Accelerating Nonnegative-X by extrapolation where $X \in \{\text{Least Square, Matrix Factorization}, \text{Tensor Factorization}\}$

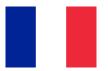
Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium Email: manshun.ang@umons.ac.be Homepage: angms.science

April 1, 2019

Department of Electrical and Electronic Engineering University of Hong Kong

- Algorithmes numérique pour les problèmes d'optimisation non linéaire avec contraintes non-négativité
- Algorithmes de Factorisation Non-Négative de Matrices/Tenseurs



Niet-negatieve matrixfactorisatie

De algemene formulering van een matrixfactorisatie is:

 $\mathbf{X}=\mathbf{W}\mathbf{H},$

waarbij de dimensies als volgt zijn: $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{W} \in \mathbb{R}^{m \times r}$, en $\mathbf{H} \in \mathbb{R}^{r \times n}$.

Voor de op voorhand zelf te specificeren dimensie r geldt:

 $0 < r < \min\{n, m\}.$

Happy April Fool's day !!!!!!!!!!

1 Introduction - Non-negative Matrix Factorization

2 Computing NMF

- Variations on BCD
- A-HALS
- Matrix-wise Projected Gradient Update and the Multiplicative update

${f 3}$ Find $({f W},{f H})$ numerically fast : acceleration via extrapolation

- Recall : acceleration in single variable problem
- Accelerating NMF algorithms using extrapolation

Computing NTF

5 Computing NNLS

Outline

Introduction - Non-negative Matrix Factorization

2 Computing NMF

- Variations on BCD
- A-HALS
- Matrix-wise Projected Gradient Update and the Multiplicative update

3) Find (\mathbf{W},\mathbf{H}) numerically fast : acceleration via extrapolation

- Recall : acceleration in single variable problem
- Accelerating NMF algorithms using extrapolation
- 4 Computing NTF

5 Computing NNLS

Non-negative Matrix Factorization (NMF)

Given :

- A matrix $\mathbf{X} \in \mathbb{R}^{m \times n}_+$.
- A positive integer $r \in \mathbb{N}$.

Find :

• Matrices $\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+$ such that $\mathbf{X} = \mathbf{W}\mathbf{H}$.

Given :

- A matrix $\mathbf{X} \in \mathbb{R}^{m \times n}_+$.
- A positive integer $r \in \mathbb{N}$.

Find :

- Matrices $\mathbf{W} \in \mathbb{R}^{m \times r}_+, \mathbf{H} \in \mathbb{R}^{r \times n}_+$ such that $\mathbf{X} = \mathbf{W}\mathbf{H}$.
- Everything is non-negative.

Exact NMF: given (\mathbf{X}, r) , find (\mathbf{W}, \mathbf{H}) s.t. $\mathbf{X} = \mathbf{WH}$.

It is NP-hard (Vavasis, 2007).

Vavasis, "On the complexity of nonnegative matrix factorization", SIAM J. Optim.

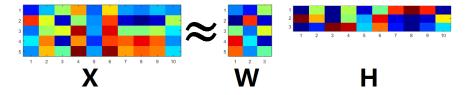
Exact NMF: given (\mathbf{X}, r) , find (\mathbf{W}, \mathbf{H}) s.t. $\mathbf{X} = \mathbf{W}\mathbf{H}$.

It is NP-hard (Vavasis, 2007).

Vavasis, "On the complexity of nonnegative matrix factorization", SIAM J. Optim.

This talk : (Low-rank) approximate NMF

$$\mathbf{X} \approx \mathbf{WH}, \ 1 \le r \le \min\{m, n\}.$$



Compute (\mathbf{W},\mathbf{H}) numerically

We solve

$$[\mathbf{W}, \ \mathbf{H}] = \operatorname*{argmin}_{\mathbf{W} \geq \mathbf{0}, \mathbf{H} \geq \mathbf{0}} \| \mathbf{X} - \mathbf{W} \mathbf{H} \|_{F}.$$

- \bullet Minimizing the distance between ${\bf X}$ and the approximator ${\bf WH}$ in F-norm^†.
- \geq is element-wise (not positive semi-definite).
- Such minimization problem is
 - Bi-variate : two variables
 - Non-convex but block-convex (strongly convex/strictly convex)
 - \blacktriangleright Non-smooth : on the boundary between ${\rm I\!R}_+$ and ${\rm I\!R}_-$
 - III-posed and NP-hard (Vavasis, 2007)

†This talk does not consider other distance functions.

NMF downgrade = Non-negative Least Squares

Given $(\mathbf{x}_j \in \mathbb{R}^m_+, \mathbf{W} \in \mathbb{R}^{m \times r}_+)$, find $\mathbf{h}_j \in \mathbb{R}^r_+$ s.t. $\mathbf{x}_j \approx \mathbf{W} \mathbf{h}_j$ via solving

$$\mathbf{h}_j = \underset{\mathbf{h} \ge \mathbf{0}}{\operatorname{argmin}} \|\mathbf{x}_j - \mathbf{W} \mathbf{h}_j\|_2.$$

• \geq is element-wise.

• Such minimization problem is

- Single variable
- \blacktriangleright Non-smooth : on the boundary between ${\rm I\!R}_+$ and ${\rm I\!R}_-$
- No analytic solution
- Convex : depends on $\mathbf{W} \rightarrow \mathsf{strongly} \mathsf{ convex} / \mathsf{ strictly} \mathsf{ convex}$
- Global minimizer "obtainable"
- In more "standard" notation

(NNLS)
$$\mathbf{x} = \underset{\mathbf{x} \ge \mathbf{0}}{\operatorname{argmin}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$$

NMF upgrade = Non-negative Tensor Factorization

Given $(\mathbf{X} \in \mathbb{R}^{I \times J \times K}_+, r \in \mathbb{N})$ Find $\mathbf{U} \in \mathbb{R}^{I \times r}_+, \mathbf{V} \in \mathbb{R}^{J \times r}_+$ and $\mathbf{W} \in \mathbb{R}^{K \times r}_+$ s.t. $\mathbf{X} \approx \mathbf{U} * \mathbf{V} * \mathbf{W}$ via solving

$$\mathbf{X} = \operatorname*{argmin}_{\{\mathbf{U},\mathbf{V},\mathbf{W}\}\geq \mathbf{0}} \|\mathbf{X}-\mathbf{U}*\mathbf{V}*\mathbf{W}\|_{F}.$$

- \geq is element-wise.
- Such minimization problem is
 - Three variables
 - \blacktriangleright Non-smooth : on the boundary between ${\rm I\!R}_+$ and ${\rm I\!R}_-$
 - Non-convex but block-convex (strongly convex/strictly convex)
 - Global minimizer "obtainable" unique solution under some conditions on I, J, K, r

[†]This talk does not consider other tensor norm.

Keywords : Numerical optimization, Continuous optimization, Algorithm, Convergence, Non-convex, Nesterov's Acceleration, Extrapolation

Non-keywords : Sparsity, Regularization, Applications, Non-negative rank, Extended Formulations, Separability, NP-Hardness

Focus : single-machine, serial, deterministic algorithm

Non-focus : multi-machine, parallel, distributed, stochastic algorithm

5 slides on why NMF

For non-NMF people : why NMF ?

Interpretability

NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on non-negative data.

Model correctness

NMF can find ground truth (under certain conditions).

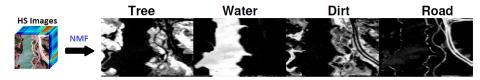
• Mathematical curiosity

NMF is related to some serious problems in mathematics.

• My boss tell me to do it.

Why NMF - Hyper-spectral image example

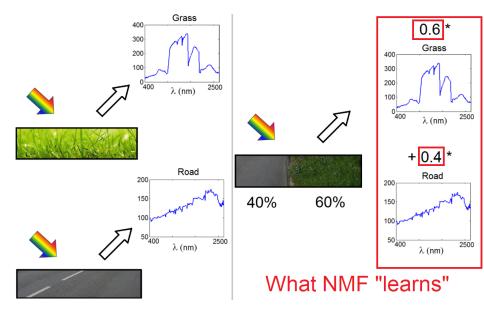
NMF gives good *unsupervised* image segmentation¹



Hyper-spectral image decomposition. Figure from Zhu, F. et al., "Spectral unmixing via data-guided sparsity." IEEE Trans. Image Processing, 2014

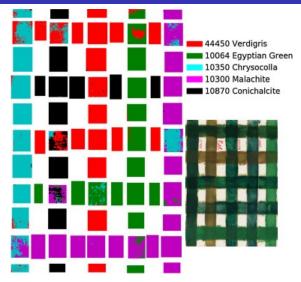
Comment est-ce possible ?!

¹Modern fancy name : "super resolution"



Hyper-spectral imaging. Figure modified from the slide of Nicolas Gillis.

Why NMF - art work preservation example



Art work preservation. Figure from Grabowski, Bartosz, et al. "Automatic pigment identification from hyperspectral data." J. Cultural Heritage 31 (2018): 1-12.

