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@ Introduction - Non-negative Matrix Factorization



Non-negative Matrix Factorization (NMF)

o Given matrix M € R""™", positive integer r.
o Find matrices U € R,V € R s.t. M =UV.

o Everything is non-negative.

Always \s
BE POSITIVE!
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Non-negative Matrix Factorization (NMF)

[U, V] = argmin |[M — UV||p.
U>0,V>0

o > are element-wise (not positive semi-definite)
o NTF (upgrade)
o NNLS (downgrade)

Question : Why study these problems?
Short answer : They are useful.
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o Always with non-negativity constraint > 0
o Always Quadratic problems!
o Always Euclidean (Frobenius) norm

o Always work on matrices (for NMF, NTF)
i.e. no vec(X), dimension explosion

o | am sorry :
» single-machine algorithm : no parallelisation
» deterministic algorithm : no randomization, no compression,
no sketching, no projection
» heuristic : no theoretical convergence result (very difficult)
» algorithmic : not on applications (there are tons of them)

!No other function or divergence in this talk.

3/29



(P) +wig /(U V) = [M - UV

Algorithm Block Coordinate Descent?

Input: M € R, r € IN, initialization U € R"*", V € R*"
Output: U,V

1. for k=1,2,... do

2. UM = argminf (U, VF), initialized at U*

Uu>0

3 VL = argmin f(UF! V), initialized at V*
V>0

4: end for

We have non-increasing sequence
f(Uk+1,Vk+1) < f(Uk-i-l’Vk) < f(Uk,Vk)

(Actually not enough, need sufficient decrease condition)

?Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)
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Extrapolated BCD

(P) : win f(U.V) = [M - UV]?

Algorithm Heuristic Extrapolation with Restarts (HER)

Input: M € R?"", r,U,V, U=U,v=V
Output: U,V
1: for k=1,2,... do

2 UM = argminf(U, VF), initialized at U*
U>0

3:  Extrapolate[U] : UFt! = UKt 4 g (UF! — UF).

VFEHL = argmin f(UFH!, V), initialized at V.
V>0

5: Extrapolateﬁ/’] VL — vE+L g (VEHL VR,
6:  Restarts (safe guard mechanism) if needed.
7: end for

e Extrapolation may destroy the non-increasing sequence property
e Instead of 2-3-4-5, can do 2-4-3-5
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© Acceleration via HER : Heuristic Extrapolation with “Restarts”



Algorithm Heuristic Extrapolation with Restarts (HER)

Input: M € R7T*", r,U,V,U,V,
Boel01,v>1,7>1,n>1,05 =1
1. for k=1,2,... do
2. UM = argminf(U, V¥), initialized at U*
U>0

3 Ukl = Uk 4 g (URH - UR)

VL = argmin f(UFH!, V), initialized at V*.
V>0

5. Vk—&—l — Vktl + ﬁk(vk—H _ Vk)
. pk+1 — f(f]kdrl7 Vk+1)
if et > et

Restarts

Decay f, update 3
8: else (M1 < &)

Grow B, update B
9: endif
10: end for

Important: the argmin is not really necessary. i.e. It can be inexact BCD.



Facts
@ NMF is non-cvx problem
@ Direct application of Nesterov's (3 gives erratic convergence

behaVIOU I Mitchell, et al. " Nesterov Acceleration of Alternating Least Squares for Canonical Tensor

Decomposition.” arXiv:1810.05846 (2018)

Why heuristics?
e Non-cvx problem is hard :0)
e No better idea :0)
e Currently no convergence analysis (even for NNLS)

What's good ?
e Just a parameter tuning
e Easy implementation
e extension to other models : exact / inexact BCD
o

(Empirical) Improvement on convergence speed
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Computing [ by restarts

With §; =1 and S € [0, 1], update 3 as

min{yB, B} if éF < ekt
Brr1 = § Br

Ui

if ek > ek—1

Also update Sy,

~ min{y8,1} if é*F < ekt and Br < 1
Brt1 =
I if ek > ¢k
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The idea of updating [y

