
Accelerating Nonnegative-X by extrapolation
where X ∈ {Least Square, Matrix Factorization, Tensor Factorization}

Andersen Ang

Mathématique et recherche opérationnelle
UMONS, Belgium

Email: manshun.ang@umons.ac.be

Homepage: angms.science

April 1, 2019

Department of Electrical and Electronic Engineering
University of Hong Kong

Quel est le sujet de cette présentation

Algorithmes numérique pour les problèmes d’optimisation non linéaire
avec contraintes non-négativité

Algorithmes de Factorisation Non-Négative de Matrices/Tenseurs

Niet-negatieve matrixfactorisatie

De algemene formulering van een matrixfactorisatie is:

X = WH,

waarbij de dimensies als volgt zijn: X ∈ IRm×n, W ∈ IRm×r, en
H ∈ IRr×n.

Voor de op voorhand zelf te specificeren dimensie r geldt:

0 < r < min{n,m}.

Happy April Fool’s day !!!!!!!!!!!!

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF
Variations on BCD
A-HALS
Matrix-wise Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

5 / 109

Outline

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF
Variations on BCD
A-HALS
Matrix-wise Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

6 / 109

Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ IRm×n
+ .

A positive integer r ∈ IN.

Find :

Matrices W ∈ IRm×r
+ ,H ∈ IRr×n

+ such that X = WH.

Everything is non-negative.

Notation : we use WH instead of WH>.

7 / 109

Non-negative Matrix Factorization (NMF)

Given :

A matrix X ∈ IRm×n
+ .

A positive integer r ∈ IN.

Find :

Matrices W ∈ IRm×r
+ ,H ∈ IRr×n

+ such that X = WH.
Everything is non-negative.

Notation : we use WH instead of WH>. 8 / 109

Exact and approximate NMF

Exact NMF: given (X, r), find (W,H) s.t. X=WH.

It is NP-hard (Vavasis, 2007).
Vavasis, ”On the complexity of nonnegative matrix factorization”, SIAM J. Optim.

This talk : (Low-rank) approximate NMF

X≈WH, 1 ≤ r ≤ min{m,n}.

9 / 109

Exact and approximate NMF

Exact NMF: given (X, r), find (W,H) s.t. X=WH.

It is NP-hard (Vavasis, 2007).
Vavasis, ”On the complexity of nonnegative matrix factorization”, SIAM J. Optim.

This talk : (Low-rank) approximate NMF

X≈WH, 1 ≤ r ≤ min{m,n}.

10 / 109

Compute (W,H) numerically

We solve

[W, H] = argmin
W≥0,H≥0

‖X−WH‖F .

Minimizing the distance between X and the
approximator WH in F-norm†.

≥ is element-wise (not positive semi-definite).
Such minimization problem is

I Bi-variate : two variables
I Non-convex but block-convex (strongly convex/strictly

convex)
I Non-smooth : on the boundary between IR+ and IR−
I Ill-posed and NP-hard (Vavasis, 2007)

†This talk does not consider other distance functions.

11 / 109

NMF downgrade = Non-negative Least Squares

Given (xj ∈ IRm
+ ,W ∈ IRm×r

+), find hj ∈ IRr
+ s.t.

xj ≈Whj via solving

hj = argmin
h≥0

‖xj −Whj‖2.

≥ is element-wise.
Such minimization problem is

I Single variable
I Non-smooth : on the boundary between IR+ and IR−
I No analytic solution
I Convex : depends on W→ strongly convex / strictly convex
I Global minimizer “obtainable”

In more “standard” notation

(NNLS) x = argmin
x≥0

‖Ax− b‖2

12 / 109

NMF upgrade = Non-negative Tensor Factorization

Given (X ∈ IRI×J×K
+ , r ∈ IN)

Find U ∈ IRI×r
+ ,V ∈ IRJ×r

+ and W ∈ IRK×r
+ s.t.

X ≈ U ∗V ∗W via solving

X = argmin
{U,V,W}≥0

‖X−U ∗V ∗W‖F .

≥ is element-wise.
Such minimization problem is

I Three variables
I Non-smooth : on the boundary between IR+ and IR−
I Non-convex but block-convex (strongly convex/strictly convex)
I Global minimizer “obtainable” – unique solution under some conditions

on I, J,K, r

†This talk does not consider other tensor norm.

13 / 109

The scope of this talk : computation of NNLS, NMF, NTF

Keywords : Numerical optimization, Continuous
optimization, Algorithm, Convergence, Non-convex,
Nesterov’s Acceleration, Extrapolation

Non-keywords : Sparsity, Regularization, Applications,
Non-negative rank, Extended Formulations, Separability,
NP-Hardness

Focus : single-machine, serial, deterministic algorithm

Non-focus : multi-machine, parallel, distributed,
stochastic algorithm

14 / 109

5 slides on why NMF

For non-NMF people : why NMF ?

Interpretability

NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on non-negative data.

Model correctness

NMF can find ground truth (under certain conditions).

Mathematical curiosity

NMF is related to some serious problems in mathematics.

My boss tell me to do it.

Why NMF - Hyper-spectral image example

NMF gives good unsupervised image segmentation1

Hyper-spectral image decomposition. Figure from Zhu, F. et al., “Spectral unmixing via
data-guided sparsity.” IEEE Trans. Image Processing, 2014

Comment est-ce possible ?!

1Modern fancy name : “super resolution”

Hyper-spectral imaging. Figure modified from the slide of Nicolas Gillis.

Why NMF - art work preservation example

Art work preservation. Figure from Grabowski, Bartosz, et al. “Automatic
pigment identification from hyperspectral data.” J. Cultural Heritage 31 (2018):
1-12.

