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Non-negative Matrix Factorization (NMF)

Given matrix M ∈ IRm×n
+ , positive integer r.

Find matrices U ∈ IRm×r
+ ,V ∈ IRn×r

+ s.t. M = UV>.

Everything is non-negative.
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Related problems

NMF
M = UV>

N. Tensor Factorization

T = U ∗V ∗W

N. Least Squares
b = Ax

“N” =⇒ all these problems no analytic sol.
=⇒ seek for numerical sol.
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Related problems

NMF
argmin
{U,V}≥0

‖M−UV>‖F

NTF
argmin
{U,V,W}≥0

‖T −U ∗V ∗W‖F

NNLS
argmin

x≥0
‖b−Ax‖2

all are constrained non-linear programming problem
(also non-smooth : between boundary of IR+, IR−)
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Why study these problems?

Model interpretability

NMF gives better decomposition than PCA, SVD, ICA due to the

interpretability on non-negative data.

Model correctness

NMF can find ground truth (under certain conditions).

Mathematical curiosity

NMF is related to some serious problems in mathematics.

My boss tell me to do it.



Application 1 - Representation Learning

(Lee & Seung, 1999)

The work that “popularized” NMF.
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Application 2 - Hyper-Spectral Imaging

NMF gives good unsupervised image segmentation.

Decomposition of hyper-spectral image of Jasper Ridege, California.
Left : From HySpeed Computing. Right : (A. & Gillis, 2019-HSI).
Note : the left and right are not taken in the same period.
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Application 2 - Hyper-Spectral Imaging

HSI decomposition. Figure modified from the slide of Nicolas Gillis.

Related models : NMF with sparsity / volume regularizations.
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Application 3 - Art preservation and archaeology

Pigment identification (Grabowski, et. al, 2018).

Related model : NMF dictionary learning (here dictionary = colour book).
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Application 4 - Smart Home, Electricity Disaggregation

Electricity Disaggregation (Kolter, 2011).

Related model : NMF with l0/sparsity constraints/regularizers.
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Application 5 - Audio Blind Source Separation

(Leplat, Gillis, Siebert, A., 2019) and (Leplat, Gillis, A., 2019)

Related model : Beta-divergence NMF with volume regularizer.
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Application side

Demixing : analytical chemistry (earliest work), HSI image, Audio

Representation learning on human face (the work that popularizes NMF)

Topic modeling in text mining

Probability distribution application on identification of Hidden Markov Model

Bioinformatics : gene expression

(Non-negative) Data compression for tensor completion, video foreground-background separation

Speech denoising

Recommender system

Video summarization

Radio

Forensics

Art work conservation (identify true color used in painting)

Medical imaging – image processing on small object

Mid-infrared astronomy – image processing on large object

Telling whether a banana or a fish is healthy

Numerical side

A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem

Robustness analysis of algorithm

Tensor

Sparsity

Theoretical side

Non-negative rank rank+ := smallest r s.t.

X =
r∑

i=1

Xi, : Xi non-negative rank-1.

How to find / estimate / bound rank+, e.g. rankpsd(X) ≤ rank+(X), CP

Extended formulations and combinatorics

Log-rank Conjecture of communication system

3-SAT, Exponential time hypothesis, P 6= NP



Various models for various applications

Basic NMF model
argmin
{U,V}≥0

f(U,V;M) = ‖M−UV>‖F

NMF with l0-norm/sparsity constraint

argmin
{U,V}≥0

f(U,V;M) + λU‖U‖0 + λV ‖V‖0

NMF under other objective functions

argmin
{U,V}≥0

D(M,UV)

NMF under separability constraints

argmin
{U,V}≥0

f(U,V;M) s.t. U = M(, : J ),V =

[
Ir
V′

]
,V1r ≤ 1n

NMF with volume regularizer

argmin
{U,V}≥0

f(U,V;M) + λUV(U)

NMF under general separability constraint (Pan & Gillis, 2019)

NMF in polynomial basis (Otto, Barel, Lathauwer, 2017), (Hautecoeur & Glineur, 2019)
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NMF is just very hard

NMF is NP-Hard (Jiang & Ravikumar, 1993), (Vavasis, 2007)

NF (M is any matrix) is NP-Hard (Gillis & Glineur, 2008)

There is an algorithm for the (exact) NMF that runs in time
O((nm)r

22r) (Arora, et al., 2012)

NMF is NP-Hard for Boolean matrices (Shitov, 2016)

NMF with matrix in Q requires irrationality (Chistikov, et al., 2017)

Non-negative rank of a matrix is NP-hard to compute (Shitov, 2017)

Heavy use of Graph-theoretic arguments, simplex geometry, and more

Open problems :
I Exact complexity of the nested polytope problem
I On (bounded) estimation of the non-negative rank
I and much more

NMF NP-Hard.
=⇒ add conditions on the NMF model to make it not NP-hard !
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NMF tells a picture of a cone/hull

Given M, the NMF M = UV> tells a picture of a non-negative
simplicial† convex cone.