Why NMF - other examples

Application side

- Spectral unmixing in analytical chemistry (one of the earliest work)
- Representation learning on human face (the work that popularizes NMF)
- Topic modeling in text mining
- Probability distribution application on identification of Hidden Markov Model
- Bioinformatics : gene expression
- Time-frequency matrix decompositions for neuroinformatics
- (Non-negative) Blind source separation
- (Non-negative) Data compression
- Speech denoising
- Recommender system
- Face recognition
- Video summarization
- Radio
- Audio
- Forensics
- Art work conservation (identify true color used in painting)
- Medical imaging image processing on small object
- Mid-infrared astronomy image processing on large object
- Telling whether a banana or a fish is healthy

Theoretical numerical side

- A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
- Robustness analysis of algorithm
- Tensor
- Sparsity

Analytical side

Non-negative rank rank⁺ := smallest r such that

$$\mathbf{X} = \sum_{i=1}^{'} \mathbf{X}_i, \quad : \; \mathbf{X}_i \;$$
 rank-1 and non-negative

How to find / estimate / bound rank^+, e.g. $\mathsf{rank}_{\mathsf{psd}}(\mathbf{X}) \leq \mathsf{rank}^+(\mathbf{X}).$

- Extended formulations and combinatorics
- Log-rank Conjecture of communication system
- 3-SAT, Exponential time hypothesis, $\mathbf{P} \neq \mathbf{NP}$

Outline

Introduction - Non-negative Matrix Factorization

2 Computing NMF

- Variations on BCD
- A-HALS
- Matrix-wise Projected Gradient Update and the Multiplicative update

$\mathbf{3}$ Find (\mathbf{W},\mathbf{H}) numerically fast : acceleration via extrapolation

- Recall : acceleration in single variable problem
- Accelerating NMF algorithms using extrapolation
- 4 Computing NTF

5 Computing NNLS

Problem (\mathcal{P}) : given (\mathbf{X}, r), solve

 $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W} \ge \mathbf{0}, \mathbf{H} \ge \mathbf{0}}{\operatorname{argmin}} \Phi(\mathbf{W}, \mathbf{H}) = \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}.$

• Equivalent objective function : $\frac{1}{2} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$.

• Simplify notation : hide some $\geq \mathbf{0}, \frac{1}{2}, F$ and write

$$\min_{\mathbf{W},\mathbf{H}} \Phi(\mathbf{W},\mathbf{H}) = \|\mathbf{X} - \mathbf{W}\mathbf{H}\|^2$$

Standard framework to solve (\mathcal{P})

$$(\mathcal{P}): \min_{\mathbf{W},\mathbf{H}} \Phi(\mathbf{W},\mathbf{H}) = \|\mathbf{X}-\mathbf{W}\mathbf{H}\|^2,$$

Approach : BCD (Block Coordinate Descent)²

Algorithm BCD framework for \mathcal{P}

Input: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ **Output:** \mathbf{W} and \mathbf{H}

1: for k = 1, 2, ... do

- 2: Update[\mathbf{W}] : do something with $\Phi, \mathbf{X}, \mathbf{W}, \mathbf{H}$.
- 3: Update[H] : do something with Φ , X, W, H.

4: end for

²Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)

Standard framework to solve (\mathcal{P})

$$(\mathcal{P}): \min_{\mathbf{W},\mathbf{H}} \Phi(\mathbf{W},\mathbf{H}) = \|\mathbf{X}-\mathbf{W}\mathbf{H}\|^2,$$

Approach : BCD (Block Coordinate Descent)²

Algorithm BCD framework for \mathcal{P}

Input: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ **Output:** \mathbf{W} and \mathbf{H}

1: for
$$k = 1, 2, ...$$
 do

- 2: Update[\mathbf{W}] : do something with $\Phi, \mathbf{X}, \mathbf{W}, \mathbf{H}$.
- 3: Update[H] : do something with Φ , X, W, H.

4: end for

The goal of "do something" is to achieve

$$\Phi(\mathbf{W}^{k+1},\mathbf{H}^{k+1}) \leq \Phi(\mathbf{W}^{k+1},\mathbf{H}^k) \leq \Phi(\mathbf{W}^k,\mathbf{H}^k).$$

(Actually non-increasing condition is not enough, need sufficient decrease condition)

²Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks) 24/1

Example 1 : alternating minimization

Algorithm BCD framework for ${\cal P}$

Input: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ **Output:** \mathbf{W} and \mathbf{H}

- 1: for k = 1, 2, ... do 2: Update[W] as $\mathbf{W} \leftarrow \underset{\mathbf{W} \ge 0}{\operatorname{argmin}} \Phi(\mathbf{W}) = \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$. 3: Update[H] as $\mathbf{H} \leftarrow \underset{\mathbf{H} > 0}{\operatorname{argmin}} \Phi(\mathbf{H}) = \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.
- 4: end for

Example 1 : alternating minimization

Algorithm BCD framework for ${\cal P}$

Input: $X \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $W \in \mathbb{R}^{m \times r}_+$, $H \in \mathbb{R}^{r \times n}_+$ Output: W and H

1: for
$$k = 1, 2, ...$$
 do
2: Update[W] as $\mathbf{W} \leftarrow \underset{\mathbf{W} \ge 0}{\operatorname{argmin}} \Phi(\mathbf{W}) = \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.
3: Update[H] as $\mathbf{H} \leftarrow \underset{\mathbf{H} \ge 0}{\operatorname{argmin}} \Phi(\mathbf{H}) = \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2}$.

Symmetry : $\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2} = \|\mathbf{X}^{\top} - \mathbf{H}^{\top}\mathbf{W}^{\top}\|_{F}^{2}$, \rightarrow we can use the same scheme on both variables. We can focus on one variable, says \mathbf{H} (or \mathbf{W}).

If asymmetric regularization exists on \mathbf{W} (or \mathbf{H}) : we have to handle them separately.

Algorithm BCD framework for \mathcal{P}

Input: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, an initialization $\mathbf{W} \in \mathbb{R}^{m \times r}_+$, $\mathbf{H} \in \mathbb{R}^{r \times n}_+$ **Output:** \mathbf{W} and \mathbf{H}

1: for
$$k = 1, 2, ...$$
 do
2: Update[W] as
 $\mathbf{W} \leftarrow \underset{\mathbf{W} \ge 0}{\operatorname{argmin}} \|\mathbf{X} - \mathbf{U}\mathbf{H}\|_{F}^{2} + \langle \mathbf{W} - \mathbf{U}, \nabla \Phi(\mathbf{U}) \rangle + \frac{1}{2t} \|\mathbf{U} - \mathbf{W}\|^{2}.$
3: Update[H] as
 $\mathbf{H} \leftarrow \underset{\mathbf{H} \ge 0}{\operatorname{argmin}} \|\mathbf{X} - \mathbf{W}\mathbf{V}\|_{F}^{2} + \langle \mathbf{H} - \mathbf{V}, \nabla \Phi(\mathbf{V}) \rangle + \frac{1}{2t} \|\mathbf{V} - \mathbf{H}\|^{2}.$
4: end for

Local quadratic model : gradient descent minimizes the local quadratic model of the original objective function

$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \underset{\mathbf{H} \geq 0}{\operatorname{argmin}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$

Block partitions : on how coordinate is being defined[†].
 Now : coordinate is H (matrix) or H(i, :) (vector).

$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \operatorname*{argmin}_{\mathbf{H} \geq 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$

- Block partitions : on how coordinate is being defined[†].
 Now : coordinate is H (matrix) or H(i, :) (vector).
- Index selection (indexing) : on how coordinate is being selected[#]. Now : cyclic indexing and A-HALS.

$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \operatorname*{argmin}_{\mathbf{H} \geq 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$

- Block partitions : on how coordinate is being defined[†].
 Now : coordinate is H (matrix) or H(i, :) (vector).
- Index selection (indexing) : on how coordinate is being selected[#]. Now : cyclic indexing and A-HALS.
- Update scheme : on how coordinate is being updated[#].
 Now : "exact" coordinate minimization using 1st order method (e.g. gradient descent).
 Exact = working on the original original objective function, no modification.

 ${\sf Inexact} = {\sf working} \ {\sf on} \ {\sf modified} \ {\sf objective} \ {\sf function}. \ {\sf e.g.} \ {\sf consider} \ {\sf relaxation}.$

$\mathsf{Update}[\mathbf{H}]: \ \mathbf{H} \leftarrow \operatorname*{argmin}_{\mathbf{H} \geq 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2$

- Block partitions : on how coordinate is being defined[†].
 Now : coordinate is H (matrix) or H(i, :) (vector).
- Index selection (indexing) : on how coordinate is being selected[#]. Now : cyclic indexing and A-HALS.
- Update scheme : on how coordinate is being updated[#].
 Now : "exact" coordinate minimization using 1st order method (e.g. gradient descent).
 Exact = working on the original original objective function, no modification.

 ${\sf Inexact} = {\sf working} \ {\sf on} \ {\sf modified} \ {\sf objective} \ {\sf function}. \ {\sf e.g.} \ {\sf consider} \ {\sf relaxation}.$

Other variants

 \dagger Kim-He-Park 2014," Algo. for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework" J. Global Optimization.

#Shi-Tu-Xu-Yin 2017," A primer on coordinate descent algorithms." arXiv:1610.00040

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have $\Phi(\mathbf{w}_i, \mathbf{h}_i) = \|\mathbf{w}_i\|_2^2 \|\mathbf{h}_i\|_2^2 - 2\mathrm{tr} \langle \mathbf{X}_i, \mathbf{w}_i \mathbf{h}_i \rangle + c.$

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have $\Phi(\mathbf{w}_i, \mathbf{h}_i) = \|\mathbf{w}_i\|_2^2 \|\mathbf{h}_i\|_2^2 - 2\mathrm{tr} \langle \mathbf{X}_i, \mathbf{w}_i \mathbf{h}_i \rangle + c.$

Alternating minimization using cyclic indexing Other name : BCD with r = 2 with cyclic component selection Domain name in NMF : HALS (Hierarchical alternating least squares[†])

Update order : $\mathbf{w}_1 \rightarrow \mathbf{h}_1 \rightarrow \mathbf{w}_2 \rightarrow \mathbf{h}_2 \rightarrow \mathbf{w}_3 \rightarrow \mathbf{h}_3 \rightarrow ...$

The idea of HALS and A-HALS

Says coordinates are vectors (col. of W and row of H), we have $\Phi(\mathbf{w}_i, \mathbf{h}_i) = \|\mathbf{w}_i\|_2^2 \|\mathbf{h}_i\|_2^2 - 2\mathrm{tr} \langle \mathbf{X}_i, \mathbf{w}_i \mathbf{h}_i \rangle + c.$

Alternating minimization using cyclic indexing

Other name : BCD with r = 2 with cyclic component selection Domain name in NMF : HALS (Hierarchical alternating least squares[†])

Update order : $\mathbf{w}_1 \rightarrow \mathbf{h}_1 \rightarrow \mathbf{w}_2 \rightarrow \mathbf{h}_2 \rightarrow \mathbf{w}_3 \rightarrow \mathbf{h}_3 \rightarrow ...$

A-HALS[#] (Accelerated-HALS) A special kinds of cyclic coordinate selection

$$\begin{array}{c} \mathsf{U}\mathsf{p}\mathsf{d}\mathsf{a}\mathsf{t}\mathsf{e} \ \mathsf{order}: \ \underbrace{\mathbf{w}_1 \to \mathbf{w}_2 \to \cdots \to \mathbf{w}_r}_{\mathsf{several times}!!} \to \underbrace{\mathbf{h}_1 \to \mathbf{h}_2 \to \cdots \to \mathbf{h}_r}_{\mathsf{several times}!!} \to \dots \end{array}$$

† Cichocki-Zdunke-Amari 2007, "Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization", International Conf. on ICA.