Case 1. “error” decreases : éF < ¢k—1

@ Means the current 5 is “good”
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The idea of updating [y

Case 1. “error” decreases : éF < ¢k—1
@ Means the current 5 is “good”

@ Be more ambitious on next extrapolation

> i.e., make 3 larger
» How : multiplying it with a growth factor v > 1

Br+1 = Bry
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The idea of updating [y

Case 1. “error” decreases : éF < ¢k—1
@ Means the current 5 is “good”

@ Be more ambitious on next extrapolation

> i.e., make 3 larger
» How : multiplying it with a growth factor v > 1

Br+1 = Bry

@ Growth of 5 cannot be indefinite : put a ceiling
» How :

Brt1 = min{Byv, B}

» [ is also updated with a growth factor 4 with ceiling 1
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The idea of updating [y

Case 2. “error”’ increases : ¢F > ¢f—1

@ Means the current (3 value is “bad” (too large)
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The idea of updating [y

Case 2. “error”’ increases : ¢F > ¢f—1

@ Means the current (3 value is “bad” (too large)
@ Be less ambitious on the next extrapolation

> i.e., make (8 smaller
» How : divide it with a decay factor n > 1

B

Br1 = —
n
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The idea of updating [y

Case 2. “error”’ increases : ¢F > ¢f—1

@ Means the current (3 value is “bad” (too large)
@ Be less ambitious on the next extrapolation

> i.e., make (8 smaller
» How : divide it with a decay factor n > 1

Br

Br1 = —
n

@ As f is continuous and smooth, for 8; being too large, it “should also
be" too large in the near future

> i.e., have to avoid k11 to grow back to the “bad” [ too soon
» How : we set the ceiling parameter

Brt1 = B
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Variation of the HER algorithm

Together with

min{yB, B} if éF < éF!
Brsr =4 Br

n

if eF > ekt

min{yB,1} if é¥ <éFLand B, <1

k1 = oo .
B Bk if eF > ekl

There are variations on the update-extrapolate chain :
@ Update U — extrapolate U — update V — extrapolate V

@ Update U — extrapolate U — project U — update V — extrapolate V —
project V

@ Update U — update V — extrapolate U — extrapolate V

@ Update U — update V — extrapolate U — extrapolate V — project U —
project V
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For empirical results, see paper
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Why é* = [[M — UV]|| not ¢* = |[M — UV||

o V is updated according to U

o It gives the algorithm some degrees of freedom to possibly
increase the objective function (a vague statement)

o Computationally cheaper (main reason)
Compute ||[M — UV]||r cost O(mnr) instead of O(mr?) by
re-using previous computed terms :

IM = UV = [M[[z - 2(U,MV') + (U0, VV')

Significant if » < n, which is true in low-rank model.
Says 7 = 5 ~ 50 with n = 10% ~ 10° or more.

o (If converge) In the long run, U, U is effectively the same :
U = U after projection
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Why é* = [[M — UV]|| not ¢* = |[M — UV||

It gives the algorithm some degrees of freedom to possibly increase the
objective function (a vague statement)

By definition of the algorithm, we have
° fjk—H — Uk‘—f—l + ,3k+1(Uk+1 . Uk)
o Vil = argmin f(UF1, V)

V>0
HM _ ﬂk+1vk+lH _ HM _ Uktlyktl + ,Bk+l(Uk _ Uk+1)Vk+1H
eht1
AIQ.
< HM _ Uk-i—lvk-i-lH —l—,3k+1"(Uk _ Uk-i—l)vk—I—l”
ekt1

ék-i-l < ek+1 + ,Bk+1 HUk - Uk+1H HVk:-l—lH
—_—

\0 if converge
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A talk in this conference on similar topics

On Accelerated Alternating Minimization

Sergey Guminoy
Moscow Institute of Physics and Technology:
Instiute for Information Transmission Problems