If the rows of V (columns of V>) are normalized as sum-to-1, the
cone compressed into a convex hull.

†Assumes U full rank.
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NMF tells a picture of a cone/hull

For r = 3, facing the hull we see a triangle.

NMFV sum-to-1 problem geometrically means “find the vertices”.
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Separable NMF

Algebra : M = UV>

I U = M(:,J ), J index set

I V> = [Ir V′>]Πr, cols of V′> sum-to-1.

Geometry : Find U ⇐⇒ find vertices from data cloud

M (pts) are cvx combination (described by V)
of vertices (U).

Not NP-hard anymore, solvable. Algorithm : LP, SPA, X-ray, . . .
Separability condition (Donoho-Stodden, 2004) – already proposed in
90s in HSI community, known as “pure pixel”
Other names : anchord words, extreme ray enumeration
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Successive Projection Algorithm (SPA)

One of the “best” method for (near-) Separable NMF :

Robust
I It can find the vertices under bounded additive noise.
I Theorem (Gillis-Vavasis, 2014)

If ε ≤ O

(
σmin
U√
rκ2U

)
, SPA satisfies

max
k

∥∥∥U(:, k)−M(:,J (k))
∥∥∥ ≤ O(εκ2U).

In English : if noise is bounded, then the worse case fitting error is bounded.

Fast
I Computing U : a modified Gram-Schmidt with column pivoting
I Computing V : a 1st-order method with Nesterov’s acceleration

Not many methods† achieve both robustness and speed

However, SPA assumes separability :

U = M(:,J ) : Vertices U are presented in observed data M

What if this is false?
†Two examples : SNPA and preconditioned SPA by Gillis et al.
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SPA fails when no separability

Projected onto 2d. From my old slide : H here is the matrix V>.

Why fail : SPA takes the col. of M with k-th largest norm (after
projection) as the k-th col. of U.

How to solve it : minimum volume hull fitting [gif]

16 / 44
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Volume regularized NMF

Idea : fit NMF with minimum volume

argmin
{U,V}≥0

f(U,V; M) + λUV(U),

where V(·) is a prox function measures vol(cvx hull of U):

I det(U>U) det of Gramian
I log det(U>U + δIr) log-det of Gramian
I
∏r

i=1 /
∑r

i=1 ‖ui‖22 rectangular box
I ‖U‖∗ nuclear norm

Many works in this directions :
I (Lin, et al., 2015) – Sufficient Scatter Condition
I (A. & Gillis, 2018-NL), (A. & Gillis. 2019-HSI) – comparison of V
I (Leplat, A., Gillis, 2019-UK) – logdet works for rank deficient case
I (Leplat, Gillis, Siebert, A., 2019) – on audio blind source separation
I (Leplat, Gillis, A., 2019) – identifiability on minimum volume
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Minvol. Identifiability (Leplat, Gillis, A., 2019)

Model

argmin
U,V

V(U) := log det
(
U>U

)
subject to U ∈ IRm×r

+ ,V ∈ IRn×r
+

M = UV>

U>1 = 1 (1)

Theorem : if M = U#V>#, rank(M) = r, U# ≥ 0 and V># satisfies
the sufficiently scattered condition :

I C ⊆ cone(V>), and
I cone(V>∗) ∩ bdC∗ = {λek|λ ≥ 0,∀k ∈ [1, 2, . . . , r]}
I where

F C = {x|x>1 ≥
√
r − 1‖x‖2}

F C∗ = {x|x>1 ≥ ‖x‖2}
F cone(V>) = {x|x = V>θ}

then the optimal solution of (1) recovers (U#,V#) up to
permutation and scaling.
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Sufficiently scattered condition

From (Lin, et al., 2015), and a series of works from that group
SSC is a generalization of the separability condition
V> is SSC if

I C ⊆ cone(V>), and
I cone(V>∗) ∩ bdC∗ = {λek|λ ≥ 0,∀k ∈ [1, 2, . . . , r]}

F C = {x|x>1 ≥
√
r − 1‖x‖2}

F C∗ = {x|x>1 ≥ ‖x‖2}
F cone(V>) = {x|x = V>θ}

Modified from (Fu, et al., 2018).
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Recoverable / Non-recoverable cases