Gillis-Glineur 2012, "Accelerated Multiplicative Updates and Hierarchical ALS Algo. for NMF", Neural Computation. $$34\/\ 109$$

A-HALS = avoids repeated computations + re-uses

Projected[†] gradient descent with step size $t \ge 0$

$$\mathbf{w}_{i} = \mathbf{w}_{i} - t \underbrace{(\|\mathbf{h}_{i}\|_{2}^{2}\mathbf{w}_{i} - \mathbf{X}_{i}\mathbf{h}_{i}^{\top})}_{\nabla_{\mathbf{w}_{i}}\Phi}, \quad \mathbf{h}_{i} = \mathbf{h}_{i} - t \underbrace{(\|\mathbf{w}_{i}\|_{2}^{2}\mathbf{h}_{i} - \mathbf{w}_{i}^{\top}\mathbf{X})}_{\nabla_{\mathbf{h}_{i}}\Phi}.$$

A-HALS = avoids repeated computations + re-uses

Projected[†] gradient descent with step size $t \ge 0$ $\mathbf{w}_i = \mathbf{w}_i - t(\|\mathbf{h}_i\|_2^2 \mathbf{w}_i - \mathbf{X}_i \mathbf{h}_i^{\top}), \ \mathbf{h}_i = \mathbf{h}_i - t(\|\mathbf{w}_i\|_2^2 \mathbf{h}_i - \mathbf{w}_i^{\top} \mathbf{X}).$ $\nabla_{\mathbf{w}_i} \Phi$ $\nabla_{\mathbf{h}_i} \Phi$ Algorithm A-HALS **Algorithm** HALS 1: $\mathbf{w}_1 = \mathbf{w}_1 - t(\|\mathbf{h}_1\|_2^2 \mathbf{w}_1 - \mathbf{X}_1 \mathbf{h}_1^\top)$ 1: Compute $\mathbf{A} = \mathbf{H}\mathbf{H}^{\top}$, $\mathbf{B} = \mathbf{X}\mathbf{H}^{\top}$ 2: $\mathbf{h}_1 = \mathbf{h}_1 - t(\|\mathbf{w}_1\|_2^2 \mathbf{h}_1 - \mathbf{w}_1^\top \mathbf{X}_1)$ 2: $\mathbf{w}_1 = \mathbf{w}_1 - t(\|\mathbf{h}_1\|_2^2 \mathbf{w}_1 - \mathbf{X}_1 \mathbf{h}_1^{\top})$ **3**: $\mathbf{w}_2 = \mathbf{w}_2 - t(\|\mathbf{h}_2\|_2^2 \mathbf{w}_2 - \mathbf{X}_2 \mathbf{h}_2^\top)$ **3**: $\mathbf{w}_2 = \mathbf{w}_2 - t(\|\mathbf{h}_2\|_2^2 \mathbf{w}_2 - \mathbf{X}_2 \mathbf{h}_2^\top)$ **4**: $\mathbf{h}_2 = \mathbf{h}_2 - t(\|\mathbf{w}_2\|_2^2 \mathbf{h}_2 - \mathbf{w}_2^\top \mathbf{X}_2)$ 4: $\mathbf{w}_3 = \mathbf{w}_3 - t(\|\mathbf{h}_3\|_2^2 \mathbf{w}_3 - \mathbf{X}_3 \mathbf{h}_3^{\top})$ 5: Compute $\mathbf{C} = \mathbf{W}^\top \mathbf{W}, \mathbf{D} = \mathbf{W}^\top \mathbf{X}$ **5**: $\mathbf{w}_3 = \mathbf{w}_3 - t(\|\mathbf{h}_3\|_2^2 \mathbf{w}_3 - \mathbf{X}_3 \mathbf{h}_2^{\top})$ **6**: $\mathbf{h}_1 = \mathbf{h}_1 - t(\|\mathbf{w}_1\|_2^2 \mathbf{h}_1 - \mathbf{w}_1^\top \mathbf{X}_1)$ **6**: $\mathbf{h}_3 = \mathbf{h}_3 - t(\|\mathbf{w}_3\|_2^2 \mathbf{h}_3 - \mathbf{w}_2^\top \mathbf{X}_3)$ 7: $\mathbf{h}_2 = \mathbf{h}_2 - t(\|\mathbf{w}_2\|_2^2 \mathbf{h}_2 - \mathbf{w}_2^\top \mathbf{X}_2)$ 7: ... 8: $\mathbf{h}_3 = \mathbf{h}_3 - t(\|\mathbf{w}_3\|_2^2 \mathbf{h}_3 - \mathbf{w}_3^\top \mathbf{X}_3)$ 9:

A-HALS : Line 2-4, 6-8 repeated a few times.

A-HALS = avoids repeated computations + re-uses

Projected[†] gradient descent with step size $t \ge 0$ $\mathbf{w}_i = \mathbf{w}_i - t \left(\|\mathbf{h}_i\|_2^2 \mathbf{w}_i - \mathbf{X}_i \mathbf{h}_i^\top \right), \quad \mathbf{h}_i = \mathbf{h}_i - t \left(\|\mathbf{w}_i\|_2^2 \mathbf{h}_i - \mathbf{w}_i^\top \mathbf{X} \right).$ $\nabla_{\mathbf{w}} \Phi$ $\nabla_{\mathbf{h}_i} \Phi$ Algorithm HALS Algorithm A-HALS 1: Compute $\mathbf{A} = \mathbf{H}\mathbf{H}^{\top}$, $\mathbf{B} = \mathbf{X}\mathbf{H}^{\top}$ 1: $\mathbf{w}_1 = \mathbf{w}_1 - t(\|\mathbf{h}_1\|_2^2 \mathbf{w}_1 - \mathbf{X}_1 \mathbf{h}_1^\top)$ 2: $\mathbf{h}_1 = \mathbf{h}_1 - t(\|\mathbf{w}_1\|_2^2 \mathbf{h}_1 - \mathbf{w}_1^\top \mathbf{X}_1)$ 2: $\mathbf{w}_1 = \mathbf{w}_1 - t(\|\mathbf{h}_1\|_2^2 \mathbf{w}_1 - \mathbf{X}_1 \mathbf{h}_1^{\top})$ **3**: $\mathbf{w}_2 = \mathbf{w}_2 - t(\|\mathbf{h}_2\|_2^2 \mathbf{w}_2 - \mathbf{X}_2 \mathbf{h}_2^\top)$ **3**: $\mathbf{w}_2 = \mathbf{w}_2 - t(\|\mathbf{h}_2\|_2^2 \mathbf{w}_2 - \mathbf{X}_2 \mathbf{h}_2^\top)$ 4: $\mathbf{w}_3 = \mathbf{w}_3 - t(\|\mathbf{h}_3\|_2^2 \mathbf{w}_3 - \mathbf{X}_3 \mathbf{h}_3^{\top})$ **4**: $\mathbf{h}_2 = \mathbf{h}_2 - t(\|\mathbf{w}_2\|_2^2 \mathbf{h}_2 - \mathbf{w}_2^\top \mathbf{X}_2)$ 5: Compute $\mathbf{C} = \mathbf{W}^\top \mathbf{W}, \mathbf{D} = \mathbf{W}^\top \mathbf{X}$ **5**: $\mathbf{w}_3 = \mathbf{w}_3 - t(\|\mathbf{h}_3\|_2^2 \mathbf{w}_3 - \mathbf{X}_3 \mathbf{h}_2^{\top})$ **6**: $\mathbf{h}_1 = \mathbf{h}_1 - t(\|\mathbf{w}_1\|_2^2 \mathbf{h}_1 - \mathbf{w}_1^\top \mathbf{X}_1)$ **6**: $\mathbf{h}_3 = \mathbf{h}_3 - t(\|\mathbf{w}_3\|_2^2 \mathbf{h}_3 - \mathbf{w}_2^\top \mathbf{X}_3)$ 7: $\mathbf{h}_2 = \mathbf{h}_2 - t(\|\mathbf{w}_2\|_2^2 \mathbf{h}_2 - \mathbf{w}_2^\top \mathbf{X}_2)$ 7: ... 8: $\mathbf{h}_3 = \mathbf{h}_3 - t(\|\mathbf{w}_3\|_2^2 \mathbf{h}_3 - \mathbf{w}_3^\top \mathbf{X}_3)$ 9: ...

A-HALS : Line 2-4, 6-8 repeated a few times. A-HALS avoids repeated computations of *constant terms* :

$$\mathbf{H}\mathbf{H}_{(2n-1)m^2}^{\top}, \ \mathbf{X}\mathbf{H}_{(2n-1)mr}^{\top}, \ \mathbf{W}^{\top}\mathbf{W}_{(2r-1)m^2}, \ \mathbf{W}^{\top}\mathbf{X}_{(2m-1)rn},$$

37 / 109

pre-computing and re-use of these terms gain extra efficiency, improvement is significant for big data^{#"} — always A-HALS!

The projected gradient descent update

The Projected Gradient Descent update of \mathbf{W} :

$$\mathbf{W}^{k+1} = \operatorname{Proj}_{\mathbb{R}_+} \left(\mathbf{W}^k - t \nabla \Phi(\mathbf{W}^k, \mathbf{H}) \right).$$

How to pick the step-size ?

