Non-negative Matrix Factorization(s) Applications, Theories and Computations

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

Email: manshun.ang@umons.ac.be Homepage: angms.science

August 20, 2019 Dept. Applied Maths, U.Waterloo, Canada

Outline

1 Introduction

2 Applications

3 Theories

4 Computations

5 Conclusion

Non-negative Matrix Factorization (NMF)

- Given matrix $\mathbf{M} \in \mathbb{R}^{m \times n}_+$, positive integer r.
- Find matrices $\mathbf{U} \in \mathbb{R}^{m \times r}_+, \mathbf{V} \in \mathbb{R}^{n \times r}_+$ s.t. $\mathbf{M} = \mathbf{U}\mathbf{V}^\top$.

Non-negative Matrix Factorization (NMF)

- Given matrix $\mathbf{M} \in \mathbb{R}^{m \times n}_+$, positive integer r.
- Find matrices $\mathbf{U} \in \mathbb{R}^{m \times r}_+, \mathbf{V} \in \mathbb{R}^{n \times r}_+$ s.t. $\mathbf{M} = \mathbf{U}\mathbf{V}^\top$.
- Everything is non-negative.

• NMF

$$\mathbf{M} = \mathbf{U}\mathbf{V}^\top$$

• N. Tensor Factorization

$$\mathcal{T} = \mathbf{U} * \mathbf{V} * \mathbf{W}$$

N. Least Squares

$$\mathbf{b} = \mathbf{A}\mathbf{x}$$

• "N" \implies all these problems no analytic sol. \implies seek for numerical sol.

• NMF

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}} \|\mathbf{M}-\mathbf{U}\mathbf{V}^{\top}\|_{F}$$

• NTF

$$\underset{\{\mathbf{U},\mathbf{V},\mathbf{W}\}\geq\mathbf{0}}{\operatorname{argmin}} \|\mathcal{T}-\mathbf{U}*\mathbf{V}*\mathbf{W}\|_{F}$$

NNLS

$$\underset{\mathbf{x} \geq \mathbf{0}}{\operatorname{argmin}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$$

• all are constrained non-linear programming problem (also non-smooth : between boundary of $\rm I\!R_+$, $\rm I\!R_-$)

Introduction

2 Applications

3 Theories

4 Computations

5 Conclusion

Why study these problems?

Model interpretability

NMF gives better decomposition than PCA, SVD, ICA due to the

interpretability on non-negative data.

Model correctness

NMF can find ground truth (under certain conditions).

Mathematical curiosity

NMF is related to some serious problems in mathematics.

• My boss tell me to do it.

Application 1 - Representation Learning

The work that "popularized" NMF.

Application 2 - Hyper-Spectral Imaging

NMF gives good unsupervised image segmentation.

Decomposition of hyper-spectral image of Jasper Ridege, California. Left : From HySpeed Computing. Right : (A. & Gillis, 2019-HSI). Note : the left and right are not taken in the same period.

Application 2 - Hyper-Spectral Imaging

HSI decomposition. Figure modified from the slide of Nicolas Gillis. Related models : NMF with sparsity / volume regularizations.

Application 3 - Art preservation and archaeology

Pigment identification (Grabowski, et. al, 2018).

Related model : NMF dictionary learning (here dictionary = colour book). 7/44

Application 4 - Smart Home, Electricity Disaggregation

Related model : NMF with l_0 /sparsity constraints/regularizers.

Application 5 - Audio Blind Source Separation

(Leplat, Gillis, Siebert, A., 2019) and (Leplat, Gillis, A., 2019)

Related model : Beta-divergence NMF with volume regularizer.

Application side

- Demixing : analytical chemistry (earliest work), HSI image, Audio
- Representation learning on human face (the work that popularizes NMF)
- Topic modeling in text mining
- Probability distribution application on identification of Hidden Markov Model
- Bioinformatics : gene expression
- (Non-negative) Data compression for tensor completion, video foreground-background separation
- Speech denoising
- Recommender system
- Video summarization
- Radio
- Forensics
- Art work conservation (identify true color used in painting)
- Medical imaging image processing on small object
- Mid-infrared astronomy image processing on large object
- Telling whether a banana or a fish is healthy

Numerical side

- A test-box for generic optimization programs : NMF is a constrained non-convex (but biconvex) problem
- Robustness analysis of algorithm
- Tensor
- Sparsity

Theoretical side

Non-negative rank rank₊ := smallest r s.t.

$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{X}_{i}, \quad : \quad \mathbf{X}_{i} \text{ non-negative rank-1}.$$

How to find / estimate / bound rank_+, e.g. $\mathsf{rank}_{\mathsf{psd}}(\mathbf{X}) \leq \mathsf{rank}_+(\mathbf{X}),$ CP

- Extended formulations and combinatorics
- Log-rank Conjecture of communication system
- 3-SAT, Exponential time hypothesis, $\mathbf{P} \neq \mathbf{NP}$

Various models for various applications

Basic NMF model

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}}f(\mathbf{U},\mathbf{V};\mathbf{M}) = \|\mathbf{M} - \mathbf{U}\mathbf{V}^{\top}\|_{F}$$

• NMF with *l*₀-norm/sparsity constraint

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}} f(\mathbf{U},\mathbf{V};\mathbf{M}) + \lambda_U \|\mathbf{U}\|_0 + \lambda_V \|\mathbf{V}\|_0$$

NMF under other objective functions

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}} \ \mathcal{D}(\mathbf{M},\mathbf{UV})$$

• NMF under separability constraints

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}} f(\mathbf{U},\mathbf{V};\mathbf{M}) \text{ s.t. } \mathbf{U} = \mathbf{M}(,:\mathcal{J}), \mathbf{V} = \begin{bmatrix} \mathbf{I}_r \\ \mathbf{V}' \end{bmatrix}, \mathbf{V} \mathbf{1}_r \leq \mathbf{1}_n$$