From (A. & Gillis. 2019-HSI)



Outline

1 Introduction

2 Applications

3 Theories

4 Computations

5 Conclusion



Block Coordinate Descent

(P) : min
U,V

f(U,V) = ‖M−UV>‖2

Algorithm Block Coordinate Descent1

Input: M ∈ IRm×n
+ , r ∈ IN, initialization U ∈ IRm×r

+ , V ∈ IRr×n
+

Output: U,V
1: for k = 1, 2, . . . do
2: Uk+1 = argmin

U≥0
f(U,Vk), initialized at Uk

3: Vk+1 = argmin
V≥0

f(Uk+1,V), initialized at Vk

4: end for

We have non-increasing sequence

f(Uk+1,Vk+1) ≤ f(Uk+1,Vk) ≤ f(Uk,Vk).
(Actually not enough, need sufficient decrease condition)

1Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)
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Exact vs inexact BCD

Exact BCD

I Uk+1 = argmin
U≥0

f(U,Vk), initialized at Uk

I Vk+1 = argmin
V≥0

f(Uk+1,V), initialized at Vk

Inexact BCD : e.g. alternating gradient update

I Uk+1 = Uk − γ∇f(Uk;Vk,M)
I Vk+1 = Vk − γ∇f(Vk;Uk+1,M)

In terms of computation :
(more-) exact BCD is better than (more-)inexact BCD
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Exact BCD is computationally better

Suppose we use gradient descent on

(P) : min
U,V

f(U,V) =
1

2
‖M−UV>‖2F

Gradient updates (projection step hidden)

Uk+1 = U− γkU(MVk −UkVk>Vk)

Vk+1 = V − γkV(M>Uk+1 −VkUk+1>Uk+1)

where γ is set to be the inverse Lipschitz constant of ∇f

γkU =
1

‖Vk>Vk‖2
, γkV =

1

‖Uk>Uk‖2
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1: for k = 1, 2, . . . do
2: for j = 1, 2, . . . until converge
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4: endfor
5: for j = 1, 2, . . . until converge

6: Vk+1 = Vk − γ(M>Uk+1 −VkUk+1>Uk+1)
7: endfor
8: end for
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Exact BCD is computationally better

Algorithm 5 Inexact BCD

1: U1 = U0 −
1

‖V0>V0‖2
(MV0 −U0V0>

V0)

2: V1 = V0 −
1

‖U1>U1‖2
(M>U1 −V0U1>

U1)

3: U2 = U1 −
1

‖V1>V1‖2
(MV1 −U1V1>

V1)

4: V2 = V1 −
1

‖U2>U2‖2
(M>U2 −V1U2>

U2)

5: U3 = U2 −
1

‖V2>V2‖2
(MV2 −U2V2>

V2)

6: V3 = V2 −
1

‖U3>U3‖2
(M>U3 −V2U3>

U3)

7:
.
.
.

Algorithm 6 Exact BCD

1: U1 = U0 −
1

‖V0>V0‖2
(MV0 −U0V0>

V0)

2: U2 = U1 −
1

‖V0>V0‖2
(MV1 −U1V0>

V0)

3: U3 = U2 −
1

‖V0>V0‖2
(MV2 −U2V0>

V0)

4: V1 = V0 −
1

‖U3>U3‖2
(M>U1 −V0U3>

U3)

5: V2 = V1 −
1

‖U3>U3‖2
(M>U2 −V1U3>

U3)

6: V3 = V2 −
1

‖U3>U3‖2
(M>U3 −V2U3>

U3)

7:
.
.
.

Computational costs :

V>V(2n−1)m2 , MV(2n−1)mr, U>U(2r−1)m2 , M>U(2m−1)rn

pre-compute these terms and re-use several times in Exact BCD has big
efficiency improvement
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Extrapolated BCD : Heuristic Extrapolation with Restarts

(P) : min
U,V

f(U,V) = ‖M−UV‖2

Algorithm HER (A. & Gillis. 2019-acc)

Input: M ∈ IRm×n
+ , r,U,V, Û = U, V̂ = V

Output: U,V
1: for k = 1, 2, . . . do
2: Uk+1 = argmin

U≥0
f(U, V̂k), initialized at Uk

3: Extrapolate[U] : Ûk+1 = Uk+1 + βk(Uk+1 −Uk).

4: Vk+1 = argmin
V≥0

f(Ûk+1,V), initialized at Vk.