Why NMF - other examples
Application side

Spectral unmixing in analytical chemistry (one of the earliest work)
Representation learning on human face (the work that popularizes NMF)
Topic modeling in text mining
Probability distribution application on identification of Hidden Markov Model
Bioinformatics : gene expression
Time-frequency matrix decompositions for neuroinformatics
(Non-negative) Blind source separation
(Non-negative) Data compression
Speech denoising
Recommender system
Face recognition
Video summarization
Radio
Audio
Forensics
Art work conservation (identify true color used in painting)
Medical imaging – image processing on small object
Mid-infrared astronomy – image processing on large object
Telling whether a banana or a fish is healthy

Theoretical numerical side
A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
Robustness analysis of algorithm
Tensor
Sparsity

Analytical side

Non-negative rank rank+ := smallest r such that

X =
r∑

i=1

Xi, : Xi rank-1 and non-negative.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X).

Extended formulations and combinatorics
Log-rank Conjecture of communication system
3-SAT, Exponential time hypothesis, P 6= NP

Outline

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF
Variations on BCD
A-HALS
Matrix-wise Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

21 / 109

Notations

Problem (P) : given (X, r), solve

[W, H] = argmin
W≥0,H≥0

Φ(W,H) = ‖X−WH‖F .

Equivalent objective function :
1

2
‖X−WH‖2

F .

Simplify notation : hide some ≥ 0,
1

2
, F and write

min
W,H

Φ(W,H) = ‖X−WH‖2.

22 / 109

Standard framework to solve (P)

(P) : min
W,H

Φ(W,H) = ‖X−WH‖2.

Approach : BCD (Block Coordinate Descent)2

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] : do something with Φ,X,W,H.
3: Update[H] : do something with Φ,X,W,H.
4: end for

The goal of ”do something” is to achieve

Φ(Wk+1,Hk+1) ≤ Φ(Wk+1,Hk) ≤ Φ(Wk,Hk).
(Actually non-increasing condition is not enough, need sufficient decrease condition)

2Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)

23 / 109

Standard framework to solve (P)

(P) : min
W,H

Φ(W,H) = ‖X−WH‖2.

Approach : BCD (Block Coordinate Descent)2

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] : do something with Φ,X,W,H.
3: Update[H] : do something with Φ,X,W,H.
4: end for

The goal of ”do something” is to achieve

Φ(Wk+1,Hk+1) ≤ Φ(Wk+1,Hk) ≤ Φ(Wk,Hk).
(Actually non-increasing condition is not enough, need sufficient decrease condition)

2Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)

24 / 109

Example 1 : alternating minimization

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] as W← argmin

W≥0
Φ(W) = ‖X−WH‖2F .

3: Update[H] as H← argmin
H≥0

Φ(H) = ‖X−WH‖2F .

4: end for

Symmetry : ‖X−WH‖2
F = ‖X> −H>W>‖2

F ,
→ we can use the same scheme on both variables.
We can focus on one variable, says H (or W).

If asymmetric regularization exists on W (or H) : we
have to handle them separately.

25 / 109

Example 1 : alternating minimization

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] as W← argmin

W≥0
Φ(W) = ‖X−WH‖2F .

3: Update[H] as H← argmin
H≥0

Φ(H) = ‖X−WH‖2F .

4: end for

Symmetry : ‖X−WH‖2
F = ‖X> −H>W>‖2

F ,
→ we can use the same scheme on both variables.
We can focus on one variable, says H (or W).

If asymmetric regularization exists on W (or H) : we
have to handle them separately.

26 / 109

Example 2: alternating gradient descent

Algorithm BCD framework for P
Input: X ∈ IRm×n

+ , r ∈ IN, an initialization W ∈ IRm×r
+ , H ∈ IRr×n

+

Output: W and H

1: for k = 1, 2, . . . do
2: Update[W] as

W← argmin
W≥0

‖X−UH‖2F + 〈W −U,∇Φ(U)〉+
1

2t
‖U−W‖2.

3: Update[H] as

H← argmin
H≥0

‖X−WV‖2F + 〈H−V,∇Φ(V)〉+
1

2t
‖V −H‖2.

4: end for

Local quadratic model : gradient descent minimizes the
local quadratic model of the original objective function

27 / 109

Variations on BCD

Update[H] : H← argmin
H≥0

‖X−WH‖2
F

1 Block partitions : on how coordinate is being defined†.
Now : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
Now : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
Now : “exact” coordinate minimization using 1st order method (e.g.
gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

28 / 109

Variations on BCD

Update[H] : H← argmin
H≥0

‖X−WH‖2
F

1 Block partitions : on how coordinate is being defined†.
Now : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
Now : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
Now : “exact” coordinate minimization using 1st order method (e.g.
gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

29 / 109

Variations on BCD

Update[H] : H← argmin
H≥0

‖X−WH‖2
F

1 Block partitions : on how coordinate is being defined†.
Now : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
Now : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
Now : “exact” coordinate minimization using 1st order method (e.g.
gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

30 / 109

Variations on BCD

Update[H] : H← argmin
H≥0

‖X−WH‖2
F

1 Block partitions : on how coordinate is being defined†.
Now : coordinate is H (matrix) or H(i, :) (vector).

2 Index selection (indexing) : on how coordinate is being selected#.
Now : cyclic indexing and A-HALS.

3 Update scheme : on how coordinate is being updated#.
Now : “exact” coordinate minimization using 1st order method (e.g.
gradient descent).
Exact = working on the original original objective function, no modification.

Inexact = working on modified objective function. e.g. consider relaxation.

4 Other variants

† Kim-He-Park 2014,”Algo. for nonnegative matrix and tensor factorizations: a unified
view based on block coordinate descent framework” J. Global Optimization.

#Shi-Tu-Xu-Yin 2017,”A primer on coordinate descent algorithms.” arXiv:1610.00040

31 / 109

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

Φ(wi,hi) = ‖wi‖2
2‖hi‖2

2 − 2tr 〈Xi,wihi〉+ c.