• NMF with volume regularizer

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}} f(\mathbf{U},\mathbf{V};\mathbf{M}) + \lambda_U \mathcal{V}(\mathbf{U})$$

- NMF under general separability constraint (Pan & Gillis, 2019)
- NMF in polynomial basis (Otto, Barel, Lathauwer, 2017), (Hautecoeur & Glineur, 2019)

Introduction

2 Applications

NMF is just very hard

- NMF is NP-Hard (Jiang & Ravikumar, 1993), (Vavasis, 2007)
- NF (\mathbf{M} is any matrix) is NP-Hard (Gillis & Glineur, 2008)
- There is an algorithm for the (exact) NMF that runs in time $\mathcal{O}((nm)^{r^22^r})$ (Arora, et al., 2012)
- NMF is NP-Hard for Boolean matrices (Shitov, 2016)
- NMF with matrix in \mathbb{Q} requires irrationality (Chistikov, et al., 2017)
- Non-negative rank of a matrix is NP-hard to compute (Shitov, 2017)
- Heavy use of Graph-theoretic arguments, simplex geometry, and more
- Open problems :
 - Exact complexity of the nested polytope problem
 - On (bounded) estimation of the non-negative rank
 - and much more

NMF is just very hard

- NMF is NP-Hard (Jiang & Ravikumar, 1993), (Vavasis, 2007)
- NF (\mathbf{M} is any matrix) is NP-Hard (Gillis & Glineur, 2008)
- There is an algorithm for the (exact) NMF that runs in time $\mathcal{O}((nm)^{r^22^r})$ (Arora, et al., 2012)
- NMF is NP-Hard for Boolean matrices (Shitov, 2016)
- NMF with matrix in \mathbb{Q} requires irrationality (Chistikov, et al., 2017)
- Non-negative rank of a matrix is NP-hard to compute (Shitov, 2017)
- Heavy use of Graph-theoretic arguments, simplex geometry, and more
- Open problems :
 - Exact complexity of the nested polytope problem
 - On (bounded) estimation of the non-negative rank
 - and much more

NMF NP-Hard.

 \implies add conditions on the NMF model to make it not NP-hard !

NMF tells a picture of a cone/hull

Given M, the NMF $\mathbf{M} = \mathbf{U}\mathbf{V}^{\top}$ tells a picture of a non-negative simplicial[†] convex cone.

If the rows of V (columns of V^{\top}) are normalized as sum-to-1, the cone compressed into a convex hull.

[†]Assumes U full rank.

NMF tells a picture of a cone/hull

For r = 3, facing the hull we see a triangle.

 $NMF_{V \text{ sum-to-1}}$ problem geometrically means "find the vertices".

Separable NMF

• Algebra :
$$\mathbf{M} = \mathbf{U}\mathbf{V}^{\top}$$

• $\mathbf{U} = \mathbf{M}(:, \mathcal{J}), \mathcal{J} \text{ index set}$

Separable NMF

• Algebra : $\mathbf{M} = \mathbf{U}\mathbf{V}^{\top}$

- $\mathbf{U} = \mathbf{M}(:, \mathcal{J}), \mathcal{J} \text{ index set}$ $\mathbf{V}^{\top} = [\mathbf{I}_r \ \mathbf{V}'^{\top}] \mathbf{\Pi}_r$, cols of \mathbf{V}'^{\top} sum-to-1.

Separable NMF

• Algebra : $\mathbf{M} = \mathbf{U}\mathbf{V}^{\top}$

 $\blacktriangleright \ \mathbf{U} = \mathbf{M}(:,\mathcal{J}), \ \mathcal{J} \ \text{index set}$

• $\mathbf{V}^{\top} = [\mathbf{I}_r \ \mathbf{V}'^{\top}] \mathbf{\Pi}_r$, cols of \mathbf{V}'^{\top} sum-to-1.

 \bullet Geometry : Find $\mathbf{U}\iff$ find vertices from data cloud

 ${\bf M}$ (pts) are cvx combination (described by ${\bf V})$ of vertices (U).

- Not NP-hard anymore, solvable. Algorithm : LP, SPA, X-ray, ...
- Separability condition (Donoho-Stodden, 2004) already proposed in 90s in HSI community, known as "pure pixel" Other names : anchord words, extreme ray enumeration 14 / 44

One of the "best" method for (near-) Separable NMF :

One of the "best" method for (near-) Separable NMF :

- Robust
 - It can find the vertices under bounded additive noise.
 - Theorem (Gillis-Vavasis, 2014)

If
$$\epsilon \leq \mathcal{O}\left(\frac{\sigma_{\mathbf{U}}^{\min}}{\sqrt{r\kappa_{\mathbf{U}}^2}}\right)$$
, SPA satisfies
$$\max_{k} \left\| \mathbf{U}(:,k) - \mathbf{M}(:,\mathcal{J}(k)) \right\| \leq \mathcal{O}(\epsilon \kappa_{\mathbf{U}}^2).$$

In English : if noise is bounded, then the worse case fitting error is bounded.

One of the "best" method for (near-) Separable NMF :

- Robust
 - It can find the vertices under bounded additive noise.
 - Theorem (Gillis-Vavasis, 2014)

If
$$\epsilon \leq \mathcal{O}\left(\frac{\sigma_{\mathbf{U}}^{\min}}{\sqrt{r\kappa_{\mathbf{U}}^2}}\right)$$
, SPA satisfies

$$\max_{k} \left\| \mathbf{U}(:,k) - \mathbf{M}(:,\mathcal{J}(k)) \right\| \le \mathcal{O}(\epsilon \kappa_{\mathbf{U}}^2).$$

In English : if noise is bounded, then the worse case fitting error is bounded.