The projected gradient descent update

The Projected Gradient Descent update of W:

$$\mathbf{W}^{k+1} = \operatorname{Proj}_{\mathbb{R}_+} \left(\mathbf{W}^k - t \nabla \Phi(\mathbf{W}^k, \mathbf{H}) \right)$$

How to pick the step-size ? A simple scheme $t = \frac{1}{L_{\Phi_{\mathbf{W}}}}$, where $L_{\Phi_{\mathbf{W}}}$ = the Lipschitz constant of $\nabla_{\mathbf{W}}\Phi$ (smoothness constant).

The projected gradient descent update

The Projected Gradient Descent update of ${\bf W}$:

$$\mathbf{W}^{k+1} = \operatorname{Proj}_{\mathbb{R}_+} \left(\mathbf{W}^k - t \nabla \Phi(\mathbf{W}^k, \mathbf{H}) \right)$$

How to pick the step-size ?

A simple scheme $t = \frac{1}{L_{\Phi_{\mathbf{W}}}}$, where $L_{\Phi_{\mathbf{W}}}$ = the Lipschitz constant of $\nabla_{\mathbf{W}}\Phi$ (smoothness constant).

- $L_{\Phi_{\mathbf{W}}} = \text{largest singular value of } \mathbf{H}\mathbf{H}^{\top}$
- $\operatorname{Proj}_{\mathbb{R}_+}$ is basically $[\cdot]_+ = \max\{\cdot, 0\}.$

Hence in close form :

$$\mathbf{W}^{k+1} = \left[\mathbf{W}^k - \frac{1}{\sigma_{\max}(\mathbf{H}\mathbf{H}^{\top})} \nabla \Phi(\mathbf{W}^k, \mathbf{H})\right]_+$$

PGD update is much faster than the Multiplicative Update.

Multiplicative Update

MU:

• It takes a small step size t such that \mathbf{W}^{k+1} stays within $\mathrm{I\!R}_+$, no projection.

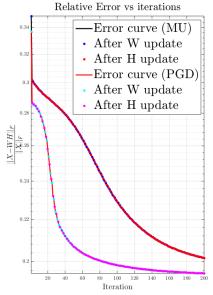
$$\mathbf{W}^{k+1} = \mathbf{W}. * rac{\mathbf{X}\mathbf{H}^{ op}}{\mathbf{W}^k\mathbf{H}\mathbf{H}^{ op}},$$

where * is Hadamard product and the division is Hadamard quotient.

• It converges **very slowly**. In general, don't use MU. Why: to make sure \mathbf{W} stays within IR_+ , MU take small step \implies slow !

PGD :

- It takes reasonably large step size, and IF moved outside ${\rm I\!R}_+$ THEN project back.
- $\operatorname{Proj}_{\mathbb{R}_+}$ practically costs nothing unless the data size is 10^{86} .



MU= timid, shy guy that is too cautious on making mistake. PGD = brave guy that is fine of making mistake by doing correction. Here "mistake" = "outside ${\rm I\!R}_+$ ", "correction" = " ${\rm Proj}_{{\rm I\!R}_+}$ ", " $\frac{42}{42}/109$

Outline

Introduction - Non-negative Matrix Factorization

2 Computing NMF

- Variations on BCD
- A-HALS
- Matrix-wise Projected Gradient Update and the Multiplicative update

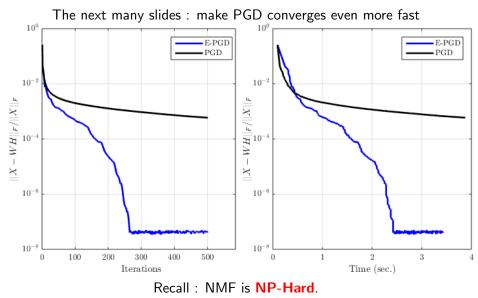
Find (\mathbf{W},\mathbf{H}) numerically fast : acceleration via extrapolation

- Recall : acceleration in single variable problem
- Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

Let's accelerate !



What's the acceleration for : obtain a <code>local</code> solution $\mathsf{faster}_{44} \,/\, 109$

Recall : acceleration in single variable problem

 $\text{Problem } \min_{x \in \mathcal{C}} f(x) \text{, } \mathcal{C} \text{ convex set.}$

Recall : acceleration in single variable problem

```
Problem \min_{x \in C} f(x), C convex set.
At step k:
No acceleration : x_{k+1} = \text{Update}[x_k].
With acceleration : x_{k+1} = \text{Update}[y_k], y_{k+1} = \text{Extrapolate}[x_{k+1}, x_k].
```

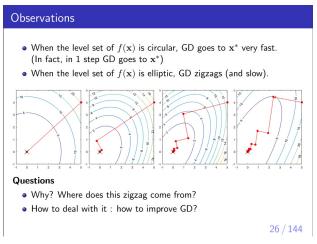
Problem $\min_{x \in \mathcal{C}} f(x)$, \mathcal{C} convex set. At step k: No acceleration : $x_{k+1} = Update[x_k]$. With acceleration : $x_{k+1} = \text{Update}[y_k], y_{k+1} = \text{Extrapolate}[x_{k+1}, x_k].$ To be specific : PGD Update $x_{k+1} = \operatorname{Proj}_{\mathcal{C}}(x_k - t_k \nabla f(x_k)).$ Linear extrapolation $x_{k+1} = \operatorname{Proj}_{\mathcal{C}}(y_k - t_k \nabla f(y_k)).$ $y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$

i.e. Extrapolate $[x_{k+1}, x_k]$ is modeled by β_k : a single extrapolation parameter.

Why extrapolation : gradient descent zig-zags on ellipse

Facts : consecutive update directions of GD are orthogonal (\perp). If the landscape is not "spherical", GD zig-zags \rightarrow slow.

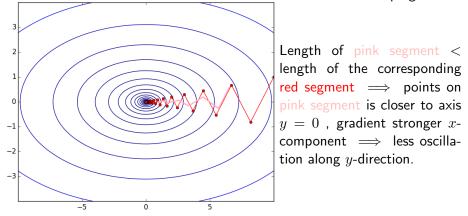
e.g. : moving along a long narrow valley.



Picture from https://angms.science/doc/teaching/GDLS.pdf

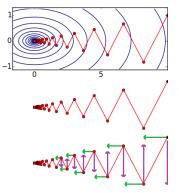
What machine learning people do to counter zig-zag?

Do tricks on step size : don't move with step size t but $\frac{\iota}{\text{damping factor}}$



The idea behind **AdaGrad** and **AdaDelta** : shrink the step size when you see zig-zag (trace of the objective function appears to plateau).

Do tricks on direction : by extrapolation with momentum.



 $\label{eq:ldea:apply} \begin{array}{ll} \mbox{Idea}: \mbox{ apply extrapolation.} \\ \mbox{Extrapolate} = \mbox{add gradient history.} \end{array}$

(1) if gradients in consecutive steps have consistent direction

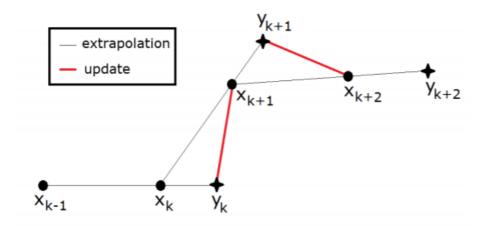
 \implies extrapolate = accelerate.

(2) if gradients in consecutive steps oscillates (continuously changing direction)

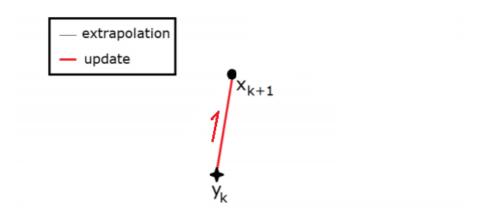
 \implies extrapolate = damp oscillation = acceleration.

Figure shows the trace of points decomposed into x- and y-component. The x-components have consistent direction while y-components are not.

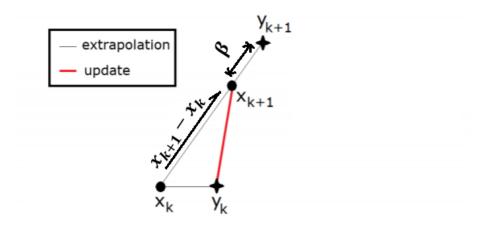
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



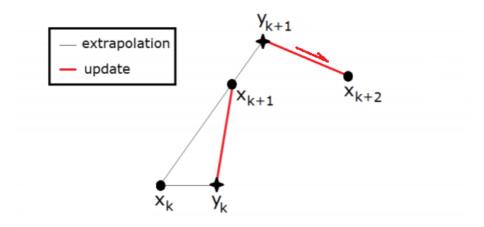
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



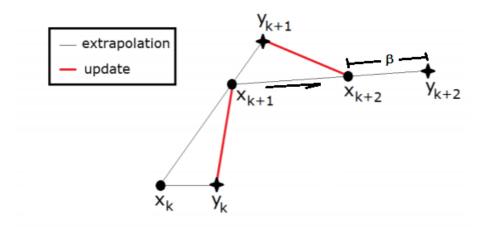
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k (x_{k+1} - x_k).$



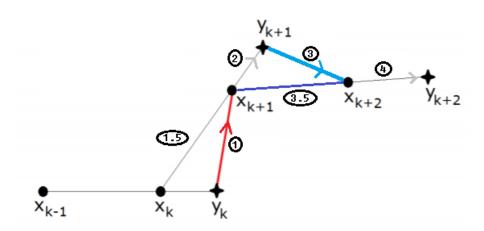
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



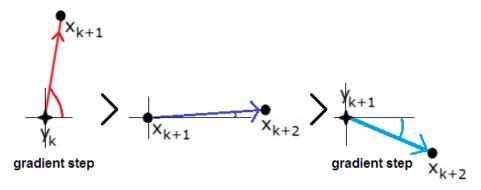
 $x_{k+1} = \mathsf{Update}[y_k], \ y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k).$



We always have

 $\angle (x_{k+1} - y_k) \ge \angle (x_{k+2} - x_{k+1}) \ge \angle (x_{k+2} - y_{k+1})$

i.e. the direction of the last step is **in between** the directions of previous two gradient steps : zig-zag effect is reduced !



