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Non-negative Matrix Factorization (NMF)

Given matrix M ∈ IRm×n
+ , positive integer r.

Find matrices U ∈ IRm×r
+ ,V ∈ IRr×n

+ s.t. M = UV.

Everything is non-negative.
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Non-negative Matrix Factorization (NMF)

[U,V] = argmin
U≥0,V≥0

‖M−UV‖F .

≥ are element-wise (not positive semi-definite)

NTF (upgrade)

NNLS (downgrade)

Question : Why study these problems?
Short answer : They are useful.
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Setting

Always with non-negativity constraint ≥ 0

Always Quadratic problems1

Always Euclidean (Frobenius) norm

Always work on matrices (for NMF, NTF)
i.e. no vec(X), dimension explosion

I am sorry :
I single-machine algorithm : no parallelisation
I deterministic algorithm : no randomization, no compression,

no sketching, no projection
I heuristic : no theoretical convergence result (very difficult)
I algorithmic : not on applications (there are tons of them)

1No other function or divergence in this talk.
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BCD

(P) : min
U,V

f(U,V) = ‖M−UV‖2

Algorithm Block Coordinate Descent2

Input: M ∈ IRm×n
+ , r ∈ IN, initialization U ∈ IRm×r

+ , V ∈ IRr×n
+

Output: U,V
1: for k = 1, 2, . . . do
2: Uk+1 = argmin

U≥0
f(U,Vk), initialized at Uk

3: Vk+1 = argmin
V≥0

f(Uk+1,V), initialized at Vk

4: end for

We have non-increasing sequence

f(Uk+1,Vk+1) ≤ f(Uk+1,Vk) ≤ f(Uk,Vk).
(Actually not enough, need sufficient decrease condition)

2Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)
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Extrapolated BCD

(P) : min
U,V

f(U,V) = ‖M−UV‖2

Algorithm Heuristic Extrapolation with Restarts (HER)

Input: M ∈ IRm×n
+ , r,U,V, Û = U, V̂ = V

Output: U,V
1: for k = 1, 2, . . . do
2: Uk+1 = argmin

U≥0
f(U, V̂k), initialized at Uk

3: Extrapolate[U] : Ûk+1 = Uk+1 + βk(Uk+1 −Uk).
4: Vk+1 = argmin

V≥0
f(Ûk+1,V), initialized at Vk.

5: Extrapolate[V] : V̂k+1 = Vk+1 + βk(Vk+1 −Vk).
6: Restarts (safe guard mechanism) if needed.
7: end for

Extrapolation may destroy the non-increasing sequence property
Instead of 2-3-4-5, can do 2-4-3-5
How to do 6 5 / 29
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Algorithm Heuristic Extrapolation with Restarts (HER)

Input: M ∈ IRm×n
+ , r,U,V, Û, V̂,

β0 ∈ [0, 1], γ ≥ 1, γ̄ ≥ 1, η ≥ 1, β̄0 = 1
1: for k = 1, 2, . . . do
2: Uk+1 = argmin

U≥0
f(U, V̂k), initialized at Uk

3: Ûk+1 = Uk+1 + βk(Uk+1 −Uk)
4: Vk+1 = argmin

V≥0
f(Ûk+1,V), initialized at Vk.

5: V̂k+1 = Vk+1 + βk(Vk+1 −Vk)
6: êk+1 = f(Ûk+1,Vk+1)
7: if êk+1 > êk

Restarts
Decay βk, update β̄k

8: else (êk+1 ≤ êk)
Grow βk, update β̄k

9: end if
10: end for

Important: the argmin is not really necessary. i.e. It can be inexact BCD.



Facts

NMF is non-cvx problem

Direct application of Nesterov’s β gives erratic convergence
behaviour Mitchell, et al. ”Nesterov Acceleration of Alternating Least Squares for Canonical Tensor

Decomposition.” arXiv:1810.05846 (2018)

Why heuristics?

Non-cvx problem is hard :0)

No better idea :0)

Currently no convergence analysis (even for NNLS)

What’s good ?