- Fast
 - \blacktriangleright Computing U : a modified Gram-Schmidt with column pivoting
 - \blacktriangleright Computing \mathbf{V} : a 1st-order method with Nesterov's acceleration
- Not many methods[†] achieve **both** robustness and speed However,

One of the "best" method for (near-) Separable NMF :

- Robust
 - It can find the vertices under bounded additive noise.
 - Theorem (Gillis-Vavasis, 2014)

If
$$\epsilon \leq \mathcal{O}\left(\frac{\sigma_{\mathbf{U}}^{\min}}{\sqrt{r\kappa_{\mathbf{U}}^2}}\right)$$
, SPA satisfies

$$\max_{k} \left\| \mathbf{U}(:,k) - \mathbf{M}(:,\mathcal{J}(k)) \right\| \le \mathcal{O}(\epsilon \kappa_{\mathbf{U}}^2).$$

In English : if noise is bounded, then the worse case fitting error is bounded.

- Fast
 - \blacktriangleright Computing U : a modified Gram-Schmidt with column pivoting
 - \blacktriangleright Computing \mathbf{V} : a 1st-order method with Nesterov's acceleration
- Not many methods[†] achieve **both** robustness and speed However, SPA assumes separability :

 $\mathbf{U} = \mathbf{M}(:, \mathcal{J})$: Vertices \mathbf{U} are *presented* in observed data \mathbf{M} What if this is false?

[†]Two examples : SNPA and preconditioned SPA by Gillis et al.

Projected onto 2d. From my old slide : H here is the matrix \mathbf{V}^{\top} .

Why fail : SPA takes the col. of \mathbf{M} with k-th largest norm (after projection) as the k-th col. of \mathbf{U} .

How to solve it : minimum volume hull fitting [gif]

Volume regularized NMF

• Idea : fit NMF with minimum volume

$$\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}} f(\mathbf{U},\mathbf{V};\mathbf{M}) + \lambda_U \mathcal{V}(\mathbf{U}),$$

where $\mathcal{V}(\cdot)$ is a prox function measures vol(cvx hull of U):

• Idea : fit NMF with minimum volume

```
\underset{\{\mathbf{U},\mathbf{V}\}\geq\mathbf{0}}{\operatorname{argmin}}f(\mathbf{U},\mathbf{V};\mathbf{M})+\lambda_U\mathcal{V}(\mathbf{U}),
```

where $\mathcal{V}(\cdot)$ is a prox function measures vol(cvx hull of $\mathbf{U})$:

- $det(\mathbf{U}^{\top}\mathbf{U})$ det of Gramian
- $\log \det(\mathbf{U}^{\top}\mathbf{U} + \delta \mathbf{I}_r)$ log-det of Gramian
- $\prod_{i=1}^{r} / \sum_{i=1}^{r} \|\mathbf{u}_{i}\|_{2}^{2}$ rectangular box $\|\mathbf{U}\|_{*}$ nuclear norm
- Many works in this directions :
 - (Lin, et al., 2015) Sufficient Scatter Condition
 - ► (A. & Gillis, 2018-NL), (A. & Gillis. 2019-HSI) comparison of V
 - (Leplat, A., Gillis, 2019-UK) logdet works for rank deficient case
 - (Leplat, Gillis, Siebert, A., 2019) on audio blind source separation
 - (Leplat, Gillis, A., 2019) identifiability on minimum volume

Minvol. Identifiability (Leplat, Gillis, A., 2019)

Model

$$\begin{array}{ll} \underset{\mathbf{U},\mathbf{V}}{\operatorname{argmin}} \ \mathcal{V}(\mathbf{U}) &:= & \log \det \left(\mathbf{U}^{\top} \mathbf{U} \right) \\ \\ \text{subject to} & & \mathbf{U} \in \mathbb{R}^{m \times r}_{+}, \mathbf{V} \in \mathbb{R}^{n \times r}_{+} \\ & & \mathbf{M} = \mathbf{U} \mathbf{V}^{\top} \\ & & & \mathbf{U}^{\top} \mathbf{1} = \mathbf{1} \end{array}$$
(1)

• Theorem : if $\mathbf{M} = \mathbf{U}_{\#} \mathbf{V}_{\#}^{\top}$, rank $(\mathbf{M}) = r$, $\mathbf{U}_{\#} \ge \mathbf{0}$ and $\mathbf{V}_{\#}^{\top}$ satisfies the sufficiently scattered condition :

•
$$\mathcal{C} \subseteq \operatorname{cone}(\mathbf{V}^{\top})$$
, and

•
$$\operatorname{cone}(\mathbf{V}^{\top *}) \cap \operatorname{bd}\mathbf{C}^* = \{\lambda \mathbf{e}_k | \lambda \ge 0, \forall k \in [1, 2, \dots, r]\}$$

where

$$\mathcal{C} = \{ \mathbf{x} | \mathbf{x}^\top \mathbf{1} \ge \sqrt{r - 1} \| \mathbf{x} \|_2 \}$$

$$\mathcal{C}^* = \{ \mathbf{x} | \mathbf{x}^\top \mathbf{1} \ge \| x \|_2 \}$$

$$\star \operatorname{cone}(\mathbf{V}^{\top}) = \{\mathbf{x} | \mathbf{x} = \mathbf{V}^{\top} \theta\}$$

then the optimal solution of (1) recovers $({\bf U}_{\#},{\bf V}_{\#})$ up to permutation and scaling.

Sufficiently scattered condition

- $\bullet\,$ From (Lin, et al., 2015), and a series of works from that group
- SSC is a generalization of the separability condition

• \mathbf{V}^{\top} is SSC if

$$\begin{array}{l} \mathcal{C} \subseteq \operatorname{cone}(\mathbf{V}^{\top}), \text{ and} \\ \mathbf{cone}(\mathbf{V}^{\top*}) \cap \operatorname{bd} \mathbf{C}^* = \{\lambda \mathbf{e}_k | \lambda \ge 0, \forall k \in [1, 2, \dots, r]\} \\ \star \ \mathcal{C} = \{\mathbf{x} | \mathbf{x}^{\top} \mathbf{1} \ge \sqrt{r - 1} \| \mathbf{x} \|_2\} \\ \star \ \mathcal{C}^* = \{\mathbf{x} | \mathbf{x}^{\top} \mathbf{1} \ge \| x \|_2\} \\ \star \ \operatorname{cone}(\mathbf{V}^{\top}) = \{\mathbf{x} | \mathbf{x} = \mathbf{V}^{\top} \theta\} \end{array}$$

Modified from (Fu, et al., 2018).