Nesterov's acceleration

For **convex** (smooth strongly-convex) function

Other β_k schemes

Nesterov's parameters looks so complicated

$$\alpha_{k+1} = \frac{\sqrt{\alpha_k^4 + 4\alpha_k^2 - \alpha_k^2}}{2}, \ \beta_k = \frac{\alpha_k(1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$$

Another Nesterov's parameters

$$\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + \kappa^{-1}\alpha_{k+1}, \ \beta_k = \frac{\alpha_k(1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}}$$

Yet another Nesterov's parameters

$$\alpha_{k+1} = \frac{1 + \sqrt{1 + 4\alpha_k^2}}{2}, \ \beta_k = \frac{1 - \alpha_k}{\alpha_{k+1}}.$$

Paul Tseng parameter

$$\beta_k = \frac{k-1}{k+2}.$$

Using conditional number

$$\beta_k = \beta = \frac{1 - \sqrt{\kappa'}}{1 + \sqrt{\kappa'}}, \quad \kappa' = \frac{1}{\kappa}, \ \kappa = \frac{\sigma_{\max}(\mathbf{Q})}{\sigma_{\min}(\mathbf{Q})} = \frac{\lambda_{\max}(\mathbf{Q})}{\lambda_{\min}(\mathbf{Q})}$$

70 / 144

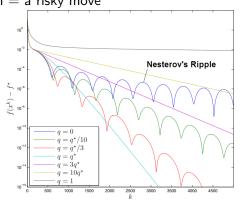
58

Picture from https://angms.science/doc/teaching/GDLS.pdf

Key : Nesterov's acceleration has a close-form formula for β_k

Extrapolation is not monotone, nor descent, nor greedy

GD is locally optimal/greedy ⇒ extrapolation may ↑objective value • Extrapolation = a risky move

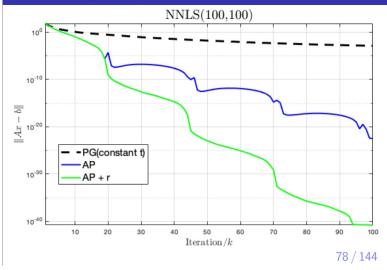


Picture from Donoghue-Candés 2015, "Adaptive Restart for Accelerated Gradient Schemes" Acceleration comes from doing the risky move :

"sacrifice the decreases of objective value now for the better future"

Actually also sacrifice robustness : accelerated gradient is not stable to noise (Devolder-Glineur-Nesterov 2014) $59 \,/\, 109$

Effect of restart on APGD



Picture from https://angms.science/doc/teaching/GDLS.pdf

Our case : NMF is not cvx

$$(\mathcal{P}): \left\{\mathsf{Given}\; (\mathbf{X},r), \, \mathsf{solve}\; \min_{\mathbf{W},\mathbf{H}} \|\mathbf{X}-\mathbf{W}\mathbf{H}\|^2, \mathbf{W}, \mathbf{H} \in \mathrm{I\!R}_+
ight\} ext{ is non-cvx}.$$

- No strong cvx parameter, cannot use expression likes $\beta_k = \frac{1 \sqrt{\kappa}}{1 + \sqrt{\kappa}}$.
- Direct application of Nesterov's β sequence on PGD/A-HALS will give erratic convergence behaviour

Mitchell, Drew, Nan Ye, and Hans De Sterck. "Nesterov Acceleration of Alternating Least Squares for Canonical Tensor Decomposition." arXiv:1810.05846 (2018)

Our case : NMF is not cvx

$$(\mathcal{P}): \, \Big\{ \mathsf{Given} \,\, (\mathbf{X},r), \, \mathsf{solve} \, \min_{\mathbf{W},\mathbf{H}} \|\mathbf{X}-\mathbf{W}\mathbf{H}\|^2, \mathbf{W}, \mathbf{H} \in {\rm I\!R}_+ \Big\} \,\, \mathsf{is} \,\, \mathsf{non-cvx}.$$

- No strong cvx parameter, cannot use expression likes $\beta_k = \frac{1 \sqrt{\kappa}}{1 + \sqrt{\kappa}}$.
- Direct application of Nesterov's β sequence on PGD/A-HALS will give erratic convergence behaviour

Mitchell, Drew, Nan Ye, and Hans De Sterck. "Nesterov Acceleration of Alternating Least Squares for Canonical Tensor Decomposition." arXiv:1810.05846 (2018)

For the acceleration scheme of the two variables

 $\left\{ \begin{array}{l} {\rm On}\; \mathbf{W} \; \left\{ \begin{array}{l} {\rm Update} \;\; \mathbf{W}_{{\sf new}} = {\rm Update}[\mathbf{Y}_{{\sf old}}, \mathbf{H}_{{\sf old}}] \\ {\rm Extrapolate} \;\; \mathbf{Y}_{{\sf new}} = \mathbf{W}_{{\sf new}} + \beta_k^{\mathbf{W}}(\mathbf{W}_{{\sf new}} - \mathbf{W}_{{\sf old}}) \\ {\rm Update} \;\; \mathbf{H}_{{\sf new}} = {\rm Update}[\mathbf{W}_{{\sf new}}, \mathbf{G}_{{\sf old}}] \\ {\rm On}\; \mathbf{H} \;\; \left\{ \begin{array}{l} {\rm Extrapolate} \;\; \mathbf{G}_{{\sf new}} = \mathbf{H}_{{\sf new}} + \beta_k^{\mathbf{H}}(\mathbf{H}_{{\sf new}} - \mathbf{H}_{{\sf old}}) \end{array} \right. \end{array} \right.$

Need a way (close-/no close-form) to find β_k !

Approach : an ad hoc heurisitic in the "line search" style.

Why ad hoc heuristics ?

- (1) The ncvx problem is hard.
- (2) No better idea.
- No convergence theorem now yet (because of (1)).

What's so good ?

- Just a parameter tuning problem.
- Easy to implement.
- Easy to extend to other models.
- Faster than state-of-the-art methods with theoretical convergence proof !

[†] Xu-Yin 2013 "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion". SIAM J. Img Sci.

Details of the extrapolation

- The key β_k
 - β has to be smaller than 1 (same as the convex case)

64 /

• If $\beta \in (0,1)$: extrapolation, doing risky step

Details of the extrapolation

The key β_k

- β has to be smaller than 1 (same as the convex case)
- If $\beta \in (0,1)$: extrapolation, doing risky step
- If $\beta = \{1,0\}$: doing {very risky, no} extrapolation

Details of the extrapolation

The key β_k

- β has to be smaller than 1 (same as the convex case)
- \bullet If $\beta \in (0,1)$: extrapolation, doing risky step
- If $\beta = \{1,0\}$: doing {very risky, no} extrapolation
- Can't use line search[†] to find β : experimentally found β close to 0
 - effectively doing no extrapolation, waste resource on line search

The key β_k

- β has to be smaller than 1 (same as the convex case)
- \bullet If $\beta \in (0,1)$: extrapolation, doing risky step
- If $\beta = \{1,0\}$: doing {very risky, no} extrapolation
- Can't use line search[†] to find β : experimentally found β close to 0
- effectively doing no extrapolation, waste resource on line search In the "walking person metaphor" :
 - MU $\,$ shy guy walking in caution with small step size
 - PGD brave guy walking with reasonably step size
 - E-PGD ambious guy walking with big step size
 - E-A-HALS crazy guy walking with big step size in coordinate manner

Details : Update[β_k]

Landscape of variable at each iteration is different \implies dynamical update

Algorithm A dynamic line search style[†] ad hoc heuristics

Input: Parameters $1 < \bar{\gamma} < \gamma < \eta$, an initialization $\beta_1 \in (0, 1)$ **Output:** β_k : the extrapolation parameter

1: Set
$$\bar{\beta} = 1$$
 (dynamic "upper bound" of β)

- 2: if error \downarrow at iteration k then
- 3: Increase $\beta_{\underline{k+1}} : \beta_{k+1} = \min\{\bar{\beta}, \gamma\beta_k\}$
- 4: (Increase $\bar{\beta}$ if $\bar{\beta} < 1$: $\bar{\beta} = \min\{1, \bar{\gamma}\bar{\beta}\}$)
- 5: **else**

6: Decrease
$$\beta_{k+1}$$
 : $\beta_{k+1} = \beta_k/\eta$

7: Set
$$\overline{\beta} = \beta_k$$

8: end if

 $\gamma\text{, }\bar{\gamma}\text{, }\eta$: growth and decay parameters

 \dagger Line search after updates of W and H – performed after the update!