Alternating minimization using cyclic indexing
Other name : BCD with r = 2 with cyclic component selection
Domain name in NMF : HALS (Hierarchical alternating least squares†)

Update order : w1 → h1 → w2 → h2 → w3 → h3 → ...

A-HALS# (Accelerated-HALS)
A special kinds of cyclic coordinate selection

Update order : w1 → w2 → · · · → wr︸ ︷︷ ︸
several times!!

→ h1 → h2 → · · · → hr︸ ︷︷ ︸
several times!!

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.

32 / 109

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

Φ(wi,hi) = ‖wi‖2
2‖hi‖2

2 − 2tr 〈Xi,wihi〉+ c.

Alternating minimization using cyclic indexing
Other name : BCD with r = 2 with cyclic component selection
Domain name in NMF : HALS (Hierarchical alternating least squares†)

Update order : w1 → h1 → w2 → h2 → w3 → h3 → ...

A-HALS# (Accelerated-HALS)
A special kinds of cyclic coordinate selection

Update order : w1 → w2 → · · · → wr︸ ︷︷ ︸
several times!!

→ h1 → h2 → · · · → hr︸ ︷︷ ︸
several times!!

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.

33 / 109

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have

Φ(wi,hi) = ‖wi‖2
2‖hi‖2

2 − 2tr 〈Xi,wihi〉+ c.

Alternating minimization using cyclic indexing
Other name : BCD with r = 2 with cyclic component selection
Domain name in NMF : HALS (Hierarchical alternating least squares†)

Update order : w1 → h1 → w2 → h2 → w3 → h3 → ...

A-HALS# (Accelerated-HALS)
A special kinds of cyclic coordinate selection

Update order : w1 → w2 → · · · → wr︸ ︷︷ ︸
several times!!

→ h1 → h2 → · · · → hr︸ ︷︷ ︸
several times!!

→ ...

† Cichocki-Zdunke-Amari 2007, ”Hierarchical ALS Algorithms for Nonnegative Matrix and 3D
Tensor Factorization”, International Conf. on ICA.

Gillis-Glineur 2012, ”Accelerated Multiplicative Updates and Hierarchical ALS Algo. for

NMF”, Neural Computation.
34 / 109

A-HALS = avoids repeated computations + re-uses

Projected† gradient descent with step size t ≥ 0

wi = wi − t (‖hi‖22wi −Xih
>
i)︸ ︷︷ ︸

∇wiΦ

, hi = hi − t (‖wi‖22hi −w>i X)︸ ︷︷ ︸
∇hi

Φ

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1)

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.
A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W
>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency,
improvement is significant for big data#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse.

35 / 109

A-HALS = avoids repeated computations + re-uses

Projected† gradient descent with step size t ≥ 0

wi = wi − t (‖hi‖22wi −Xih
>
i)︸ ︷︷ ︸

∇wiΦ

, hi = hi − t (‖wi‖22hi −w>i X)︸ ︷︷ ︸
∇hi

Φ

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1)

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.

A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W
>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency,
improvement is significant for big data#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse.

36 / 109

A-HALS = avoids repeated computations + re-uses

Projected† gradient descent with step size t ≥ 0

wi = wi − t (‖hi‖22wi −Xih
>
i)︸ ︷︷ ︸

∇wiΦ

, hi = hi − t (‖wi‖22hi −w>i X)︸ ︷︷ ︸
∇hi

Φ

.

Algorithm HALS
1: w1 = w1 − t(‖h1‖22w1 −X1h

>
1)

2: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

5: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

6: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

7: ...

Algorithm A-HALS
1: Compute A = HH>, B = XH>

2: w1 = w1 − t(‖h1‖22w1 −X1h
>
1)

3: w2 = w2 − t(‖h2‖22w2 −X2h
>
2)

4: w3 = w3 − t(‖h3‖22w3 −X3h
>
3)

5: Compute C = W>W, D = W>X

6: h1 = h1 − t(‖w1‖22h1 −w>1 X1)

7: h2 = h2 − t(‖w2‖22h2 −w>2 X2)

8: h3 = h3 − t(‖w3‖22h3 −w>3 X3)

9: ...

A-HALS : Line 2-4, 6-8 repeated a few times.
A-HALS avoids repeated computations of constant terms :

HH>(2n−1)m2 , XH>(2n−1)mr, W
>W(2r−1)m2 , W>X(2m−1)rn,

pre-computing and re-use of these terms gain extra efficiency,
improvement is significant for big data#” — always A-HALS!

†Projection step not shown here. # Even more significant in terms of BLAS if the matrices are sparse. 37 / 109

The projected gradient descent update

The Projected Gradient Descent update of W :

Wk+1 = ProjIR+

(
Wk − t∇Φ(Wk,H)

)
.

How to pick the step-size ?

A simple scheme t =
1

LΦW

, where LΦW
= the Lipschitz constant of

∇WΦ (smoothness constant).

LΦW
= largest singular value of HH>

ProjIR+
is basically [·]+ = max{·, 0}.

Hence in close form :

Wk+1 =
[
Wk − 1

σmax(HH>)
∇Φ(Wk,H)

]
+
.

PGD update is much faster than the Multiplicative Update.

38 / 109

The projected gradient descent update

The Projected Gradient Descent update of W :

Wk+1 = ProjIR+

(
Wk − t∇Φ(Wk,H)

)
.

How to pick the step-size ?

A simple scheme t =
1

LΦW

, where LΦW
= the Lipschitz constant of

∇WΦ (smoothness constant).

LΦW
= largest singular value of HH>

ProjIR+
is basically [·]+ = max{·, 0}.

Hence in close form :

Wk+1 =
[
Wk − 1

σmax(HH>)
∇Φ(Wk,H)

]
+
.