5: Extrapolate[V] : V̂k+1 = Vk+1 + βk(Vk+1 −Vk).
6: Restarts (safe guard mechanism) if needed.
7: end for

Extrapolation may destroy the non-increasing sequence property
Instead of 2-3-4-5, can do 2-4-3-5
How to do 6
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Algorithm HER (A. & Gillis. 2019-acc)

Input: M ∈ IRm×n
+ , r,U,V, Û, V̂,

β0 ∈ [0, 1], γ ≥ 1, γ̄ ≥ 1, η ≥ 1, β̄0 = 1
1: for k = 1, 2, . . . do
2: Uk+1 = argmin

U≥0
f(U, V̂k), initialized at Uk

3: Ûk+1 = Uk+1 + βk(U
k+1 −Uk)

4: Vk+1 = argmin
V≥0

f(Ûk+1,V), initialized at Vk.

5: V̂k+1 = Vk+1 + βk(V
k+1 −Vk)

6: êk+1 = f(Ûk+1,Vk+1)
7: if êk+1 > êk

Restarts
Decay βk, update β̄k

8: else (êk+1 ≤ êk)
Grow βk, update β̄k

9: end if
10: end for

Important: the argmin is not really necessary. i.e. It can be inexact BCD.



Facts

NMF is non-cvx problem

Direct application of Nesterov’s β gives erratic convergence
behaviour Mitchell, et al. ”Nesterov Acceleration of Alternating Least Squares for Canonical Tensor

Decomposition.” arXiv:1810.05846 (2018)

Why heuristics?

Non-cvx problem is hard :0)

No better idea :0)

Currently no convergence analysis (even for NNLS)

What’s good ?

Just a parameter tuning

Easy implementation

extension to other models : exact / inexact BCD

(Empirical) Improvement on convergence speed
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Computing β by restarts

With β̄1 = 1 and β0 ∈ [0, 1], update β as

βk+1 =

min{γβk, β̄} if êk ≤ êk−1

βk
η

if êk > êk−1

Also update β̄k

β̄k+1 =

{
min{γ̄β̄k, 1} if êk ≤ êk−1 and β̄k < 1

βk if êk > êk−1
.
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The idea of updating βk

Case 1. “error” decreases : êk ≤ êk−1

Means the current β is “good”

Be more ambitious on next extrapolation
I i.e., make β larger
I How : multiplying it with a growth factor γ > 1

βk+1 = βkγ

Growth of β cannot be indefinite : put a ceiling
I How :

βk+1 = min{βkγ, β̄k}
I β̄ is also updated with a growth factor γ̄ with ceiling 1
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The idea of updating βk

Case 2. “error” increases : êk > êk−1

Means the current β value is “bad” (too large)

Be less ambitious on the next extrapolation
I i.e., make β smaller
I How : divide it with a decay factor η > 1

βk+1 =
βk
η

As f is continuous and smooth, for βk being too large, it “should also
be” too large in the near future

I i.e., have to avoid βk+1 to grow back to the “bad” βk too soon
I How : we set the ceiling parameter

β̄k+1 = βk
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As f is continuous and smooth, for βk being too large, it “should also
be” too large in the near future

I i.e., have to avoid βk+1 to grow back to the “bad” βk too soon
I How : we set the ceiling parameter

β̄k+1 = βk
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Variation of the HER algorithm

Together with

βk+1 =

min{γβk, β̄} if êk ≤ êk−1

βk
η

if êk > êk−1

β̄k+1 =

{
min{γ̄β̄k, 1} if êk ≤ êk−1 and β̄k < 1

βk if êk > êk−1
.

There are variations on the update-extrapolate chain :
Update U→ extrapolate U→ update V→ extrapolate V

Update U→ extrapolate U→ project U→ update V→ extrapolate V→
project V

Update U→ update V→ extrapolate U→ extrapolate V

Update U→ update V→ extrapolate U→ extrapolate V→ project U→
project V
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Fancy graphs showing numerics



Effectiveness of HER

NMF literature use (X,W,H) instead of (M,U,V>)
Here the plots are using e (not ê)

Low-rank synthetic data, figure from (A. & Gillis. 2019-acc)
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Effectiveness of HER

NMF literature use (X,W,H) instead of (M,U,V>)
Here the plots are using e (not ê)
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Effectiveness of HER

NMF literature use (X,W,H) instead of (M,U,V>)
Here the plots are using e (not ê)

Sparse Text data, figure from (A. & Gillis. 2019-acc) 32 / 44



Effectiveness of HER

NMF literature use (X,W,H) instead of (M,U,V>)
Here the plots are using e (not ê)
Compare to extrapolated alternating gradient (no inner loop) : APG-MF of
(Xu-Yin, 2013) A block coordinate descent method for regularized multiconvex optimization

with applications to nonnegative tensor factorization and completion. SIAM J. Img Sci.
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For more details see (A., Gillis, 2019-acc) 32 / 44