The idea is to update β_k based on the increase or decrease of the objective function. Let $e^k = \Phi(\mathbf{W}^k, \mathbf{H}^k)$, then

$$\beta_{k+1} = \begin{cases} \min\{\gamma\beta_k, \bar{\beta}\} & \text{if } e^k \le e^{k-1} \\ \frac{\beta_k}{\eta} & \text{if } e^k > e^{k-1} \end{cases}$$
(1)

where $\gamma>1$, and $\eta>1$ are constants and $\bar{\beta}_0=1$ with the update

The idea is to update β_k based on the increase or decrease of the objective function. Let $e^k = \Phi(\mathbf{W}^k, \mathbf{H}^k)$, then

$$\beta_{k+1} = \begin{cases} \min\{\gamma\beta_k, \bar{\beta}\} & \text{if } e^k \le e^{k-1} \\ \frac{\beta_k}{\eta} & \text{if } e^k > e^{k-1} \end{cases}$$
(1)

where $\gamma>1\text{, and }\eta>1$ are constants and $\bar{\beta}_0=1$ with the update

$$\bar{\beta}_{k+1} = \begin{cases} \min\{\bar{\gamma}\bar{\beta}_k, 1\} & \text{if } e^k \le e^{k-1} \text{ and } \bar{\beta}_k < 1\\ \beta_k & \text{if } e^k > e^{k-1} \end{cases}.$$
 (2)

The detail logic flow of updating β_k ... (1/2)

Case 1. The error decreases : $e^k \le e^{k-1}$

 $\bullet\,$ It means the current β value is "good"

The detail logic flow of updating β_k ... (1/2)

Case 1. The error decreases : $e^k \le e^{k-1}$

- It means the current β value is "good"
- We can be more ambitious on the extrapolation
 - i.e., we increase the value of β
 - \blacktriangleright How : multiplying it with a growth factor $\gamma>1$

$$\beta_{k+1} = \beta_k \gamma$$

The detail logic flow of updating β_k ... (1/2)

Case 1. The error decreases : $e^k \leq e^{k-1}$

- It means the current β value is "good"
- We can be more ambitious on the extrapolation
 - i.e., we increase the value of β
 - \blacktriangleright How : multiplying it with a growth factor $\gamma>1$

$$\beta_{k+1} = \beta_k \gamma$$

- Note that the growth of β cannot be indefinite
 - i.e., we put a ceiling parameter $\bar{\beta}$ to upper bound the growth
 - How : use min

$$\beta_{k+1} = \min\{\beta_k \gamma, \bar{\beta}_k\}$$

▶ $\bar{\beta}$ itself is also updated dynamically with a growth factor $\bar{\gamma}$ with the upper bound 1.

The detail logic flow of updating β_k ... (2/2)

Case 2. The error increases : $e^k > e^{k-1}$

• It means the current β value is "bad" (too large)

The detail logic flow of updating β_k ... (2/2)

Case 2. The error increases : $e^k > e^{k-1}$

- It means the current β value is "bad" (too large)
- We become less ambitious on the extrapolation
 - i.e., we decrease the value of β
 - How : dividing it with the decay factor $\eta > 1$

$$\beta_{k+1} = \frac{\beta_k}{\eta}$$

The detail logic flow of updating β_k ... (2/2)

Case 2. The error increases : $e^k > e^{k-1}$

- It means the current β value is "bad" (too large)
- We become less ambitious on the extrapolation
 - i.e., we decrease the value of β
 - \blacktriangleright How : dividing it with the decay factor $\eta>1$

$$\beta_{k+1} = \frac{\beta_k}{\eta}$$

- As f is often a continuous and smooth, for β_k being too large, such value of β will also be too large at iteration k+1
 - ▶ i.e., we have to avoid β_{k+1} to grow back to β_k (the "bad" value) too soon
 - How : we set the ceiling parameter

$$\bar{\beta}_{k+1} = \beta_k$$

The full algo of Accelerated NMF using extrapolation

Input: X, initialization W, H, parameters $hp \in \{1, 2, 3\}$ (extrapolation/projection of H). Output: W.H. 1: $\mathbf{W}_{u} = \mathbf{W}; \mathbf{H}_{u} = \mathbf{H}; e(0) = ||\mathbf{X} - \mathbf{W}\mathbf{H}||_{F}$. 2: for $k = 1, 2, \ldots$ do 3: Compute \mathbf{H}_n by $\min_{\mathbf{H}_n \geq 0} ||\mathbf{X} - \mathbf{W}_y \mathbf{H}_n||_F^2$ using \mathbf{H}_y as initial iterate. 4: 5: 6: 7: 8: 9: 10: if hp > 2 then Extrapolate: $\mathbf{H}_{u} = \mathbf{H}_{n} + \beta_{k}(\mathbf{H}_{n} - \mathbf{H}).$ end if if hp = 3 then Project: $\mathbf{H}_{y} = \max(0, \mathbf{H}_{y}).$ end if Compute \mathbf{W}_n by $\min_{\mathbf{W}_n>0} ||\mathbf{X} - \mathbf{W}_n \mathbf{H}_y||_F^2$ using \mathbf{W}_y as initial iterate. 11: Extrapolate: $\mathbf{W}_{u} = \mathbf{W}_{n} + \beta_{k}(\mathbf{W}_{n} - \mathbf{W}).$ 12: if hp = 1 then 13: Extrapolate: $\mathbf{H}_{u} = \mathbf{H}_{n} + \beta_{k}(\mathbf{H}_{n} - \mathbf{H}).$ 14: end if 15: Compute error: $e(k) = ||\mathbf{X} - \mathbf{W}_n \mathbf{H}_u||_F$. 16: if e(k) > e(k-1) then 17: Restart: $\mathbf{H}_{u} = \mathbf{H}_{n}$; $\mathbf{W}_{u} = \mathbf{W}_{n}$. 18: 19: 20: else $\mathbf{H} = \mathbf{H}_n$: $\mathbf{W} = \mathbf{W}_n$. end if 21: end for

Notation : \mathbf{W}_n normal variable, \mathbf{W}_y extrpolate variable, \mathbf{W} previous \mathbf{W}_n ... too hard to read !!

Algorithm (hp = 1), simplified

Input: \mathbf{X} , initialization \mathbf{W}, \mathbf{H} Output: \mathbf{W}, \mathbf{H}

1:
$$\mathbf{W}_y = \mathbf{W}$$
; $\mathbf{H}_y = \mathbf{H}$; $e(0) = ||\mathbf{X} - \mathbf{W}\mathbf{H}||_F$.

2: for
$$k = 1, 2, ...$$
 do

- 3: **Up**date[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n$ using \mathbf{H}_y as initial iterate.
- 4: **Up**date[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y$ using \mathbf{W}_y as initial iterate.
- 5: **Extrapolate**[\mathbf{W}_{y}] : $\mathbf{W}_{y} = \mathbf{W}_{n} + \beta_{k}(\mathbf{W}_{n} \mathbf{W})$.
- 6: **Ex**trapolate[\mathbf{H}_y] : $\mathbf{H}_y = \mathbf{H}_n + \beta_k(\mathbf{H}_n \mathbf{H})$.
- 7: Compute error: $e(k) = ||\mathbf{X} \mathbf{W}_n \mathbf{H}_y||_F$.
- 8: if e(k) > e(k-1) then

9: Restart:
$$\mathbf{H}_y = \mathbf{H}_n$$
; $\mathbf{W}_y = \mathbf{W}_n$

10: else

11:
$$\mathbf{H} = \mathbf{H}_n; \ \mathbf{W} = \mathbf{W}_n.$$

- 12: end if
- 13: end for

"Up, Up, Ex, Ex"

Algorithm (hp = 2), simplified

Input: \mathbf{X} , initialization \mathbf{W}, \mathbf{H} Output: \mathbf{W}, \mathbf{H}

- 1: $\mathbf{W}_y = \mathbf{W}$; $\mathbf{H}_y = \mathbf{H}$; $e(0) = ||\mathbf{X} \mathbf{W}\mathbf{H}||_F$.
- 2: for k = 1, 2, ... do
- 3: **Up**date[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n$ using \mathbf{H}_y as initial iterate.
- 4: **Extrapolate** $[\mathbf{H}_y]$: $\mathbf{H}_y = \mathbf{H}_n + \beta_k (\mathbf{H}_n \mathbf{H}).$
- 5: **Up**date[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y$ using \mathbf{W}_y as initial iterate.
- 6: **Extrapolate** $[\mathbf{W}_y]$: $\mathbf{W}_y = \mathbf{W}_n + \beta_k (\mathbf{W}_n \mathbf{W}).$
- 7: Compute error: $e(k) = ||\mathbf{X} \mathbf{W}_n \mathbf{H}_y||_F$.
- 8: if e(k) > e(k-1) then

9: Restart:
$$\mathbf{H}_y = \mathbf{H}_n$$
; $\mathbf{W}_y = \mathbf{W}_n$

10: else

11:
$$\mathbf{H} = \mathbf{H}_n; \ \mathbf{W} = \mathbf{W}_n.$$

- 12: end if
- 13: end for

"Up, Ex, Up, Ex"

Algorithm (hp = 3), simplified

Input: \mathbf{X} , initialization \mathbf{W}, \mathbf{H} Output: \mathbf{W}, \mathbf{H}

- 1: $\mathbf{W}_y = \mathbf{W}$; $\mathbf{H}_y = \mathbf{H}$; $e(0) = ||\mathbf{X} \mathbf{W}\mathbf{H}||_F$.
- 2: for k = 1, 2, ... do
- 3: **Up**date[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n$ using \mathbf{H}_y as initial iterate.
- 4: **Extrapolate** $[\mathbf{H}_y]$: $\mathbf{H}_y = \mathbf{H}_n + \beta_k (\mathbf{H}_n \mathbf{H}).$
- 5: **Project**: $\mathbf{H}_y = \max(0, \mathbf{H}_y)$.
- 6: **Up**date[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y$ using \mathbf{W}_y as initial iterate.
- 7: **Extrapolate** $[\mathbf{W}_y]$: $\mathbf{W}_y = \mathbf{W}_n + \beta_k (\mathbf{W}_n \mathbf{W}).$
- 8: Compute the error: $e(k) = ||\mathbf{X} \mathbf{W}_n \mathbf{H}_y||_F$.
- 9: **if** e(k) > e(k-1) **then**
- 10: Restart: $\mathbf{H}_y = \mathbf{H}_n$; $\mathbf{W}_y = \mathbf{W}_n$.
- 11: else
- 12: $\mathbf{H} = \mathbf{H}; \ \mathbf{W} = \mathbf{W}_n.$
- 13: end if
- 14: end for

"Up, Ex, Pro, Up, Ex"

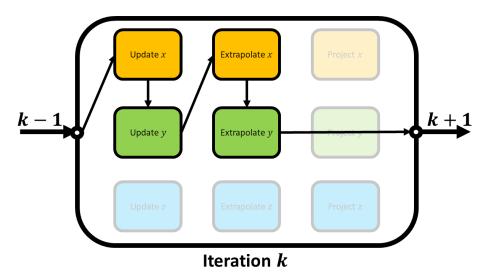
Extrapolation may break NN ($\geq 0)$ constraint :