PGD update is much faster than the Multiplicative Update.

39 / 109

The projected gradient descent update

The Projected Gradient Descent update of W :

Wk+1 = ProjIR+

(
Wk − t∇Φ(Wk,H)

)
.

How to pick the step-size ?

A simple scheme t =
1

LΦW

, where LΦW
= the Lipschitz constant of

∇WΦ (smoothness constant).

LΦW
= largest singular value of HH>

ProjIR+
is basically [·]+ = max{·, 0}.

Hence in close form :

Wk+1 =
[
Wk − 1

σmax(HH>)
∇Φ(Wk,H)

]
+
.

PGD update is much faster than the Multiplicative Update.

40 / 109

Multiplicative Update

MU :

It takes a small step size t such that Wk+1 stays within IR+, no
projection.

Wk+1 = W. ∗ XH>

WkHH>
,

where ∗ is Hadamard product and the division is Hadamard
quotient.

It converges very slowly. In general, don’t use MU.
Why: to make sure W stays within IR+, MU take small step
=⇒ slow !

PGD :

It takes reasonably large step size, and
IF moved outside IR+ THEN project back.

ProjIR+
practically costs nothing unless the data size is 1086.

41 / 109

MU = timid, shy guy that is too cautious on making mistake.
PGD = brave guy that is fine of making mistake by doing correction.

Here ”mistake” = ”outside IR+”, ”correction” = ”ProjIR+
”.
42 / 109

Outline

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF
Variations on BCD
A-HALS
Matrix-wise Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

43 / 109

Let’s accelerate !

The next many slides : make PGD converges even more fast

Recall : NMF is NP-Hard.
What’s the acceleration for : obtain a local solution faster.44 / 109

Recall : acceleration in single variable problem

Problem min
x∈C

f(x), C convex set.

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

PGD Update xk+1 = ProjC(xk − tk∇f(xk)).

Linear extrapolation xk+1 = ProjC(yk − tk∇f(yk)).

yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk : a single extrapolation parameter.

45 / 109

Recall : acceleration in single variable problem

Problem min
x∈C

f(x), C convex set.

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

PGD Update xk+1 = ProjC(xk − tk∇f(xk)).

Linear extrapolation xk+1 = ProjC(yk − tk∇f(yk)).

yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk : a single extrapolation parameter.

46 / 109

Recall : acceleration in single variable problem

Problem min
x∈C

f(x), C convex set.

At step k :

No acceleration : xk+1 = Update[xk].

With acceleration : xk+1 = Update[yk], yk+1 = Extrapolate[xk+1, xk].

To be specific :

PGD Update xk+1 = ProjC(xk − tk∇f(xk)).

Linear extrapolation xk+1 = ProjC(yk − tk∇f(yk)).

yk+1 = xk+1 + βk(xk+1 − xk).

i.e. Extrapolate[xk+1, xk] is modeled by βk : a single extrapolation parameter.

47 / 109

Why extrapolation : gradient descent zig-zags on ellipse

Facts : consecutive update directions of GD are orthogonal (⊥).
If the landscape is not ”spherical”, GD zig-zags → slow.
e.g. : moving along a long narrow valley.

Picture from https://angms.science/doc/teaching/GDLS.pdf 48 / 109

What machine learning people do to counter zig-zag?

Do tricks on step size : don’t move with step size t but
t

damping factor
.

Length of pink segment <
length of the corresponding
red segment =⇒ points on
pink segment is closer to axis
y = 0 , gradient stronger x-
component =⇒ less oscilla-
tion along y-direction.

The idea behind AdaGrad and AdaDelta : shrink the step size when you

see zig-zag (trace of the objective function appears to plateau).

49 / 109

What optimization people do to counter zig-zag?

Do tricks on direction : by extrapolation with momentum.

Idea : apply extrapolation.
Extrapolate = add gradient history.

(1) if gradients in consecutive steps have
consistent direction
=⇒ extrapolate = accelerate.
(2) if gradients in consecutive steps oscillates
(continuously changing direction)
=⇒ extrapolate = damp oscillation =
acceleration.

Figure shows the trace of points decomposed into x- and y-component.
The x-components have consistent direction while y-components are not.

50 / 109

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

51 / 109

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

52 / 109

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

53 / 109

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

54 / 109

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

55 / 109

The geometry of the extrapolation

xk+1 = Update[yk], yk+1 = xk+1 + βk(xk+1 − xk).

56 / 109

The geometry of extrapolation

We always have

∠(xk+1 − yk)≥∠(xk+2 − xx+1)≥∠(xk+2 − yk+1)

i.e. the direction of the last step is in between the directions of previous
two gradient steps : zig-zag effect is reduced !

57 / 109

Nesterov’s acceleration

For convex (smooth strongly-convex) function

Picture from https://angms.science/doc/teaching/GDLS.pdf

Key : Nesterov’s acceleration has a close-form formula for βk

58 / 109

Extrapolation is not monotone, nor descent, nor greedy

GD is locally optimal/greedy =⇒ extrapolation may ↑objective value

Extrapolation = a risky move

Picture from Donoghue-Candés 2015, ”Adaptive Restart for Accelerated Gradient Schemes”

Acceleration comes from doing the risky move :

”sacrifice the decreases of objective value now for the better future”

Actually also sacrifice robustness : accelerated gradient is not stable to noise (Devolder-Glineur-Nesterov 2014) 59 / 109

Picture from https://angms.science/doc/teaching/GDLS.pdf

60 / 109

Our case : NMF is not cvx

(P) :
{

Given (X, r), solve min
W,H

‖X−WH‖2,W,H ∈ IR+

}
is non-cvx.

No strong cvx parameter, cannot use expression likes βk =
1−
√
κ

1 +
√
κ

.