Recoverable / Non-recoverable cases

From (A. & Gillis. 2019-HSI)

Introduction

2 Applications

3 Theories

5 Conclusion

$$(\mathcal{P}) \ : \min_{\mathbf{U},\mathbf{V}} f(\mathbf{U},\mathbf{V}) = \|\mathbf{M} - \mathbf{U}\mathbf{V}^{ op}\|^2$$

Algorithm Block Coordinate Descent¹

Input: $\mathbf{M} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}$, initialization $\mathbf{U} \in \mathbb{R}^{m \times r}_+$, $\mathbf{V} \in \mathbb{R}^{r \times n}_+$ Output: \mathbf{U}, \mathbf{V} 1: for k = 1, 2, ... do 2: $\mathbf{U}^{k+1}_+ = \operatorname{argmin} f(\mathbf{U}, \mathbf{V}^k)$ initialized at \mathbf{U}^k_+

2:
$$\mathbf{U}^{k+1} = \underset{\mathbf{U} \ge 0}{\operatorname{argmin}} f(\mathbf{U}, \mathbf{V}^{k})$$
, initialized at \mathbf{U}^{k}
3: $\mathbf{V}^{k+1} = \underset{\mathbf{V} \ge 0}{\operatorname{argmin}} f(\mathbf{U}^{k+1}, \mathbf{V})$, initialized at \mathbf{V}^{k}

4: end for

We have non-increasing sequence

$$f(\mathbf{U}^{k+1}, \mathbf{V}^{k+1}) \le f(\mathbf{U}^{k+1}, \mathbf{V}^k) \le f(\mathbf{U}^k, \mathbf{V}^k).$$

(Actually not enough, need sufficient decrease condition)

¹Other names : Gauss-Seidel iteration, alternating minimization (for 2 blocks)
Exact BCD

• Inexact BCD : e.g. alternating gradient update

$$\mathbf{U}^{k+1} = \mathbf{U}^k - \gamma \nabla f(\mathbf{U}^k; \mathbf{V}^k, \mathbf{M})$$

$$\mathbf{V}^{k+1} = \mathbf{V}^k - \gamma \nabla f(\mathbf{V}^k; \mathbf{U}^{k+1}, \mathbf{M})$$

 In terms of computation : (more-) exact BCD is better than (more-)inexact BCD Suppose we use gradient descent on

$$(\mathcal{P})$$
 : $\min_{\mathbf{U},\mathbf{V}} f(\mathbf{U},\mathbf{V}) = \frac{1}{2} \|\mathbf{M} - \mathbf{U}\mathbf{V}^{\top}\|_{F}^{2}$

Gradient updates (projection step hidden)
$$\begin{split} \mathbf{U}^{k+1} &= \mathbf{U} - \gamma_{\mathbf{U}}^{k} (\mathbf{M} \mathbf{V}^{k} - \mathbf{U}^{k} \mathbf{V}^{k^{\top}} \mathbf{V}^{k}) \\ \mathbf{V}^{k+1} &= \mathbf{V} - \gamma_{\mathbf{V}}^{k} (\mathbf{M}^{\top} \mathbf{U}^{k+1} - \mathbf{V}^{k} \mathbf{U}^{k+1^{\top}} \mathbf{U}^{k+1}) \end{split}$$

where γ is set to be the inverse Lipschitz constant of ∇f

$$\gamma_{\mathbf{U}}^{k} = \frac{1}{\|\mathbf{V}^{k^{\top}}\mathbf{V}^{k}\|_{2}}, \qquad \gamma_{\mathbf{V}}^{k} = \frac{1}{\|\mathbf{U}^{k^{\top}}\mathbf{U}^{k}\|_{2}}$$

Suppose we use gradient descent on

$$(\mathcal{P})$$
 : $\min_{\mathbf{U},\mathbf{V}} f(\mathbf{U},\mathbf{V}) = \frac{1}{2} \|\mathbf{M} - \mathbf{U}\mathbf{V}^{\top}\|_{F}^{2}$

Algorithm Inexact BCD (Alternating gradient update)

1: for k = 1, 2, ... do 2: $\mathbf{U}^{k+1} = \mathbf{U}^k - \gamma (\mathbf{M}\mathbf{V}^k - \mathbf{U}^k \mathbf{V}^k^\top \mathbf{V}^k)$ 3: $\mathbf{V}^{k+1} = \mathbf{V}^k - \gamma (\mathbf{M}^\top \mathbf{U}^{k+1} - \mathbf{V}^k \mathbf{U}^{k+1}^\top \mathbf{U}^{k+1})$ 4: end for

Exact BCD is computationally better

Suppose we use gradient descent on

$$(\mathcal{P})$$
 : $\min_{\mathbf{U},\mathbf{V}} f(\mathbf{U},\mathbf{V}) = \frac{1}{2} \|\mathbf{M} - \mathbf{U}\mathbf{V}^{\top}\|_{F}^{2}$

Algorithm Inexact BCD (Alternating gradient update)

1: for k = 1, 2, ... do 2: $\mathbf{U}^{k+1} = \mathbf{U}^k - \gamma (\mathbf{M}\mathbf{V}^k - \mathbf{U}^k \mathbf{V}^k^\top \mathbf{V}^k)$ 3: $\mathbf{V}^{k+1} = \mathbf{V}^k - \gamma (\mathbf{M}^\top \mathbf{U}^{k+1} - \mathbf{V}^k \mathbf{U}^{k+1}^\top \mathbf{U}^{k+1})$ 4: end for

