0
∞ Y < 0

NMF problem in unconstrained form

arg min
X,Y

Φ(X,Y) =
1

2
‖M −XY ‖2F + IX≥0(X) + IY≥0(Y)

102 / 119

PALM on NMF

NMF in unconstrained form

arg min
X,Y

Φ(X,Y) =
1

2
‖M −XY ‖2F︸ ︷︷ ︸

H(X,Y)

+ IX≥0(X)︸ ︷︷ ︸
non-smooth f

+ IY≥0(Y)︸ ︷︷ ︸
non-smooth g

PALM gives

Xk+1 ∈ proxIX≥0,ck

(
Xk − 1

ck
∇XH(Xk, Y k)

)
Y k+1 ∈ proxIY≥0,dk

(
Y k − 1

dk
∇YH(Xk+1, Y k)

)
Fact : proximal operator of indicator function of a convex set = projection.
We recovered the alternating projected gradient methods :

Xk+1 =

[
Xk − 1

ck
∇XH(Xk, Y k)

]
+

Y k+1 =

[
Y k − 1

dk
∇YH(Xk+1, Y k)

]
+

103 / 119

PALM on NMF

NMF in unconstrained form

arg min
X,Y

Φ(X,Y) =
1

2
‖M −XY ‖2F︸ ︷︷ ︸

H(X,Y)

+ IX≥0(X)︸ ︷︷ ︸
non-smooth f

+ IY≥0(Y)︸ ︷︷ ︸
non-smooth g

PALM gives

Xk+1 ∈ proxIX≥0,ck

(
Xk − 1

ck
∇XH(Xk, Y k)

)
Y k+1 ∈ proxIY≥0,dk

(
Y k − 1

dk
∇YH(Xk+1, Y k)

)

Fact : proximal operator of indicator function of a convex set = projection.
We recovered the alternating projected gradient methods :

Xk+1 =

[
Xk − 1

ck
∇XH(Xk, Y k)

]
+

Y k+1 =

[
Y k − 1

dk
∇YH(Xk+1, Y k)

]
+

104 / 119

PALM on NMF

NMF in unconstrained form

arg min
X,Y

Φ(X,Y) =
1

2
‖M −XY ‖2F︸ ︷︷ ︸

H(X,Y)

+ IX≥0(X)︸ ︷︷ ︸
non-smooth f

+ IY≥0(Y)︸ ︷︷ ︸
non-smooth g

PALM gives

Xk+1 ∈ proxIX≥0,ck

(
Xk − 1

ck
∇XH(Xk, Y k)

)
Y k+1 ∈ proxIY≥0,dk

(
Y k − 1

dk
∇YH(Xk+1, Y k)

)
Fact : proximal operator of indicator function of a convex set = projection.
We recovered the alternating projected gradient methods :

Xk+1 =

[
Xk − 1

ck
∇XH(Xk, Y k)

]
+

Y k+1 =

[
Y k − 1

dk
∇YH(Xk+1, Y k)

]
+ 105 / 119

Convergence condition of PALM

Theorem (Bolte14) For Φ(x, y) = f(x) + g(y) +H(x, y), sequence produced by PALM
converges to a stationary point of Φ if :

Assumption 1
f : IRn → (−∞+∞] and g : Rm → (−∞+∞] are proper and lower semicontinuous
H : IRn × IRm → IR is a C1/smooth function

Assumption 2
infIRn×IRm Φ > −∞, infIRn f > −∞, infIRm g > −∞
Partial gradient ∇xH(x, y) is globally Lipschitz with L1(y) :

‖∇xH(x1, y)−∇xH(x2, y)‖ ≤ L1(y)‖x1 − x2‖∀x1, x2 ∈ IRn

Partial gradient ∇yH(x, y) is globally Lipschitz with L2(x) :

‖∇xH(x, y1)−∇xH(x, y2)‖ ≤ L2(x)‖y1 − y2‖∀y1, y2 ∈ IRn

Lipschitz modulus L1(yk), L2(xk) are bounded

Lmin
1 ≤ L1(yk) ≤ Lmax

1 , Lmin
2 ≤ L2(xk) ≤ Lmax

2 , ∀k

∇H is Lipschitz on bounded subsets of IRn × IRm∥∥∥(∇xH(x1, y1)−∇xH(x2, y2),∇yH(x1, y1)−∇yH(x2, y2)
)∥∥∥ ≤M‖(x1−x2, y1−y2)‖

Assumption 3 Φ satisfies Kurdyka-Lojasiewicz property

J Bolte, S Sabach, M Teboulle, Proximal alternating linearized minimization or nonconvex and nonsmooth problems,
Mathematical Programming 146 (1-2), 459-494, 2014

106 / 119

Convergence condition of PALM – in words

For Φ(x, y) = f(x) + g(y) +H(x, y), sequence produced by PALM converges to a stationary
point of Φ if

f, g are proper, lower semicontinuous, lower bounded, extended value

H is smooth such that
I All partial gradients are globally Lipschitz with L1,2
I All Lipschitz constants L1(yk), L2(xk) are bounded
I ∇H is Lipschitz on bounded subsets of IRn × IRm

Φ is a Kurdyka-Lojasiewicz function

Theorem (Bolte14) Let {zk}k∈IN = {xk, yk}k∈IN be the sequence generated by PALM which
is assumed to be bounded, if the above are true, then
(1) The path of the sequence {zk}k∈IN has finite length

∞∑
k=1

‖zk+1 − zk‖ <∞.