Direct application of Nesterov’s β sequence on PGD/A-HALS will give
erratic convergence behaviour
Mitchell, Drew, Nan Ye, and Hans De Sterck. ”Nesterov Acceleration of Alternating Least Squares for Canonical Tensor

Decomposition.” arXiv:1810.05846 (2018)

For the acceleration scheme of the two variables
On W


Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βWk (Wnew −Wold)

On H


Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βHk (Hnew −Hold)

Need a way (close-/no close-form) to find βk !

61 / 109

Our case : NMF is not cvx

(P) :
{

Given (X, r), solve min
W,H

‖X−WH‖2,W,H ∈ IR+

}
is non-cvx.

No strong cvx parameter, cannot use expression likes βk =
1−
√
κ

1 +
√
κ

.

Direct application of Nesterov’s β sequence on PGD/A-HALS will give
erratic convergence behaviour
Mitchell, Drew, Nan Ye, and Hans De Sterck. ”Nesterov Acceleration of Alternating Least Squares for Canonical Tensor

Decomposition.” arXiv:1810.05846 (2018)

For the acceleration scheme of the two variables
On W


Update Wnew = Update[Yold,Hold]

Extrapolate Ynew = Wnew + βWk (Wnew −Wold)

On H


Update Hnew = Update[Wnew,Gold]

Extrapolate Gnew = Hnew + βHk (Hnew −Hold)

Need a way (close-/no close-form) to find βk !
62 / 109

Approach : an ad hoc heurisitic in the ”line search” style.

Why ad hoc heuristics ?

(1) The ncvx problem is hard.

(2) No better idea.

No convergence theorem now yet (because of (1)).

What’s so good ?

Just a parameter tuning problem.

Easy to implement.

Easy to extend to other models.

Faster than state-of-the-art methods with theoretical
convergence proof !

† Xu-Yin 2013 ”A block coordinate descent method for regularized multiconvex

optimization with applications to nonnegative tensor factorization and

completion”. SIAM J. Img Sci.

63 / 109

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– effectively doing no extrapolation, waste resource on line search

In the ”walking person metaphor” :

MU shy guy walking in caution with small step size
PGD brave guy walking with reasonably step size

E-PGD ambious guy walking with big step size
E-A-HALS crazy guy walking with big step size in coordinate manner

†Line search to minimize the objective function directly – performed before the update

64 / 109

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– effectively doing no extrapolation, waste resource on line search

In the ”walking person metaphor” :

MU shy guy walking in caution with small step size
PGD brave guy walking with reasonably step size

E-PGD ambious guy walking with big step size
E-A-HALS crazy guy walking with big step size in coordinate manner

†Line search to minimize the objective function directly – performed before the update

65 / 109

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– effectively doing no extrapolation, waste resource on line search

In the ”walking person metaphor” :

MU shy guy walking in caution with small step size
PGD brave guy walking with reasonably step size

E-PGD ambious guy walking with big step size
E-A-HALS crazy guy walking with big step size in coordinate manner

†Line search to minimize the objective function directly – performed before the update

66 / 109

Details of the extrapolation

The key βk
β has to be smaller than 1 (same as the convex case)

If β ∈ (0, 1) : extrapolation, doing risky step

If β = {1, 0} : doing {very risky, no} extrapolation

Can’t use line search† to find β : experimentally found
β close to 0
– effectively doing no extrapolation, waste resource on line search

In the ”walking person metaphor” :

MU shy guy walking in caution with small step size
PGD brave guy walking with reasonably step size

E-PGD ambious guy walking with big step size
E-A-HALS crazy guy walking with big step size in coordinate manner

†Line search to minimize the objective function directly – performed before the update

67 / 109

Details : Update[βk]

Landscape of variable at each iteration is different =⇒ dynamical update

Algorithm A dynamic line search style† ad hoc heuristics

Input: Parameters 1 < γ̄ < γ < η, an initialization β1 ∈ (0, 1)
Output: βk : the extrapolation parameter

1: Set β̄ = 1 (dynamic ”upper bound” of β)
2: if error ↓ at iteration k then
3: Increase βk+1 : βk+1 = min{β̄, γβk}
4: (Increase β̄ if β̄ < 1 : β̄ = min{1, γ̄β̄})
5: else
6: Decrease βk+1 : βk+1 = βk/η
7: Set β̄ = βk
8: end if

γ, γ̄, η : growth and decay parameters

†Line search after updates of W and H – performed after the update!

68 / 109

The logic of tuning β

The idea is to update βk based on the increase or decrease of the objective
function. Let ek = Φ(Wk,Hk), then

βk+1 =

min{γβk, β̄} if ek ≤ ek−1

βk
η

if ek > ek−1
(1)

where γ > 1, and η > 1 are constants and β̄0 = 1 with the update

β̄k+1 =

{
min{γ̄β̄k, 1} if ek ≤ ek−1 and β̄k < 1

βk if ek > ek−1
. (2)

69 / 109

The logic of tuning β

The idea is to update βk based on the increase or decrease of the objective
function. Let ek = Φ(Wk,Hk), then

βk+1 =

min{γβk, β̄} if ek ≤ ek−1

βk
η

if ek > ek−1
(1)

where γ > 1, and η > 1 are constants and β̄0 = 1 with the update

β̄k+1 =

{
min{γ̄β̄k, 1} if ek ≤ ek−1 and β̄k < 1

βk if ek > ek−1
. (2)

70 / 109

The detail logic flow of updating βk ... (1/2)

Case 1. The error decreases : ek ≤ ek−1

It means the current β value is “good”

We can be more ambitious on the extrapolation
I i.e., we increase the value of β
I How : multiplying it with a growth factor γ > 1

βk+1 = βkγ

Note that the growth of β cannot be indefinite
I i.e., we put a ceiling parameter β̄ to upper bound the growth
I How : use min

βk+1 = min{βkγ, β̄k}
I β̄ itself is also updated dynamically with a growth factor γ̄ with the

upper bound 1.