Algorithm Exact BCD (Alternating repeated gradient update)

1: for
$$k = 1, 2, ...$$
 do
2: for $j = 1, 2, ...$ until converge
3: $\mathbf{U}^{k+1} = \mathbf{U}^k - \gamma (\mathbf{M}\mathbf{V}^k - \mathbf{U}^k\mathbf{V}^k^\top\mathbf{V}^k)$
4: endfor
5: for $j = 1, 2, ...$ until converge
6: $\mathbf{V}^{k+1} = \mathbf{V}^k - \gamma (\mathbf{M}^\top\mathbf{U}^{k+1} - \mathbf{V}^k\mathbf{U}^{k+1}^\top\mathbf{U}^{k+1})$
7: endfor
8: end for

Exact BCD is computationally better

Algorithm 5 Inexact BCD	Algorithm 6 Exact BCD
$1: \mathbf{U}^{1} = \mathbf{U}^{0} - \frac{1}{\ \mathbf{V}^{0\top}\mathbf{V}^{0}\ _{2}} (\mathbf{M}\mathbf{V}^{0} - \mathbf{U}^{0}\mathbf{V}^{0\top}\mathbf{V}^{0})$	$\frac{1}{1: \mathbf{U}^1 = \mathbf{U}^0 - \frac{1}{\ \mathbf{V}^0^\top \mathbf{V}^0\ _2} (\mathbf{M}\mathbf{V}^0 - \mathbf{U}^0 \mathbf{V}^0^\top \mathbf{V}^0)}$
2: $\mathbf{V}^1 = \mathbf{V}^0 - \frac{\ \mathbf{U}^1\ _{1}^2}{\ \mathbf{U}^1^\top \mathbf{U}^1\ _2} (\mathbf{M}^\top \mathbf{U}^1 - \mathbf{V}^0 \mathbf{U}^1^\top \mathbf{U}^1)$	2: $\mathbf{U}^2 = \mathbf{U}^1 - \frac{\ \mathbf{v}^1\ ^2}{\ \mathbf{V}^0^\top \mathbf{V}^0\ _2} (\mathbf{M}\mathbf{V}^1 - \mathbf{U}^1 \mathbf{V}^0^\top \mathbf{V}^0)$
3: $\mathbf{U}^2 = \mathbf{U}^1 - \frac{1}{\ \mathbf{V}^1^\top \mathbf{V}^1\ _2} (\mathbf{M}\mathbf{V}^1 - \mathbf{U}^1 \mathbf{V}^1^\top \mathbf{V}^1)$	3: $\mathbf{U}^3 = \mathbf{U}^2 - \frac{1}{\ \mathbf{V}^0^\top \mathbf{V}^0\ _2} (\mathbf{M}\mathbf{V}^2 - \mathbf{U}^2\mathbf{V}^0^\top \mathbf{V}^0)$
4: $\mathbf{V}^2 = \mathbf{V}^1 - \frac{1}{\ \mathbf{U}^{2\top}\mathbf{U}^2\ _2} (\mathbf{M}^{\top}\mathbf{U}^2 - \mathbf{V}^1\mathbf{U}^{2\top}\mathbf{U}^2)$	4: $\mathbf{V}^1 = \mathbf{V}^0 - \frac{1}{\ \mathbf{U}^3^\top \mathbf{U}^3\ _2} (\mathbf{M}^\top \mathbf{U}^1 - \mathbf{V}^0 \mathbf{U}^3^\top \mathbf{U}^3)$
5: $\mathbf{U}^3 = \mathbf{U}^2 - \frac{1}{\ \mathbf{V}^2^\top \mathbf{V}^2\ _2} (\mathbf{M}\mathbf{V}^2 - \mathbf{U}^2\mathbf{V}^2^\top \mathbf{V}^2)$	5 : $\mathbf{V}^2 = \mathbf{V}^1 - \frac{1}{\ \mathbf{U}^3^\top \mathbf{U}^3\ _2} (\mathbf{M}^\top \mathbf{U}^2 - \mathbf{V}^1 \mathbf{U}^3^\top \mathbf{U}^3)$
6 : $\mathbf{V}^3 = \mathbf{V}^2 - \frac{1}{\ \mathbf{U}^3^\top \mathbf{U}^3\ _2} (\mathbf{M}^\top \mathbf{U}^3 - \mathbf{V}^2 \mathbf{U}^3^\top \mathbf{U}^3)$	6 : $\mathbf{V}^3 = \mathbf{V}^2 - \frac{1}{\ \mathbf{U}^3^\top \mathbf{U}^3\ _2} (\mathbf{M}^\top \mathbf{U}^3 - \mathbf{V}^2 \mathbf{U}^3^\top \mathbf{U}^3)$
7:	7:

Computational costs :

$$\mathbf{V}^{ op}\mathbf{V}_{(2n-1)m^2}, \ \mathbf{M}\mathbf{V}_{(2n-1)mr}, \ \mathbf{U}^{ op}\mathbf{U}_{(2r-1)m^2}, \ \mathbf{M}^{ op}\mathbf{U}_{(2m-1)rn}$$

pre-compute these terms and re-use several times in Exact BCD has big efficiency improvement

Extrapolated BCD : Heuristic Extrapolation with Restarts

$$(\mathcal{P})$$
 : $\min_{\mathbf{U},\mathbf{V}} f(\mathbf{U},\mathbf{V}) = \|\mathbf{M} - \mathbf{U}\mathbf{V}\|^2$

Algorithm HER (A. & Gillis. 2019-acc)

Input: $\mathbf{M} \in \mathbb{R}^{m \times n}_+$, $r, \mathbf{U}, \mathbf{V}, \ \hat{\mathbf{U}} = \mathbf{U}, \hat{\mathbf{V}} = \mathbf{V}$ Output: \mathbf{U}, \mathbf{V}

1: for $k = 1, 2, \ldots$ do

2:
$$\mathbf{U}^{k+1} = \underset{\mathbf{U} \ge 0}{\operatorname{argmin}} f(\mathbf{U}, \hat{\mathbf{V}}^k)$$
, initialized at \mathbf{U}^k

3: Extrapolate[U] : $\hat{\mathbf{U}}^{k+1} = \mathbf{U}^{k+1} + \beta_k (\mathbf{U}^{k+1} - \mathbf{U}^k).$

4:
$$\mathbf{V}^{k+1} = \operatorname*{argmin}_{\mathbf{V} \ge 0} f(\hat{\mathbf{U}}^{k+1}, \mathbf{V})$$
, initialized at \mathbf{V}^k .