Just a parameter tuning

Easy implementation

extension to other models : exact / inexact BCD

(Empirical) Improvement on convergence speed
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Computing β by restarts

With β̄1 = 1 and β0 ∈ [0, 1], update β as

βk+1 =

min{γβk, β̄} if êk ≤ êk−1

βk
η

if êk > êk−1

Also update β̄k

β̄k+1 =

{
min{γ̄β̄k, 1} if êk ≤ êk−1 and β̄k < 1

βk if êk > êk−1
.
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The idea of updating βk

Case 1. “error” decreases : êk ≤ êk−1

Means the current β is “good”

Be more ambitious on next extrapolation
I i.e., make β larger
I How : multiplying it with a growth factor γ > 1

βk+1 = βkγ

Growth of β cannot be indefinite : put a ceiling
I How :

βk+1 = min{βkγ, β̄k}
I β̄ is also updated with a growth factor γ̄ with ceiling 1
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The idea of updating βk

Case 2. “error” increases : êk > êk−1

Means the current β value is “bad” (too large)

Be less ambitious on the next extrapolation
I i.e., make β smaller
I How : divide it with a decay factor η > 1

βk+1 =
βk
η

As f is continuous and smooth, for βk being too large, it “should also
be” too large in the near future

I i.e., have to avoid βk+1 to grow back to the “bad” βk too soon
I How : we set the ceiling parameter

β̄k+1 = βk
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Variation of the HER algorithm

Together with

βk+1 =

min{γβk, β̄} if êk ≤ êk−1

βk
η

if êk > êk−1

β̄k+1 =

{
min{γ̄β̄k, 1} if êk ≤ êk−1 and β̄k < 1

βk if êk > êk−1
.

There are variations on the update-extrapolate chain :
Update U→ extrapolate U→ update V→ extrapolate V

Update U→ extrapolate U→ project U→ update V→ extrapolate V→
project V

Update U→ update V→ extrapolate U→ extrapolate V

Update U→ update V→ extrapolate U→ extrapolate V→ project U→
project V

11 / 29



For empirical results, see paper A.-Gillis, “Accelerating Non-negative matrix

factorization by extrapolation”, Neural Computation, Feb, 2019. arXiv : 1805.06604

Open question : why certain structure has a better performance than
others
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Why êk = ‖M− ÛV‖ not ek = ‖M−UV‖

V̂ is updated according to Û

It gives the algorithm some degrees of freedom to possibly
increase the objective function (a vague statement)

Computationally cheaper (main reason)
Compute ‖M−UV‖F cost O(mnr) instead of O(mr2) by
re-using previous computed terms :

‖M−UV‖2
F = ‖M‖2

F − 2
〈
U,MV>

〉
+
〈
U>U,VV>

〉
Significant if r � n, which is true in low-rank model.
Says r = 5 ∼ 50 with n = 103 ∼ 106 or more.

(If converge) In the long run, U, Û is effectively the same :

U∞ = Û∞ after projection
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Why êk = ‖M− ÛV‖ not ek = ‖M−UV‖

It gives the algorithm some degrees of freedom to possibly increase the
objective function (a vague statement)

By definition of the algorithm, we have

Ûk+1 = Uk+1 + βk+1(Uk+1 −Uk)

Vk+1 = argmin
V≥0

f(Ûk+1,V)

‖M− Ûk+1Vk+1‖︸ ︷︷ ︸
êk+1

= ‖M−Uk+1Vk+1 + βk+1(Uk −Uk+1)Vk+1‖

∆IQ.
≤ ‖M−Uk+1Vk+1‖︸ ︷︷ ︸

ek+1

+βk+1‖(Uk −Uk+1)Vk+1‖

êk+1 ≤ ek+1 + βk+1 ‖Uk −Uk+1‖︸ ︷︷ ︸
↘0 if converge

‖Vk+1‖
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A talk in this conference on similar topics

14 / 29



A talk in this conference on similar topics

Their work has convergence result, but . . .

They consider convex problem. NMF/NTF are not.

Their algo2,3 has is to solve unconstrained smooth minimization
problem minx f(x). Not useful for NMF/NTF.

Step9 of Algo2 and Step6 of Algo3 require closed form sol. of
sub-minimization min f(x) : x ∈ S
Not useful for NMF/NTF : NNLS no close form sol.

(Statistical) Fact : minimize a (1st/2nd-order) majorization fun. is
often easier to have closed form sol. (that’s why in their test they
pick linear objective fun)
Not useful for quadratic NMF/NTF; also sub-min. problem is NNLS

The way they update parameters ∼ do line search using info of
objective fun. ∼ comp. cost as HER

These some how tells why convergence analysis of general extrapolated
BCD on non-cvx problems (with no close form sol. in sub-minimization)
are hard, not to mention restart is involved.
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Fancy graphs showing numerics



NMF literature use (X,W,H) instead of (M,U,V)
Here the plots are using e (not ê)

Low-rank synthetic data
Image data

Image data
Text data 16 / 29



HER (the “E-”) beats the APG-MF of (Xu-Yin, 2013) A block coordinate

descent method for regularized multiconvex optimization with applications to nonnegative tensor

factorization and completion. SIAM J. Img Sci.
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Similar results in sparse text data, dense image data : ORL, Umist, CBCL,
Frey.