71 / 109

The detail logic flow of updating βk ... (1/2)

Case 1. The error decreases : ek ≤ ek−1

It means the current β value is “good”

We can be more ambitious on the extrapolation
I i.e., we increase the value of β
I How : multiplying it with a growth factor γ > 1

βk+1 = βkγ

Note that the growth of β cannot be indefinite
I i.e., we put a ceiling parameter β̄ to upper bound the growth
I How : use min

βk+1 = min{βkγ, β̄k}
I β̄ itself is also updated dynamically with a growth factor γ̄ with the

upper bound 1.

72 / 109

The detail logic flow of updating βk ... (1/2)

Case 1. The error decreases : ek ≤ ek−1

It means the current β value is “good”

We can be more ambitious on the extrapolation
I i.e., we increase the value of β
I How : multiplying it with a growth factor γ > 1

βk+1 = βkγ

Note that the growth of β cannot be indefinite
I i.e., we put a ceiling parameter β̄ to upper bound the growth
I How : use min

βk+1 = min{βkγ, β̄k}
I β̄ itself is also updated dynamically with a growth factor γ̄ with the

upper bound 1.

73 / 109

The detail logic flow of updating βk ... (2/2)

Case 2. The error increases : ek > ek−1

It means the current β value is “bad” (too large)

We become less ambitious on the extrapolation
I i.e., we decrease the value of β
I How : dividing it with the decay factor η > 1

βk+1 =
βk
η

As f is often a continuous and smooth, for βk being too large, such
value of β will also be too large at iteration k + 1

I i.e., we have to avoid βk+1 to grow back to βk (the “bad” value) too
soon

I How : we set the ceiling parameter

β̄k+1 = βk

74 / 109

The detail logic flow of updating βk ... (2/2)

Case 2. The error increases : ek > ek−1

It means the current β value is “bad” (too large)

We become less ambitious on the extrapolation
I i.e., we decrease the value of β
I How : dividing it with the decay factor η > 1

βk+1 =
βk
η

As f is often a continuous and smooth, for βk being too large, such
value of β will also be too large at iteration k + 1

I i.e., we have to avoid βk+1 to grow back to βk (the “bad” value) too
soon

I How : we set the ceiling parameter

β̄k+1 = βk

75 / 109

The detail logic flow of updating βk ... (2/2)

Case 2. The error increases : ek > ek−1

It means the current β value is “bad” (too large)

We become less ambitious on the extrapolation
I i.e., we decrease the value of β
I How : dividing it with the decay factor η > 1

βk+1 =
βk
η

As f is often a continuous and smooth, for βk being too large, such
value of β will also be too large at iteration k + 1

I i.e., we have to avoid βk+1 to grow back to βk (the “bad” value) too
soon

I How : we set the ceiling parameter

β̄k+1 = βk

76 / 109

The full algo of Accelerated NMF using extrapolation

Input: X, initialization W,H, parameters hp ∈ {1, 2, 3} (extrapolation/projection of H).
Output: W,H.

1: Wy = W; Hy = H; e(0) = ||X−WH||F .

2: for k = 1, 2, . . . do

3: Compute Hn by min
Hn≥0

||X−WyHn||2F using Hy as initial iterate.

4: if hp ≥ 2 then

5: Extrapolate: Hy = Hn + βk(Hn −H).

6: end if
7: if hp = 3 then

8: Project: Hy = max
(
0,Hy

)
.

9: end if
10: Compute Wn by min

Wn≥0
||X−WnHy||2F using Wy as initial iterate.

11: Extrapolate: Wy = Wn + βk(Wn −W).

12: if hp = 1 then

13: Extrapolate: Hy = Hn + βk(Hn −H).

14: end if
15: Compute error: e(k) = ||X−WnHy||F .

16: if e(k) > e(k − 1) then

17: Restart: Hy = Hn; Wy = Wn.

18: else
19: H = Hn; W = Wn.
20: end if
21: end for

Notation : Wn normal variable, Wy extrpolate variable, W previous Wn

... too hard to read !!

77 / 109

Algorithm (hp = 1), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
5: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).
6: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).

7: Compute error: e(k) = ||X−WnHy||F .
8: if e(k) > e(k − 1) then
9: Restart: Hy = Hn; Wy = Wn.

10: else
11: H = Hn; W = Wn.
12: end if
13: end for

”Up, Up, Ex, Ex”
78 / 109

Algorithm (hp = 2), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).
5: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
6: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).

7: Compute error: e(k) = ||X−WnHy||F .
8: if e(k) > e(k − 1) then
9: Restart: Hy = Hn; Wy = Wn.

10: else
11: H = Hn; W = Wn.
12: end if
13: end for

”Up, Ex, Up, Ex”
79 / 109

Algorithm (hp = 3), simplified

Input: X, initialization W,H
Output: W,H

1: Wy = W; Hy = H; e(0) = ||X−WH||F .
2: for k = 1, 2, . . . do
3: Update[Hn] w.r.t. Hn ≥ 0 with X,Wy,Hn using Hy as initial iterate.
4: Extrapolate[Hy] : Hy = Hn + βk(Hn −H).
5: Project: Hy = max (0,Hy).
6: Update[Wn] wr.t. Wn ≥ 0 with X,Wn,Hy using Wy as initial iterate.
7: Extrapolate[Wy] : Wy = Wn + βk(Wn −W).