- 5: Extrapolate[V] : $\hat{\mathbf{V}}^{k+1} = \mathbf{V}^{k+1} + \beta_k (\mathbf{V}^{k+1} \mathbf{V}^k)$.
- 6: Restarts (safe guard mechanism) if needed.

7: end for

- Extrapolation may destroy the non-increasing sequence property
- Instead of 2-3-4-5, can do 2-4-3-5
- How to do 6

Algorithm HER (A. & Gillis. 2019-acc)

Input:
$$\mathbf{M} \in \mathbb{R}^{m \times n}_{+}, r, \mathbf{U}, \mathbf{V}, \hat{\mathbf{U}}, \hat{\mathbf{V}},$$

 $\beta_{0} \in [0, 1], \gamma \geq 1, \bar{\gamma} \geq 1, \eta \geq 1, \bar{\beta}_{0} = 1$
1: for $k = 1, 2, \dots$ do
2: $\mathbf{U}^{k+1} = \operatorname*{argmin}_{\mathbf{U} \geq 0} f(\mathbf{U}, \hat{\mathbf{V}}^{k})$, initialized at \mathbf{U}^{k}
3: $\hat{\mathbf{U}}^{k+1} = \mathbf{U}^{k+1} + \beta_{k}(\mathbf{U}^{k+1} - \mathbf{U}^{k})$
4: $\mathbf{V}^{k+1} = \operatorname*{argmin}_{\mathbf{U} \geq 0} f(\hat{\mathbf{U}}^{k+1}, \mathbf{V})$, initialized at \mathbf{V}^{k} .
5: $\hat{\mathbf{V}}^{k+1} = \mathbf{V}^{k+1} + \beta_{k}(\mathbf{V}^{k+1} - \mathbf{V}^{k})$
6: $\hat{e}^{k+1} = f(\hat{\mathbf{U}}^{k+1}, \mathbf{V}^{k+1})$
7: if $\hat{e}^{k+1} > \hat{e}^{k}$
Restarts
Decay β_{k} , update $\bar{\beta}_{k}$
8: else $(\hat{e}^{k+1} \leq \hat{e}^{k})$
Grow β_{k} , update $\bar{\beta}_{k}$
9: end if
10: end for

Important: the argmin is not really necessary. i.e. It can be inexact BCD.

Facts

- NMF is non-cvx problem
- Direct application of Nesterov's β gives erratic convergence behaviour Mitchell, et al. "Nesterov Acceleration of Alternating Least Squares for Canonical Tensor

Decomposition." arXiv:1810.05846 (2018)

Why heuristics?

- Non-cvx problem is hard :0)
- No better idea :0)
- Currently no convergence analysis (even for NNLS)

What's good ?

- Just a parameter tuning
- Easy implementation
- \bullet extension to other models : exact / inexact BCD
- (Empirical) Improvement on convergence speed

With $\bar{\beta}_1 = 1$ and $\beta_0 \in [0, 1]$, update β as

$$\beta_{k+1} = \begin{cases} \min\{\gamma\beta_k, \bar{\beta}\} & \text{if } \hat{e}^k \le \hat{e}^{k-1} \\ \frac{\beta_k}{\eta} & \text{if } \hat{e}^k > \hat{e}^{k-1} \end{cases}$$

Also update $\bar{\beta}_k$

$$\bar{\beta}_{k+1} = \begin{cases} \min\{\bar{\gamma}\bar{\beta}_k, 1\} & \text{ if } \hat{e}^k \le \hat{e}^{k-1} \text{ and } \bar{\beta}_k < 1\\ \beta_k & \text{ if } \hat{e}^k > \hat{e}^{k-1} \end{cases}$$

•

- Case 1. "error" decreases : $\hat{e}^k \leq \hat{e}^{k-1}$
 - Means the current β is "good"

Case 1. "error" decreases : $\hat{e}^k \leq \hat{e}^{k-1}$

- Means the current β is "good"
- Be more ambitious on next extrapolation
 - i.e., make β larger
 - How : multiplying it with a growth factor $\gamma > 1$

$$\beta_{k+1}=\beta_k\gamma$$

Case 1. "error" decreases : $\hat{e}^k \leq \hat{e}^{k-1}$

- Means the current β is "good"
- Be more ambitious on next extrapolation
 - i.e., make β larger
 - How : multiplying it with a growth factor $\gamma > 1$

$$\beta_{k+1} = \beta_k \gamma$$

- Growth of β cannot be indefinite : put a ceiling
 - ► How :

$$\beta_{k+1} = \min\{\beta_k\gamma, \bar{\beta}_k\}$$

- $ar{eta}$ is also updated with a growth factor $ar{\gamma}$ with ceiling 1

Case 2. "error" increases : $\hat{e}^k > \hat{e}^{k-1}$

• Means the current β value is "bad" (too large)