The hp = 1, 2, 3 means different chain structure :

For empirical comparisons of different chain structures, see (A. & Gillis,
2019-acc) 33 / 44



Why êk = ‖M− ÛV‖ not ek = ‖M−UV‖

V̂ is updated according to Û

It gives the algorithm some degrees of freedom to possibly
increase the objective function (a vague statement)

Computationally cheaper (main reason)
Compute ‖M−UV‖F cost O(mnr) instead of O(mr2) by
re-using previous computed terms :

‖M−UV‖2
F = ‖M‖2

F − 2
〈
U,MV>

〉
+
〈
U>U,VV>

〉
Significant if r � n, which is true in low-rank model.
Says r = 5 ∼ 50 with n = 103 ∼ 106 or more.

(If converge) In the long run, U, Û is effectively the same :

U∞ = Û∞ after projection
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Why êk = ‖M− ÛV‖ not ek = ‖M−UV‖

It gives the algorithm some degrees of freedom to possibly increase the
objective function (a vague statement)

By definition of the algorithm, we have

Ûk+1 = Uk+1 + βk+1(Uk+1 −Uk)

Vk+1 = argmin
V≥0

f(Ûk+1,V)

‖M− Ûk+1Vk+1‖︸ ︷︷ ︸
êk+1

= ‖M−Uk+1Vk+1 + βk+1(Uk −Uk+1)Vk+1‖

∆IQ.
≤ ‖M−Uk+1Vk+1‖︸ ︷︷ ︸

ek+1

+βk+1‖(Uk −Uk+1)Vk+1‖

êk+1 ≤ ek+1 + βk+1 ‖Uk −Uk+1‖︸ ︷︷ ︸
↘0 if converge

‖Vk+1‖
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Non-negative Canonical Polyadic Decomposition

Joint-work with Jeremy Cohen of IRISA, France, (A., Cohen, Gillis, 2019)

For example, order-3 tensor :

argmin
U≥0,V≥0,W≥0

f(U,V,W) = ‖Y −U ∗V ∗W‖

= ‖Y −
r∑
i

ui ∗ vi ∗wi‖

(Not on Tucker Model in this talk.)
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(P) : min
{U,V,W}≥0

f(U,V,W) = ‖Y −U ∗V ∗W‖2F

Algorithm HER

Input: Y ∈ IRI×J×K
+ , r, U,V,W, Û = U, V̂ = V,Ŵ = W

Output: U, V, W
1: for k = 1, 2, . . . do
2: for U,V,W do
3: Uk+1 = argmin

U≥0
f(U, V̂k,Ŵk)

4: Ûk+1 = Uk+1 + βk(U
k+1 −Uk).

5: end for
6: êk+1 = f(Ûk+1, V̂k+1,Wk+1)
7: Update βk, β̄k and restarts (if needed)
8: end for

êk is implicitly computed by reusing already compute component :
O(mnr)→ O(mr2) with m = K, n = IJ ≫ r (insane!)
3 MTTKRP (Matricized tensor times Khatri-Rao product) if using 1st
order solver
Many variations : e.g. project after extrapolation 36 / 44



Open problem : which chain structure to use?

Understanding the relationship between the data structure (rank size, size
of each mode) and the chain structure will be crucial.
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More fancy graphs showing
numerics



Figure from (A., Cohen, Gillis, Hien, 2019)
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Figure from (A., Cohen, Gillis, Hien, 2019)
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Figure from (A., Cohen, Gillis, Hien, 2019)
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Non-negative Least Square

x = argmin
x≥0

1

2
‖Ax− b‖22

We suspect HER-PG (inexact BCD) just share the same rate as other
extrapolated gradients, but again no proof (even NNLS is convex).
For HER-exact BCD, even harder to prove convergence.
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Various applications

HER Empirically also works for other tasks

A toy example on tensor completion. A 9-times speed up (0.11-fraction of
time) on the nuclear norm SVT algo.

Why : HER is highly flexibility – there always exists a suitable
parameter for the problem (a hypothesis hard to prove theoretically
but easy to verify empirically)
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Summary

Discussed

What is NMF

Applications of NMF

Theories of NMF : NP-hard, Separability, min-volume, identifiability

Computations of NMF : HER algorithm framework

Open problems

Theoretical : rank+, NP-completeness

Robustness of minimum-volume NMF to additive noise

Convergence analysis of HER : even for the convex case

and much more !!!
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What am I doing here?



What am I doing here?
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