Pavel Dvurechensky
Weierstrass Institute for Applied Analysis and Stochastics;
Institute for Information Transmission Problems

Alexander Gasnikoy
Moscow Institute of Physics and Technolog:
Institute for Information Transmission Probl

Abstract

Alternating minimization (AM) optimi. algorithims have been known for a
long time and are of importance in machine learning problems, among which we
are mostly motivated by approximating optimal transport distances. AM algorithms
ass o several blocks and minimization
in each block ean be done explicilly or eheaply with high accuracy. The ubiquitous

Khorn's algorithm can be seen as an altern nization algorithm for
the dual (0 the entropy-regularized optimal ransport problem. We introduce an
accelerated alternating minimization method with a 1 /2 convergence rate, where
ks the improves over known bound 1/k for general AM
methods and for the Sinkhorn’s algorithm. Moreover, our algorithm converges
faster than gradient-type methods in practice as it is free of the choice of the
step-size and is adaplive 10 the local smoothness of the problem. We show that
the proposed method is primal-dual, meaning that if we apply it (o a dual problem,
we can reconsteuct the soluti nal problem with the same convergence
rate. We apply our method to the entsopy regularized optimal transport problent
and show experimentally, that it outperforms Sinkhorn's algorithm,
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A talk in this conference on similar topics

Their work has convergence result, but ...
@ They consider convex problem. NMF/NTF are not.

@ Their algo2,3 has is to solve unconstrained smooth minimization
problem min, f(z). Not useful for NMF/NTF.

@ Step9 of Algo2 and Step6 of Algo3 require closed form sol. of
sub-minimization min f(z) : z € S
Not useful for NMF/NTF : NNLS no close form sol.

o (Statistical) Fact : minimize a (1st/2nd-order) majorization fun. is
often easier to have closed form sol. (that’s why in their test they
pick linear objective fun)

Not useful for quadratic NMF/NTF; also sub-min. problem is NNLS

@ The way they update parameters ~ do line search using info of
objective fun. ~ comp. cost as HER

These some how tells why convergence analysis of general extrapolated
BCD on non-cvx problems (with no close form sol. in sub-minimization)
are hard, not to mention restart is involved.
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Fancy graphs showing numerics



NMF literature use (X, W, H) instead of (M, U, V)
Here the plots are using e (not ¢)
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HER (the “E—”) beats the APG-MF of (Xu—Yin, 2013) A block coordinate
descent method for regularized multiconvex optimization with applications to nonnegative tensor

factorization and completion. SIAM J. Img Sci.
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Similar results in sparse text data, dense image data : ORL, Umist, CBCL,
Frey.

Details in paper : A.-Gillis, "Accelerating Non-negative matrix factorization by
extrapolation”, Neural Computation, Feb, 2019. (arXiv : 1805.06604)
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e Computing NTF



Non-negative Canonical Polyadic Decomposition

(Joint-work with Jeremy E. Cohen of IRISA, Rennes, France)

A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical Polyadic Decomposition

using Extrapolation”, 2019.

For example, order-3 tensor :

argmin  f(U, VW) = ||V -UxVxW|
U>0,V>0,W>0

Uy Ug

(Not on Tucker Model in this talk.) 18/29



(P) : min__ f(U,V,W)=|Y-UxVxW|>
U>0,V>0,W>0

Algorithm HER

Input: Y € R>E » U VW, U=UV=VW=W
Output: U, V, W
1: for k=1,2,... do
2. for U,V,W do o
3 Ul = argminf (U, V¥, WF)
U>0
4 ]ijrl — Ukt! + /Bk(UkJrl _ Uk)
5. end for
6. ektl — f(ﬂk+1’\7k+l7wk+1)
7
8

. Update B, B and restarts (if needed)
: end for

e ¢é¥ is implicitly computed by reusing already compute component :

O(mnr) — O(mr?) with m = K, n = I.J >> r (insane!)

e 3 MTTKRP (Matricized tensor times Khatri-Rao product) if using 1st
order solver

@ Many variation. e.g. project after extrapolation



Unsolved problem : NNCPD has even higher variability on the chain

structure.