Case 2. "error" increases : $\hat{e}^k > \hat{e}^{k-1}$

- Means the current β value is "bad" (too large)
- Be less ambitious on the next extrapolation
 - i.e., make β smaller
 - How : divide it with a decay factor $\eta > 1$

$$\beta_{k+1} = \frac{\beta_k}{\eta}$$

Case 2. "error" increases : $\hat{e}^k > \hat{e}^{k-1}$

- Means the current β value is "bad" (too large)
- Be less ambitious on the next extrapolation
 - i.e., make β smaller
 - \blacktriangleright How : divide it with a decay factor $\eta>1$

$$\beta_{k+1} = \frac{\beta_k}{\eta}$$

- As f is continuous and smooth, for β_k being too large, it "should also be" too large in the near future
 - ▶ i.e., have to avoid β_{k+1} to grow back to the "bad" β_k too soon
 - How : we set the ceiling parameter

$$\bar{\beta}_{k+1}=\beta_k$$

Variation of the HER algorithm

Together with

$$\beta_{k+1} = \begin{cases} \min\{\gamma\beta_k, \bar{\beta}\} & \text{if } \hat{e}^k \leq \hat{e}^{k-1} \\ \frac{\beta_k}{\eta} & \text{if } \hat{e}^k > \hat{e}^{k-1} \end{cases}$$
$$\bar{\beta}_{k+1} = \begin{cases} \min\{\bar{\gamma}\bar{\beta}_k, 1\} & \text{if } \hat{e}^k \leq \hat{e}^{k-1} \text{ and } \bar{\beta}_k < \\ \beta_k & \text{if } \hat{e}^k > \hat{e}^{k-1} \end{cases}$$

There are variations on the update-extrapolate chain :

- $\bullet~$ Update $\mathbf{U} \rightarrow$ extrapolate $\mathbf{U} \rightarrow$ update $\mathbf{V} \rightarrow$ extrapolate \mathbf{V}
- Update $U \to {\sf extrapolate} \ U \to {\sf project} \ U \to {\sf update} \ V \to {\sf extrapolate} \ V \to {\sf project} \ V$
- $\bullet~$ Update $\mathbf{U} \rightarrow$ update $\mathbf{V} \rightarrow$ extrapolate $\mathbf{U} \rightarrow$ extrapolate \mathbf{V}
- Update $U \to$ update $V \to$ extrapolate $U \to$ extrapolate $V \to$ project $U \to$ project V

1

Fancy graphs showing numerics

NMF literature use $(\mathbf{X}, \mathbf{W}, \mathbf{H})$ instead of $(\mathbf{M}, \mathbf{U}, \mathbf{V}^{\top})$ Here the plots are using e (not \hat{e})

Low-rank synthetic data, figure from (A. & Gillis. 2019-acc)

NMF literature use $(\mathbf{X}, \mathbf{W}, \mathbf{H})$ instead of $(\mathbf{M}, \mathbf{U}, \mathbf{V}^{\top})$ Here the plots are using e (not \hat{e})

Dense Image data, figure from (A. & Gillis. 2019-acc)

NMF literature use $(\mathbf{X}, \mathbf{W}, \mathbf{H})$ instead of $(\mathbf{M}, \mathbf{U}, \mathbf{V}^{\top})$ Here the plots are using e (not \hat{e})

Dense Image data, figure from (A. & Gillis. 2019-acc)

NMF literature use $(\mathbf{X}, \mathbf{W}, \mathbf{H})$ instead of $(\mathbf{M}, \mathbf{U}, \mathbf{V}^{\top})$ Here the plots are using e (not \hat{e})

Sparse Text data, figure from (A. & Gillis. 2019-acc)

NMF literature use $(\mathbf{X}, \mathbf{W}, \mathbf{H})$ instead of $(\mathbf{M}, \mathbf{U}, \mathbf{V}^{\top})$ Here the plots are using e (not \hat{e}) Compare to extrapolated alternating gradient (no inner loop) : APG-MF of (Xu-Yin, 2013) A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Img Sci.

For more details see (A., Gillis, 2019-acc)

32 / 44

The hp = 1, 2, 3 means different chain structure :

For empirical comparisons of different chain structures, see (A. & Gillis, 2019-acc) 33/44

Why $\hat{e}^k = \|\mathbf{M} - \hat{\mathbf{U}}\mathbf{V}\|$ not $e^k = \|\mathbf{M} - \mathbf{U}\mathbf{V}\|$

- $\hat{\mathbf{V}}$ is updated according to $\hat{\mathbf{U}}$
- It gives the algorithm some degrees of freedom to possibly increase the objective function (a vague statement)
- Computationally cheaper (main reason) Compute $\|\mathbf{M} - \mathbf{U}\mathbf{V}\|_F$ cost O(mnr) instead of $O(mr^2)$ by re-using previous computed terms :

$$\|\mathbf{M} - \mathbf{U}\mathbf{V}\|_{F}^{2} = \|\mathbf{M}\|_{F}^{2} - 2\left\langle \mathbf{U}, \mathbf{M}\mathbf{V}^{\top}\right\rangle + \left\langle \mathbf{U}^{\top}\mathbf{U}, \mathbf{V}\mathbf{V}^{\top}\right\rangle$$

Significant if $r \ll n$, which is true in low-rank model. Says $r=5\sim 50$ with $n=10^3\sim 10^6$ or more.

• (If converge) In the long run, U, \hat{U} is effectively the same : $U^\infty=\hat{U}^\infty$ after projection

Why $\hat{e}^k = \|\mathbf{M} - \hat{\mathbf{U}}\mathbf{V}\|$ not $e^k = \|\mathbf{M} - \mathbf{U}\mathbf{V}\|$

It gives the algorithm some degrees of freedom to possibly increase the objective function (a vague statement)

By definition of the algorithm, we have

•
$$\hat{\mathbf{U}}^{k+1} = \mathbf{U}^{k+1} + \beta^{k+1}(\mathbf{U}^{k+1} - \mathbf{U}^k)$$