8: Compute the error: e(k) = ||X−WnHy||F .
9: if e(k) > e(k − 1) then

10: Restart: Hy = Hn; Wy = Wn.
11: else
12: H = H; W = Wn.
13: end if
14: end for

”Up, Ex, Pro, Up, Ex”
80 / 109

Summary and notes (1/3)

Extrapolation may break NN (≥ 0) constraint :

hp = 1 hp = 2 hp = 3

(Up-Up-Ex-Ex) (Up-Ex-Up-Ex) (Up-Ex-Pro-Up-Ex)

Step NN? Step NN? Step NN?

Update[Hn] Y Update[Hn] Y Update[Hn] Y
Update[Wn] Y Extrap[Hy] N Extrap[Hy] N

Project[Hy] Y
Extrap[Hy] N Update[Wn] Y Update[Wn] Y
Extrap[Wy] N Extrap[Wy] N Extrap[Wy] N

81 / 109

The chain structure of the update sequence

There are variations on the chain structure of the update, for examples

Update W → extrapolate W → update H → extrapolate H

Update W → extrapolate W → update H → extrapolate H → project H

Update W → update H → extrapolate W → extrapolate H

The comparisons of these three schemes : see the paper.

82 / 109

83 / 109

84 / 109

Open question : why certain structure has a better performance than
others

85 / 109

Summary and notes (2/3)

Update using matrix with negative values :
Update[Hn] w.r.t. Hn ≥ 0 with (X,Wy,Hn), using Hy as initial iterate
Update[Wn] wr.t. Wn ≥ 0 with (X,Wn,Hy), using Wy as initial iterate

86 / 109

Summary and notes (3/3)

Restart using e(k) as ‖X−WnHy‖F not ‖X−WnHn‖F
Why :
(i) Wn was updated according to Hy (see point 2)

(ii) it gives the algorithm some degrees of freedom to possibly increase the
objective function

(iii) computationally cheaper, as compute ‖X−WnHn‖F need O(mnr)
operations instead of O(mr2) by re-using previous computed terms :

‖X−WH‖2F = ‖X‖2F − 2
〈
W,XH>

〉
+
〈
W>W,HH>

〉
Note : if the variables converges, using Wn, Wy is effectively the same as
W∞

n = W∞
y (after projection)

87 / 109

Experiments

Notations

A-HALS : vector-wise update, compute approximate solution
ANLS : subproblem solved exactly using active-set methods
E : extrapolation

Set up

Average error over 10 trials
W,H,X randomly generated ∼ U [0, 1], m = n = 200, r = 20
Real X from real data is also used.
Error comparisons : using lowest relative error emin across all
algorithms, at step k,

E(k) =
‖X−WkHk‖F

‖X‖F
− emin

It is possible emin = 0 and not shown
Extrapolation parmater β0 = [0.25, 0.5, 0.75]
η0 = [1.5, 2, 3]
γ, γ̄ = [1.01, 1.005], [1.05, 1.01], [1.1, 1.05]
For display : only best and worst to illustrate sensitivity (for hp = 2)88 / 109

Low-rank synthetic data Image data

Image data
Text data

Fast conclusion : E wins. 89 / 109

Compare with other method on speed (time)

Time (s.)
0 5 10 15

||X
-W

H
|| F

 /
||X

|| F
 -

 e
m

in

10-8

10-6

10-4

10-2

100

ANLS
E-ANLS (hp=1)
E-ANLS (hp=3)
A-HALS
E-A-HALS (hp=1)
E-A-HALS (hp=3)
APG-MF

Time (s.)
0 5 10 15

||X
-W

H
|| F

 /
||X

|| F
 -

 e
m

in

10-4

10-3

ANLS
E-ANLS (hp=1)
E-ANLS (hp=3)
A-HALS
E-A-HALS (hp=1)
E-A-HALS (hp=3)
APG-MF

Average err. of ANLS, A-HALS and extrapolated variants, on low-rank (left) and
full-rank (right) synthetic data.
APG-MF† = an extrapolated proximal type algorithm, with convergence proof.

Fast conclusion : E wins and beats APG-MF†.

† Xu-Yin 2013 ”A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion”. SIAM J. Img Sci.

90 / 109

Overall results : E wins!
Method Data Ex wins?

A-HALS

Low/full rank synthetic data YES
Dense Image data† YES
Sparse text data# YES

ANLS

Low/full rank synthetic data YES
Dense Image data† YES
Sparse text data# YES

† ORL, Umist, CBCL, Frey.
Zhong-Ghosh 2005. Generative model-based document clustering: a comparative study

Conclusions

No matter what method XXX, E-XXX > XXX.

E-XXX > APG-MF (an extrapolated proximal-type method).

Between E-ANLS vs E-A-HALS : no clear winner
I Low rank synthetic data : E-ANLS � everything
I Dense data : E-A-HALS ≈ E-ANLS, although A-HALS > ANLS
I Sparse data : E-A-HALS � everything

Between different hp
I Up-Ex-Up-Ex (hp = 2) seems worst
I Up-Up-Ex-Ex (hp = 1) or Up-Ex-Pro-Up-Ex (hp = 3) are better

Don’t trust me ? Go https://arxiv.org/abs/1805.06604, try the code!
91 / 109

Outline

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF
Variations on BCD
A-HALS
Matrix-wise Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

92 / 109

Tensor extension

(Joint-work with Jeremy E. Cohen of IRISA, Rennes, France)

Extend the idea of extrapolation to the tensor cases; more precisely to the
Non-negative Canonical Polyadic Decomposition (NNCPD).

min
U,V,W

Φ(U,V,W) = ‖Y −U ∗V ∗W‖ s.t. U ≥ 0,V ≥ 0,W ≥ 0

= ‖Y −
r∑
i

ui ∗ vi ∗wi‖

Experiments showed that the approach is very promising and is able to
significantly accelerate the NNCPD algorithms.

Unsolved problem : NNCPD has even higher variability on the chain
structure.