(2) The sequence {zk}k∈N converges to a stationary point z∗ of Φ.

For the details, see the paper. Next slides give the rough idea of what is going on.

J Bolte, S Sabach, M Teboulle, Proximal alternating linearized minimization or nonconvex and nonsmooth problems,
Mathematical Programming 146 (1-2), 459-494, 2014
My digestion of the proof : https://angms.science/doc/NCVX/PALM1.pdf

107 / 119

Convergence condition of PALM – in words

For Φ(x, y) = f(x) + g(y) +H(x, y), sequence produced by PALM converges to a stationary
point of Φ if

f, g are proper, lower semicontinuous, lower bounded, extended value

H is smooth such that
I All partial gradients are globally Lipschitz with L1,2
I All Lipschitz constants L1(yk), L2(xk) are bounded
I ∇H is Lipschitz on bounded subsets of IRn × IRm

Φ is a Kurdyka-Lojasiewicz function

Theorem (Bolte14) Let {zk}k∈IN = {xk, yk}k∈IN be the sequence generated by PALM which
is assumed to be bounded, if the above are true, then
(1) The path of the sequence {zk}k∈IN has finite length

∞∑
k=1

‖zk+1 − zk‖ <∞.

(2) The sequence {zk}k∈N converges to a stationary point z∗ of Φ.

For the details, see the paper. Next slides give the rough idea of what is going on.

J Bolte, S Sabach, M Teboulle, Proximal alternating linearized minimization or nonconvex and nonsmooth problems,
Mathematical Programming 146 (1-2), 459-494, 2014
My digestion of the proof : https://angms.science/doc/NCVX/PALM1.pdf

108 / 119

Simplified setting

Consider a function Φ : IRn → (−∞,+∞] is proper, l.s.c., lower bounded.
For z = {x, y}, let the problem be

(P) inf
{

Φ(z) : z ∈ IRn × IRm
}
.

Assume there is an algorithm A produces a sequence {zk} as

zk+1 ∈ A(zk) , k ∈ IN

Goal : prove z∞ converge to a stationary point z∗ of Φ.

More precisely, to prove

lim
k→∞

dist
(
zk, ω(z0)

)
= 0 , ω(z0) ⊂ critΦ

Notes :

Why ”set of stationary point” but not ”a single stationary point” :
here problem are ncvx, can have several local minimum !
Algorithm A has to be a proximal method : no constraint on z as
constraints are in form of indicator function in Φ = f + g +H, so
objective is non-smooth =⇒ has to use proximal method !

109 / 119

Simplified setting

Consider a function Φ : IRn → (−∞,+∞] is proper, l.s.c., lower bounded.
For z = {x, y}, let the problem be

(P) inf
{

Φ(z) : z ∈ IRn × IRm
}
.

Assume there is an algorithm A produces a sequence {zk} as

zk+1 ∈ A(zk) , k ∈ IN

Goal : prove z∞ converge to a stationary point z∗ of Φ.
More precisely, to prove

lim
k→∞

dist
(
zk, ω(z0)

)
= 0 , ω(z0) ⊂ critΦ

Notes :

Why ”set of stationary point” but not ”a single stationary point” :
here problem are ncvx, can have several local minimum !
Algorithm A has to be a proximal method : no constraint on z as
constraints are in form of indicator function in Φ = f + g +H, so
objective is non-smooth =⇒ has to use proximal method !110 / 119

In other words

Given

Φ : IRn → (−∞,+∞] is proper, l.s.c., lower bounded

Problem (P) inf
{

Φ(z) : z ∈ IRn
}

Algorithm A producing a sequence {zk} as zk+1 ∈ A(zk), k ∈ IN

Goal : prove

lim
k→∞

dist
(
zk, ω(z0)

)
= 0 , ω(z0) ⊂ critΦ

Idea : show

the trajectory of z1, z2, ..., zk, ..., z∞ has finite length.

Finite length =⇒ z∞ stops at somewhere, but does not tell where

Kurdyka-Lojasiewicz : z∞ stops at stationary point of Φ.
Why KL important : no infinite circulation in trajectory =⇒ z∞ stops at
somewhere.

111 / 119

The finite path length argument

Algorithm A produce a
sequence {zk}.

These zk form a ”path”.

← examples of gradient method

Idea : what is the length of such path?