• $\mathbf{V}^{k+1} = \underset{\mathbf{V} \ge 0}{\operatorname{argmin}} f(\hat{\mathbf{U}}^{k+1}, \mathbf{V})$

$$\underbrace{\|\mathbf{M} - \hat{\mathbf{U}}^{k+1}\mathbf{V}^{k+1}\|}_{\hat{e}^{k+1}} = \|\mathbf{M} - \mathbf{U}^{k+1}\mathbf{V}^{k+1} + \beta^{k+1}(\mathbf{U}^{k} - \mathbf{U}^{k+1})\mathbf{V}^{k+1}\|}_{\leq \leq \underbrace{\|\mathbf{M} - \mathbf{U}^{k+1}\mathbf{V}^{k+1}\|}_{k+1} + \beta^{k+1}\|(\mathbf{U}^{k} - \mathbf{U}^{k+1})\mathbf{V}^{k+1}\|}_{k+1}$$

$$\hat{e}^{k+1} \leq e^{k+1} + \beta^{k+1} \underbrace{\|\mathbf{U}^k - \mathbf{U}^{k+1}\|}_{\searrow 0 \text{ if converge}} \|\mathbf{V}^{k+1}\|$$

Non-negative Canonical Polyadic Decomposition

Joint-work with Jeremy Cohen of IRISA, France, (A., Cohen, Gillis, 2019) For example, order-3 tensor :

(Not on Tucker Model in this talk.)

$$(\mathcal{P}) : \min_{\{\mathbf{U}, \mathbf{V}, \mathbf{W}\} \ge 0} f(\mathbf{U}, \mathbf{V}, \mathbf{W}) = \|\mathcal{Y} - \mathbf{U} * \mathbf{V} * \mathbf{W}\|_F^2$$

Algorithm HER

Input: $\mathcal{Y} \in \mathbb{R}_{+}^{I \times J \times K}$, r, $\mathbf{U}, \mathbf{V}, \mathbf{W}$, $\hat{\mathbf{U}} = \mathbf{U}, \hat{\mathbf{V}} = \mathbf{V}, \hat{\mathbf{W}} = \mathbf{W}$ Output: $\mathbf{U}, \mathbf{V}, \mathbf{W}$

- 1: for k = 1, 2, ... do
- 2: for $\mathbf{U},\mathbf{V},\mathbf{W}$ do

3:
$$\mathbf{U}^{k+1} = \underset{\mathbf{U} \ge 0}{\operatorname{argmin}} f(\mathbf{U}, \hat{\mathbf{V}}^k, \hat{\mathbf{W}}^k)$$

4:
$$\hat{\mathbf{U}}^{k+1} = \mathbf{U}^{k+1} + \beta_k (\mathbf{U}^{k+1} - \mathbf{U}^k).$$

5: end for

6:
$$\hat{e}^{k+1} = f(\hat{\mathbf{U}}^{k+1}, \hat{\mathbf{V}}^{k+1}, \mathbf{W}^{k+1})$$

7: Update $\beta_k, \bar{\beta}_k$ and restarts (if needed)

8: end for

- \hat{e}^k is implicitly computed by reusing already compute component : $O(mnr) \rightarrow O(mr^2)$ with m = K, $n = IJ \ggg r$ (insane!)
- 3 MTTKRP (Matricized tensor times Khatri-Rao product) if using 1st order solver
- Many variations : e.g. project after extrapolation

Open problem : which chain structure to use?

Understanding the relationship between the data structure (rank size, size of each mode) and the chain structure will be crucial.

More fancy graphs showing numerics

 $[I,J,K,r,\sigma] = [50,50,50,10,0.0]$ on algorithms with HER(red), sans HER(blue)

Figure from (A., Cohen, Gillis, Hien, 2019)

[I,J,K,r, σ] = [150,1000,100,10,0.0] on algorithms with HER(red), sans HER(blue)

Figure from (A., Cohen, Gillis, Hien, 2019)

Figure from (A., Cohen, Gillis, Hien, 2019)

39 / 44

Non-negative Least Square

We suspect HER-PG (inexact BCD) just share the same rate as other extrapolated gradients, but again no proof (even NNLS is convex). For HER-exact BCD, even harder to prove convergence.

Various applications

• HER Empirically also works for other tasks

A toy example on tensor completion. A 9-times speed up (0.11-fraction of time) on the nuclear norm SVT algo.

• Why : HER is highly flexibility – there always exists a suitable parameter for the problem (a hypothesis hard to prove theoretically but easy to verify empirically)

Introduction

- 2 Applications
- 3 Theories
- 4 Computations

Discussed

- What is NMF
- Applications of NMF
- Theories of NMF : NP-hard, Separability, min-volume, identifiability
- Computations of NMF : HER algorithm framework

Open problems

- Theoretical : rank₊, NP-completeness
- Robustness of minimum-volume NMF to additive noise
- Convergence analysis of HER : even for the convex case
- and much more !!!
What am I doing here?

What am I doing here?

NNLS(50,50), $\kappa = 300$

References

- (A., Cohen, Gillis, Hien, 2019) to appear.
- (Leplat, Gillis, A., 2019)
 Blind Audio Source Separation with Minimum-Volume Beta-Divergence NMF, 2019
- (A., Cohen, Gillis, 2019) Accelerating Approximate Nonnegative Canonical Polyadic Decomposition, GRETSI, 2019
- (Leplat, Gillis, Siebert, A., 2019) Separation aveugle de sources sonores par factorisation en matrices positives avec penalite sur le volume du dictionnaire, GRETSI, 2019 [In French]
- (A. & Gillis. 2019-HSI)
 Algorithms and Comparisons of Non-negative Matrix Factorization with Volume Regularization for Hyperspectral Unmixing, IEEE JSTARS, 2019
- (Leplat, A., Gillis, 2019-UK) Minimum-Volume Rank-deficient Non-negative Matrix Factorizations, IEEE ICASSP 2019
- (A. & Gillis, 2019-acc) Accelerating Nonnegative Matrix Factorization Algorithms using Extrapolation, Neural Computation, 2019
- (A. & Gillis, 2018-NL)

Volume regularized non-negative matrix factorizations, IEEE WHISPERS18

Slide, papers, codes all avaliable in *angms.science*

END OF PRESENTATION