93 / 109

Understanding the relationship between the data structure (rank size, size
of each mode) and the chain structure will be crucial.

94 / 109

Results : Toy example

What about MU : too slow, not qualified.

95 / 109

Results : low rank, balanced sizes

96 / 109

Results : low rank, balanced sizes, ill-conditioned

100 200 300 400 500

10 -8

10 -6

10 -4

2 4 6 8

10 -8

10 -6

10 -4

HALS E-HALS APG-r

97 / 109

Results : medium rank, unbalanced sizes

10 20 30

10 -8

10 -6

10 -4

2 4 6 8 10

10 -8

10 -6

10 -4

HALS E-HALS APG-r

98 / 109

On fitting the ground truth

99 / 109

Outline

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF
Variations on BCD
A-HALS
Matrix-wise Projected Gradient Update and the Multiplicative update

3 Find (W,H) numerically fast : acceleration via extrapolation
Recall : acceleration in single variable problem
Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

100 / 109

Non-negative Least Square

Problem (P) : given (A,b), solve

(NNLS) x = argmin
x≥0

Φ(x) =
1

2
‖Ax− b‖2

2.

Let Q = A>A, p = A>b, we have an equivalent
expression

x = argmin
x≥0

1

2
x>Qx− p>x + c

Φ is ‖Q‖2-smooth : the Lipschitz constant of ∇Φ is ‖Q‖2

PGD update : x+ = x− t(Qx− p) with t = L−1

101 / 109

Multiplicative update

Using the component-wise step size ti =
xi

[Qx]i
, the vector update

x+ = x− t(Qx− p) becomes

x+
i = xi − ti([Qx]i − pi)

= xi −
xi

[Qx]i
([Qx]i − pi)

=
[Qx]i
[Qx]i

xi −
[Qx]i − pi

[Qx]i
xi

=
pixi

[Qx]i

In vector form, we have

x+ = x⊗ p

Qx
,

where the multiplication ⊗ and division []
[] are element-wise.

As p, Q and x0 are all non-negative, thus the iteration produce a
non-negative output.

102 / 109

Solving NNLS by MU algorithm

Problem :

xNNLS := argminx≥0f(x) =
1

2
‖Ax− b‖22

The Multiplicative Update algorithm for NNLS

Algorithm MU for NNLS

Input: A ∈ IRm×n
+ , b ∈ IRm, an initialization x ∈ IRn

+

Output: x

1: for k = 1, 2, . . . do

2: xk+1 = xk ⊗
p

Qxk
3: end for

It can be proved that, the objective function f(x) is non-increasing under

MU iteration xk+1 = xk ⊗
p

Qxk
.

103 / 109

Solving NNLS by PGD algorithm

Problem :

xNNLS := argminx≥0f(x) =
1

2
‖Ax− b‖22

The PGD algorithm for NNLS

Algorithm PGD for NNLS

Input: A ∈ IRm×n
+ , b ∈ IRm, an initialization x ∈ IRn

+

Output: x

1: for k = 1, 2, . . . do

2: xk+1 =

[
xk −

1

L
(Qxk − p)

]
+

3: end for

It can be proved that, the objective function f(x) is strictly decreasing
under PGD iteration when sufficient descent condition holds.

104 / 109

Solving NNLS by Accelerated-PGD algorithm

Problem :

xNNLS := argminx≥0f(x) =
1

2
‖Ax− b‖22

The A-PGD algorithm for NNLS

Algorithm A-PGD for NNLS

Input: A ∈ IRm×n
+ , b ∈ IRm, an initialization x ∈ IRn

+

Output: x

1: for k = 1, 2, . . . do
2: Compute βk

3: yk+1 =

[
xk −

1

L
(Qxk − p)

]
+

4: xk+1 = yk+1 + βk(yk+1 − yk)
5: end for

105 / 109

Solving NNLS by Accelerated-PGD algorithm, with restart

Problem :

xNNLS := argminx≥0f(x) =
1

2
‖Ax− b‖22

The A-PGD algorithm for NNLS

Algorithm A-PGD for NNLS

Input: A ∈ IRm×n
+ , b ∈ IRm, an initialization x ∈ IRn

+

Output: x

1: for k = 1, 2, . . . do
2: Compute βk

3: yk+1 =

[
xk −

1

L
(Qxk − p)

]
+

4: xk+1 = yk+1 + βk(yk+1 − yk)
5: IF error increase do
6: xk+1 = yk+1 (take no extrapolation)
7: reset β
8: ENDIF
9: end for 106 / 109

Toy example

PGD without any acceleration is already much faster than MU. Not to
mention those with acceleration and restart

(m,n) = 100, 10.

What about my scheme? : With a “good” parameter, the scheme is
even faster than Nesterov’s type acceleration algorithm. However, all of
them are still in linear convergence rate. 107 / 109

Convergence proof

You sure want to read it ?
(show the long proof)

108 / 109

Last page – summary

What is Non-negative Matrix Factorization, Why NMF

How to solve NMF fast with extrapolation
A.-Gillis, “Accelerating Non-negative matrix factorization by extrapolation”, Neural

Computation, Feb, 2019.

How to solve NTF fast with extrapolation
A.-Cohen-Gillis, “Accelerating Approximate Nonnegative

Canonical Polyadic Decomposition using Extrapolation”, 2019.

How to solve NNLS fast with extrapolation
work in progress

Some open problems

END OF PRESENTATION.

Slide, code, preprint in angms.science

109 / 109

	Introduction - Non-negative Matrix Factorization
	Computing NMF
	Variations on BCD
	A-HALS
	Matrix-wise Projected Gradient Update and the Multiplicative update

	Find (W, H) numerically fast : acceleration via extrapolation
	Recall : acceleration in single variable problem
	Accelerating NMF algorithms using extrapolation

	Computing NTF
	Computing NNLS