Update x

2 Y
Extrapolate x

\, v

Project x

Update y

r )

Extrapolate y

\, v

Project y

Iteration k

Understanding the relationship between the data structure (rank size, size
of each mode) and the chain structure will be crucial.
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More fancy graphs showing
numerics



[1.J,Kr,o] = [60,50,50,10,0.0] on algorithms with HER(red), sans HER(blue)
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Crmin
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On low-rank, cubic size, ill-condition data

i — HALS =——E-HALS APG-r
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A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical Polyadic Decomposition

using Extrapolation”, 2019.
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Medium rank, unbalanced sizes (short-fat-thin) data

HALS =——E-HALS APG-r
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A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical Polyadic Decomposition

using Extrapolation”, 2019.
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On inexact BCD : gradient update

Curves are mean over 10 trials

[1.4.K,r,a] = [50,50,50,10,0]
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Comparing with other different inexact BCD using different extrapolations
on PG.

Data fitting error Ground truth fitting

0.5 1 15 2 25 3 3.5 4 a5 5 5 5 2 2.5 3 35 4 45 5

time (sec) time (sec)

APG : (Xu-Yin 2013) as before
iBMD : L. T. K. Hien, N. Gillis, P. Patrinos, " Inertial Block Mirror Descent Method for
Non-Convex Non-Smooth Optimization”, March 2019.
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@ Computing NNLS



Non-negative Least Square

1
= argmin—||Ax — b||3
x>0 2

APGs, NNLS(1200,1200)

10!
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We suspect HER-PG (inexact BCD) just share the same rate as other
extrapolated gradients, but again no proof (even NNLS is convex). For
HER-exact BCD, even harder.
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Various applications

o Title : Accelerating Nonnegative-X by extrapolation, X € P :={LS,
MF, TF}

@ Actually (empirically) you can enlarge P to include Regularized-MF,
Regularized-TF, MC, TC, DL, ...

Ground Trutn Cornpted 55 0122188 datapoint ntota)
>

meisec)

Figure: A toy example on tensor completion. A 9-times speed up
(0.11-fraction of time) on the nuclear norm SVT algo.

o Why : HER is highly flexibility — there always exists a suitable
parameter for the problem (a hypothesis hard to prove theoretically



Summary : HER

Heuristic Extrapolation with “Restarts” for exact / in-exact BCD on NMF,
NTF and NNLS.

Paper :
o NMF paper A.-Gillis, “Accelerating Non-negative matrix factorization by
extrapolation”, Neural Computation, Feb, 2019.
o NTF paper A.-Cohen-Gillis, “Accelerating Approximate Nonnegative Canonical
Polyadic Decomposition using Extrapolation”, 2019.
A longer version on accelerating different algos is working in progress.
Not discussed
@ Accelerating other X
@ Applications
Open problems
o Convergence theory (at least for the convex NNLS)
@ The chain structure variation
Slide, code, preprint in angms.science
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Workshop on Low-Rank Models and Applications (LRMA)

@ Mons, Belgium, September 12-13, 2019

@ Topics : Low-rank model € {computer science, information theory,
mathematics and signal processing}

@ Plenary speakers

Cedric Fevotte (CNRS, IRIT Toulouse)
Valeria Simoncini (U. Bologna)

Nicola Guglielmi (U. L'Aquila)

Vincent Tan (NUS)

Zhihui Zhu (Johns Hopkins U.)

Christian Grussler (Cambridge U.)

Andre Uschmajew (Max Planck Institute)
Stephen Vavasis (U. Waterloo)

vV vV VY VY VY VY VY

@ Program now available. Don't forget to register. Registration is free.

https://sites.google.com/site/lowrankmodels/
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