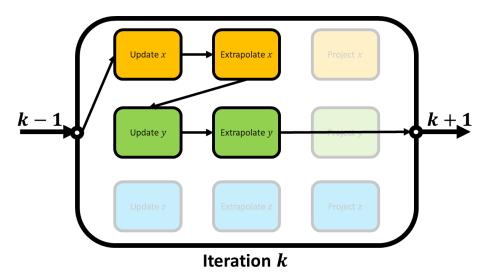
hp = 1		hp = 2		hp = 3	
(Up-Up-Ex-Ex)		(Up-Ex-Up-Ex)		(Up-Ex-Pro-Up-Ex)	
Step	NN?	Step	NN?	Step	NN?
Update $[\mathbf{H}_n]$	Y	$Update[\mathbf{H}_n]$	Y	$Update[\mathbf{H}_n]$	Y
$Update[\mathbf{W}_n]$	Y	$Extrap[\mathbf{H}_y]$	N	$Extrap[\mathbf{H}_{y}]$	Ν
				$Project[H_y]$	Y
Extrap $[\mathbf{H}_{y}]$	N	$Update[\mathbf{W}_n]$	Y	$Update[\mathbf{W}_n]$	Y
$Extrap[\mathbf{W}_y]$	Ν	$Extrap[\mathbf{W}_{y}]$	Ν	$Extrap[\mathbf{W}_{y}]$	Ν

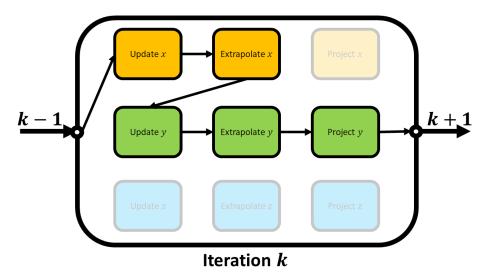
There are variations on the chain structure of the update, for examples

- $\bullet~$ Update $\mathbf{W} \rightarrow$ extrapolate $\mathbf{W} \rightarrow$ update $\mathbf{H} \rightarrow$ extrapolate \mathbf{H}
- $\bullet~$ Update ${\bf W} \to$ extrapolate ${\bf W} \to$ update ${\bf H} \to$ extrapolate ${\bf H} \to$ project ${\bf H}$
- $\bullet~$ Update ${\bf W} \rightarrow$ update ${\bf H} \rightarrow$ extrapolate ${\bf W} \rightarrow$ extrapolate ${\bf H}$

The comparisons of these three schemes : see the paper.







 $\ensuremath{\textbf{Open question}}$: why certain structure has a better performance than others

Update using matrix with negative values : Update[\mathbf{H}_n] w.r.t. $\mathbf{H}_n \ge 0$ with $(\mathbf{X}, \mathbf{W}_y, \mathbf{H}_n)$, using \mathbf{H}_y as initial iterate Update[\mathbf{W}_n] wr.t. $\mathbf{W}_n \ge 0$ with $(\mathbf{X}, \mathbf{W}_n, \mathbf{H}_y)$, using \mathbf{W}_y as initial iterate

Summary and notes (3/3)

Restart using e(k) as $\|\mathbf{X} - \mathbf{W}_n \mathbf{H}_{y}\|_F$ not $\|\mathbf{X} - \mathbf{W}_n \mathbf{H}_n\|_F$

Why:

(i) \mathbf{W}_n was updated according to \mathbf{H}_y (see point 2)

(ii) it gives the algorithm some degrees of freedom to possibly increase the objective function

(iii) computationally cheaper, as compute $\|\mathbf{X} - \mathbf{W}_n \mathbf{H}_n\|_F$ need O(mnr) operations instead of $O(mr^2)$ by re-using previous computed terms :

$$\|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2} - 2\left\langle \mathbf{W}, \mathbf{X}\mathbf{H}^{\top} \right\rangle + \left\langle \mathbf{W}^{\top}\mathbf{W}, \mathbf{H}\mathbf{H}^{\top} \right\rangle$$

Note : if the variables converges, using \mathbf{W}_n , \mathbf{W}_y is effectively the same as $\mathbf{W}_n^{\infty} = \mathbf{W}_y^{\infty}$ (after projection)

Experiments

Notations

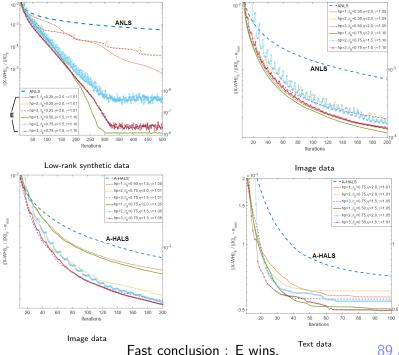
- A-HALS : vector-wise update, compute approximate solution
- ANLS : subproblem solved exactly using active-set methods
- E : extrapolation

Set up

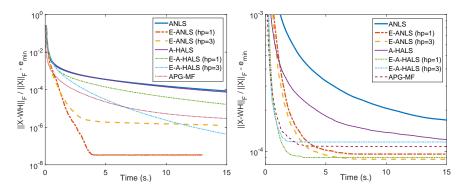
- Average error over 10 trials
- $\mathbf{W}, \mathbf{H}, \mathbf{X}$ randomly generated $\sim \mathcal{U}[0, 1]$, m = n = 200, r = 20
- ullet Real ${f X}$ from real data is also used.
- Error comparisons : using lowest relative error e_{\min} across all algorithms, at step k,

$$E(k) = \frac{\|\mathbf{X} - \mathbf{W}^k \mathbf{H}^k\|_F}{\|\mathbf{X}\|_F} - e_{\min}$$

- It is possible $e_{\min} = 0$ and not shown
- Extrapolation parmater $\beta_0 = [0.25, 0.5, 0.75]$
- $\eta_0 = [1.5, 2, 3]$
- $\gamma, \bar{\gamma} = [1.01, 1.005], [1.05, 1.01], [1.1, 1.05]$
- For display : only best and worst to illustrate sensitivity (for $l_{W} \neq 200$



Compare with other method on speed (time)



Average err. of ANLS, A-HALS and extrapolated variants, on low-rank (left) and full-rank (right) synthetic data.

APG-MF^{\dagger} = an extrapolated proximal type algorithm, with convergence proof.

Fast conclusion : E wins and beats $APG-MF^{\dagger}$.

[†] Xu-Yin 2013 "A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion". SIAM J. Img Sci.

Overall results : E wins!

Method	Data	Ex wins?
	Low/full rank synthetic data	YES
A-HALS	Dense Image data [†]	YES
	Sparse text data $^{\#}$	YES
	Low/full rank synthetic data	YES
ANLS	Dense Image data [†]	YES
	Sparse text data $^{\#}$	YES

† ORL, Umist, CBCL, Frey.

 $^{\#}$ Zhong-Ghosh 2005. Generative model-based document clustering: a comparative study

Conclusions

- No matter what method XXX, E-XXX > XXX.
- E-XXX > APG-MF (an extrapolated proximal-type method).
- Between E-ANLS vs E-A-HALS : no clear winner
 - ▶ Low rank synthetic data : E-ANLS ≫ everything
 - Dense data : E-A-HALS \approx E-ANLS, although A-HALS > ANLS
 - Sparse data : E-A-HALS \gg everything
- Between different hp
 - Up-Ex-Up-Ex (hp = 2) seems worst
 - Up-Up-Ex-Ex (hp = 1) or Up-Ex-Pro-Up-Ex (hp = 3) are better

Don't trust me ? Go https://arxiv.org/abs/1805.06604, try the code!

Outline

Introduction - Non-negative Matrix Factorization

2 Computing NMF

- Variations on BCD
- A-HALS
- Matrix-wise Projected Gradient Update and the Multiplicative update

3) Find (\mathbf{W},\mathbf{H}) numerically fast : acceleration via extrapolation

- Recall : acceleration in single variable problem
- Accelerating NMF algorithms using extrapolation

Computing NTF

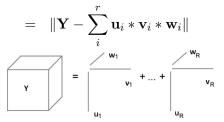
5 Computing NNLS

Tensor extension

(Joint-work with Jeremy E. Cohen of IRISA, Rennes, France)

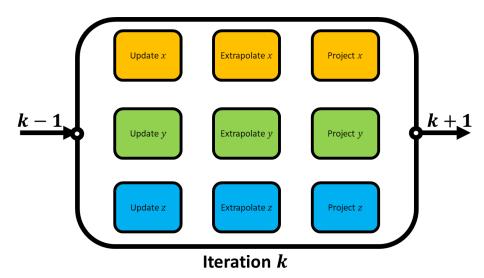
Extend the idea of extrapolation to the tensor cases; more precisely to the **Non-negative Canonical Polyadic Decomposition** (NNCPD).

 $\min_{\mathbf{U},\mathbf{V},\mathbf{W}} \Phi(\mathbf{U},\mathbf{V},\mathbf{W}) = \|\mathbf{Y} - \mathbf{U} * \mathbf{V} * \mathbf{W}\| \text{ s.t. } \mathbf{U} \ge 0, \mathbf{V} \ge 0, \mathbf{W} \ge 0$



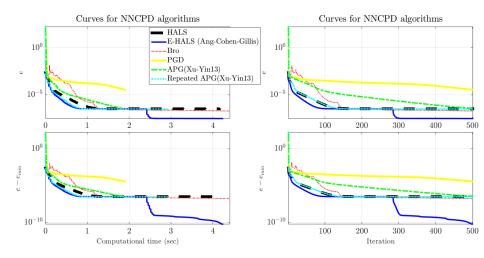
Experiments showed that the approach is very promising and is able to significantly accelerate the NNCPD algorithms.

Unsolved problem : NNCPD has even higher variability on the chain structure.