Details in paper : A.-Gillis, “Accelerating Non-negative matrix factorization by

extrapolation”, Neural Computation, Feb, 2019. (arXiv : 1805.06604)
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Non-negative Canonical Polyadic Decomposition

(Joint-work with Jeremy E. Cohen of IRISA, Rennes, France)
A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical Polyadic Decomposition

using Extrapolation”, 2019.

For example, order-3 tensor :

argmin
U≥0,V≥0,W≥0

f(U,V,W) = ‖Y −U ∗V ∗W‖

= ‖Y −
r∑
i

ui ∗ vi ∗wi‖

(Not on Tucker Model in this talk.) 18 / 29



(P) : min
U≥0,V≥0,W≥0

f(U,V,W) = ‖Y −U ∗V ∗W‖2

Algorithm HER

Input: Y ∈ IRI×J×K
+ , r, U,V,W, Û = U, V̂ = V,Ŵ = W

Output: U, V, W
1: for k = 1, 2, . . . do
2: for U,V,W do
3: Uk+1 = argmin

U≥0
f(U, V̂k,Ŵk)

4: Ûk+1 = Uk+1 + βk(Uk+1 −Uk).
5: end for
6: êk+1 = f(Ûk+1, V̂k+1,Wk+1)
7: Update βk, β̄k and restarts (if needed)
8: end for

êk is implicitly computed by reusing already compute component :
O(mnr)→ O(mr2) with m = K, n = IJ ≫ r (insane!)
3 MTTKRP (Matricized tensor times Khatri-Rao product) if using 1st
order solver
Many variation. e.g. project after extrapolation 19 / 29



Unsolved problem : NNCPD has even higher variability on the chain
structure.

Understanding the relationship between the data structure (rank size, size
of each mode) and the chain structure will be crucial. 20 / 29



More fancy graphs showing
numerics
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On low-rank, cubic size, ill-condition data
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A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical Polyadic Decomposition

using Extrapolation”, 2019.
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Medium rank, unbalanced sizes (short-fat-thin) data
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A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical Polyadic Decomposition

using Extrapolation”, 2019.
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On inexact BCD : gradient update

Curves are mean over 10 trials
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Comparing with other different inexact BCD using different extrapolations
on PG.

APG : (Xu-Yin 2013) as before
iBMD : L. T. K. Hien, N. Gillis, P. Patrinos, ”Inertial Block Mirror Descent Method for
Non-Convex Non-Smooth Optimization”, March 2019.
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Non-negative Least Square

x = argmin
x≥0

1

2
‖Ax− b‖22

We suspect HER-PG (inexact BCD) just share the same rate as other
extrapolated gradients, but again no proof (even NNLS is convex). For
HER-exact BCD, even harder.
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Various applications

Title : Accelerating Nonnegative-X by extrapolation, X ∈ P :={LS,
MF, TF}
Actually (empirically) you can enlarge P to include Regularized-MF,
Regularized-TF, MC, TC, DL, . . .

Figure: A toy example on tensor completion. A 9-times speed up
(0.11-fraction of time) on the nuclear norm SVT algo.

Why : HER is highly flexibility – there always exists a suitable
parameter for the problem (a hypothesis hard to prove theoretically
but easy to verify empirically)



Summary : HER

Heuristic Extrapolation with “Restarts” for exact / in-exact BCD on NMF,
NTF and NNLS.

Paper :

NMF paper A.-Gillis, “Accelerating Non-negative matrix factorization by

extrapolation”, Neural Computation, Feb, 2019.

NTF paper A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical

Polyadic Decomposition using Extrapolation”, 2019.

A longer version on accelerating different algos is working in progress.

Not discussed

Accelerating other X

Applications

Open problems

Convergence theory (at least for the convex NNLS)

The chain structure variation
Slide, code, preprint in angms.science
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Workshop on Low-Rank Models and Applications (LRMA)

Mons, Belgium, September 12-13, 2019

Topics : Low-rank model ∈ {computer science, information theory,
mathematics and signal processing}

Plenary speakers

I Cedric Fevotte (CNRS, IRIT Toulouse)
I Valeria Simoncini (U. Bologna)
I Nicola Guglielmi (U. L’Aquila)
I Vincent Tan (NUS)
I Zhihui Zhu (Johns Hopkins U.)
I Christian Grussler (Cambridge U.)
I Andre Uschmajew (Max Planck Institute)
I Stephen Vavasis (U. Waterloo)

Program now available. Don’t forget to register. Registration is free.

https://sites.google.com/site/lowrankmodels/
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