Sequence oscillation ⇐⇒ path length =∞
Path with finite length ⇐⇒ z∞ stops at some where
Stop at where : ciritical point of Φ(z0)
Geometrically, preventing osciallation can be achieved by
semi-algebaric or deformed sharp function 112 / 119

Kurdyka-Lojasiewicz (KL) function

What is Kurdyka-Lojasiewicz (KL) condition (in formal) :
KL function is a class of function that can guarantee an iterative
algorithm such as gradient method or near-point method does not
have a circulation orbit and converges to any stationary point.

In other words, if a function Φ meets the KL condition, it can say up
to speed of convergence to a stationary point.

How to test a function satisfies the KL condition : no need. The
works of Lojasiewicz and Kurdyka show that many functions fulfill the
condition.

Basically standard functions used in machine learning are all
KL functions.
Basically you don’t need to worry too much about the KL
thing.

113 / 119

So you want to study Kurdyka-Lojasiewicz condition . . .

Entrance level :
1 Proximal alternating linearized minimization or nonconvex and nonsmooth

problems
J Bolte, S Sabach, M Teboulle
Mathematical Programming 146 (1-2), 459-494, 2014

2 Convergence of descent methods for semi-algebraic and tame problems:
proximal algorithms, forward – backward splitting, and regularized Gauss –
Seidel methods
H Attouch, J Bolte, BF Svaiter
Mathematical Programming 137 (1-2), 91-129, 2013

3 Proximal alternating minimization and projection methods for nonconvex
problems: An approach based on the Kurdyka-Lojasiewicz inequality
H Attouch, J Bolte, P Redont, A Soubeyran
Mathematics of Operations Research 35 (2), 438-457,2010

4 Inertial proximal alternating linearized minimization (iPALM) for nonconvex
and nonsmooth problems
T Pock, S Sabach
SIAM Journal on Imaging Sciences, 2016

Relationships : (2,3) are the basis of (1), (4) is accelerated version of (1)114 / 119

PALM convergence theorem applied on plain NMF
algorithm

Using the convergence theorem of (Bolte14) :

given starting point (X0, Y 0) ∈ domΦ, for the NMF problem

arg min
X,Y

ΦNMF(X,Y) =
1

2
‖M −XY ‖2F︸ ︷︷ ︸

H(X,Y)

+IX≥0(X) + IY≥0(Y)

where ΦNMF satisfies KL (and other assumptions), the sequence
{Xk, Y k}k∈IN generated by the alternating projected gradient (PALM)

Xk+1 =

[
Xk − 1

ck
∇XH(Xk, Y k)

]
+

Y k+1 =

[
Y k − 1

dk
∇YH(Xk+1, Y k)

]
+

converge to a stationary point of Φ(X0, Y 0).

115 / 119

PALM convergence theorem applied on plain NMF
algorithm with A-HALS

Using the convergence theorem of (Bolte14) :

given starting point (X0, Y 0) ∈ domΦ, for the NMF problem

arg min
X,Y

ΦNMF(X,Y) =
1

2
‖M −XY ‖2F︸ ︷︷ ︸

H(X,Y)

+IX≥0(X) + IY≥0(Y)

where ΦNMF satisfies KL (and other assumptions), the sequence
{Xk, Y k}k∈IN generated by the A-HALS algorithm (PALM with repeated
loop of cyclic indexing) converge to a stationary point of Φ(X0, Y 0).

116 / 119

Convergence theorem of the extrapolated NMF algorithm

NMF with Extrapolation does not
fit in the PALM framework.

Need other tools.

No convergence theorem so far :(

117 / 119

PALM summary

Problem formulation

Φ(x, y) = f(x) + g(y) +H(x, y)

PALM iterations

xk ∈ proxf,ck

(
xk − 1

ck
∇xH(xk, yk)

)
,

yk ∈ proxg,dk

(
yk − 1

dk
∇xH(xk+1, yk)

)
,

where ck = γ1L1(yk), dk = γ2L2(xk+1) some γ1,2 > 1.

Condition on Φ that sequence produced PALM converges to a
stationary point.

Examples of PALM on various applications.

118 / 119

Last page – over all summary

What is Non-negative Matrix Factorization, Why NMF

How to solve NMF minimization problem

Convergence of the NMF algorithm : PALM framework

How to solve NMF fast with extrapolation
A.-Gillis, ”Accelerating Non-negative matrix factorization by extrapolation”, Neural

Computation, Feb, 2019.

Convergence of the NMF algorithm with extrapolation

END OF PRESENTATION.

Slide, code, preprint in angms.science

ACK : my boss Nicolas Gillis, European Research Council Grant #679515.

119 / 119

	Introduction
	Find (W, H) numerically
	Variations on BCD
	A-HALS
	Projected Gradient Update and the Multiplicative update

	Find (W, H) numerically fast : acceleration via extrapolation
	Recall : acceleration in single variable problem
	Accelerating NMF algorithms using extrapolation

	Convergence of the algorithms
	Application of PALM on NMF
	Convergence condition of PALM