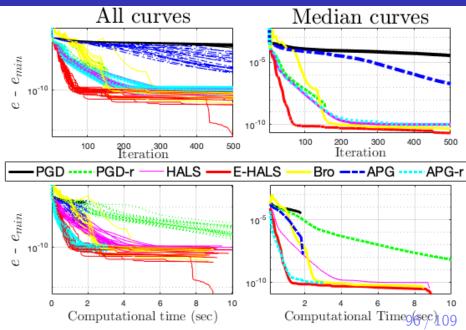
Understanding the relationship between the data structure (rank size, size of each mode) and the chain structure will be crucial.

Results : Toy example

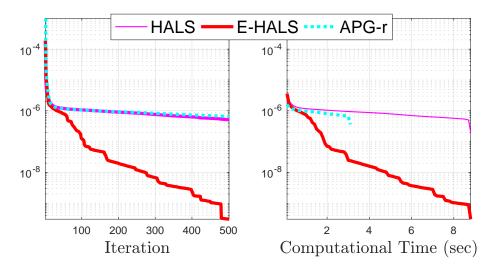


What about MU : too slow, not qualified.

Results : low rank, balanced sizes



Results : low rank, balanced sizes, ill-conditioned



Results : medium rank, unbalanced sizes

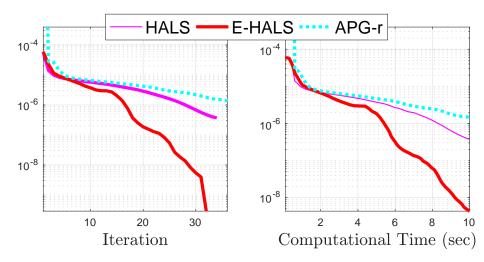


TABLE 1 – Median RE _{final} in % of U, V, W , (* means ≥ 40)							
	Algo	Test 1	Test 2	Test 3			
	PGD	15, 1.8, 1.8	4.3, *, *	*, *, *			
	PGD-r	0.2, 1.8, 1.6	4.1, *, *	*, *, *			
	HALS	0.2, 1.6, 1.6	2.2, 22, 23	4.7, 5.2, 5.2			
	E-HALS	0.2, 1.8, 1.8	0.04,0.3, 0.3	0.4,0.8,0.8			
	Bro	0.2, 1.5, 1.5	0.2, 2.4, 2.4	*, *, *			
	APG	0.5, 3.0, 2.9	4.3, *, *	*, *, *			
	APG-r	0.2, 1.3, 1.2	2.7, *, 28	10,11,11			

CT CTT TTTTTT 10

Outline

Introduction - Non-negative Matrix Factorization

2 Computing NMF

- Variations on BCD
- A-HALS
- Matrix-wise Projected Gradient Update and the Multiplicative update

3) Find (\mathbf{W},\mathbf{H}) numerically fast : acceleration via extrapolation

- Recall : acceleration in single variable problem
- Accelerating NMF algorithms using extrapolation

4 Computing NTF

5 Computing NNLS

Problem (\mathcal{P}) : given (\mathbf{A}, \mathbf{b}) , solve $(\text{NNLS}) \mathbf{x} = \underset{\mathbf{x} \ge \mathbf{0}}{\operatorname{argmin}} \Phi(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2.$ Let $\mathbf{Q} = \mathbf{A}^\top \mathbf{A}$, $\mathbf{p} = \mathbf{A}^\top \mathbf{b}$, we have an equivalent expression

$$\mathbf{x} = \underset{\mathbf{x} \ge \mathbf{0}}{\operatorname{argmin}} \ \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} - \mathbf{p}^{\top} \mathbf{x} + c$$

 Φ is $\|\mathbf{Q}\|_2$ -smooth : the Lipschitz constant of $\nabla \Phi$ is $\|\mathbf{Q}\|_2$ PGD update : $\mathbf{x}^+ = \mathbf{x} - t(\mathbf{Q}\mathbf{x} - \mathbf{p})$ with $t = L^{-1}$

Multiplicative update

Using the component-wise step size $t_i = \frac{x_i}{[\mathbf{Q}\mathbf{x}]_i}$, the vector update $\mathbf{x}^+ = \mathbf{x} - t(\mathbf{Q}\mathbf{x} - \mathbf{p})$ becomes

$$\begin{aligned} x_i^+ &= x_i - t_i([\mathbf{Q}\mathbf{x}]_i - p_i) \\ &= x_i - \frac{x_i}{[\mathbf{Q}\mathbf{x}]_i}([\mathbf{Q}\mathbf{x}]_i - p_i) \\ &= \frac{[\mathbf{Q}\mathbf{x}]_i}{[\mathbf{Q}\mathbf{x}]_i}x_i - \frac{[\mathbf{Q}\mathbf{x}]_i - p_i}{[\mathbf{Q}\mathbf{x}]_i}x_i \\ &= \frac{p_i x_i}{[\mathbf{Q}\mathbf{x}]_i} \end{aligned}$$

In vector form, we have

$$\mathbf{x}^+ = \mathbf{x} \otimes \frac{\mathbf{p}}{\mathbf{Q}\mathbf{x}},$$

where the multiplication \otimes and division \prod are element-wise.

As \mathbf{p} , \mathbf{Q} and \mathbf{x}_0 are all non-negative, thus the iteration produce a non-negative output.

Solving NNLS by MU algorithm

Problem :

$$\mathbf{x}_{\mathsf{NNLS}} := \operatorname{argmin}_{\mathbf{x} \ge 0} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

The Multiplicative Update algorithm for NNLS

Algorithm MU for NNLS

Input: $A \in \mathbb{R}^{m \times n}_+$, $b \in \mathbb{R}^m$, an initialization $\mathbf{x} \in \mathbb{R}^n_+$ **Output:** \mathbf{x}

1: for
$$k = 1, 2, \dots$$
 do
2: $\mathbf{x}_{k+1} = \mathbf{x}_k \otimes \frac{\mathbf{p}}{\mathbf{Q}\mathbf{x}_k}$
3: end for

It can be proved that, the objective function $f(\mathbf{x})$ is non-increasing under MU iteration $\mathbf{x}_{k+1} = \mathbf{x}_k \otimes \frac{\mathbf{p}}{\mathbf{Q}\mathbf{x}_k}$.

Solving NNLS by PGD algorithm

Problem :

$$\mathbf{x}_{\mathsf{NNLS}} := \operatorname{argmin}_{\mathbf{x} \ge 0} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

The PGD algorithm for NNLS

Algorithm PGD for NNLS

Input: $A \in \mathbb{R}^{m \times n}_+$, $b \in \mathbb{R}^m$, an initialization $\mathbf{x} \in \mathbb{R}^n_+$ Output: \mathbf{x}

1: for
$$k = 1, 2, \dots$$
 do
2: $\mathbf{x}_{k+1} = \left[\mathbf{x}_k - \frac{1}{L}(\mathbf{Q}\mathbf{x}_k - \mathbf{p})\right]_+$

3: end for

It can be proved that, the objective function $f(\mathbf{x})$ is strictly decreasing under PGD iteration when sufficient descent condition holds.

Solving NNLS by Accelerated-PGD algorithm

Problem :

$$\mathbf{x}_{\mathsf{NNLS}} := \operatorname{argmin}_{\mathbf{x} \ge 0} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

The A-PGD algorithm for NNLS

Algorithm A-PGD for NNLS

Input: $A \in \mathbb{R}^{m \times n}_+$, $b \in \mathbb{R}^m$, an initialization $\mathbf{x} \in \mathbb{R}^n_+$ Output: \mathbf{x}

1: for
$$k = 1, 2, ...$$
 do
2: Compute β_k
3: $\mathbf{y}_{k+1} = \left[\mathbf{x}_k - \frac{1}{L}(\mathbf{Q}\mathbf{x}_k - \mathbf{p})\right]_+$
4: $\mathbf{x}_{k+1} = \mathbf{y}_{k+1} + \beta_k(\mathbf{y}_{k+1} - \mathbf{y}_k)$
5: end for

Solving NNLS by Accelerated-PGD algorithm, with restart

Problem :

$$\mathbf{x}_{\mathsf{NNLS}} := \operatorname{argmin}_{\mathbf{x} \ge 0} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

106 / 109

The A-PGD algorithm for NNLS

Algorithm A-PGD for NNLS

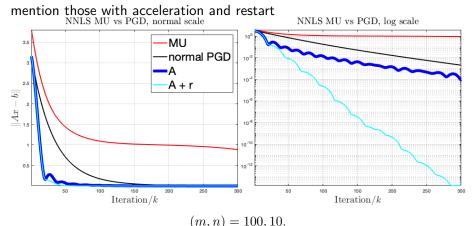
Input: $A \in \mathbb{R}^{m \times n}_+$, $b \in \mathbb{R}^m$, an initialization $\mathbf{x} \in \mathbb{R}^n_+$ Output: \mathbf{x}

1: for
$$k = 1, 2, ...$$
 do
2: Compute β_k
3: $\mathbf{y}_{k+1} = \left[\mathbf{x}_k - \frac{1}{L}(\mathbf{Q}\mathbf{x}_k - \mathbf{p})\right]_+$
4: $\mathbf{x}_{k+1} = \mathbf{y}_{k+1} + \beta_k(\mathbf{y}_{k+1} - \mathbf{y}_k)$
5: IF error increase do
6: $\mathbf{x}_{k+1} = \mathbf{y}_{k+1}$ (take no extrapolation)
7: reset β
8: ENDIF

9: end for

Toy example

PGD without any acceleration is already much faster than MU. Not to



What about my scheme? : With a "good" parameter, the scheme is even faster than Nesterov's type acceleration algorithm. However, all of them are still in linear convergence rate. 107 / 109

You sure want to read it ? (show the long proof)

Last page – summary

What is Non-negative Matrix Factorization, Why NMF

• How to solve NMF fast with extrapolation

A.-Gillis, "Accelerating Non-negative matrix factorization by extrapolation", *Neural Computation*, Feb, 2019.

How to solve NTF fast with extrapolation A.-Cohen-Gillis, "Accelerating Approximate Nonnegative

Canonical Polvadic Decomposition using Extrapolation". 2019.

• How to solve NNLS fast with extrapolation

work in progress

Some open problems

END OF PRESENTATION.

Slide, code, preprint in angms.science