
NuMF: Nonnegative unimodal Matrix Factorization

Andersen Ang
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Structural factorization

I Factorize data it into (low-rank) factors with structural constraints.

I Examples:
I NMF
I NTF
I Tucker decomposition

I This talk: unimodal structure.
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Unimodality

I A unimodal sequence: −1, 0, 1, 2, 3, 2,−1

I A nonnegative unimodal (Nu) sequence: 0, 1, 2, 3, 4

I Def. of unimodality:

a1 ≤ a2 ≤ · · · ≤ ap ≥ ap+1 ≥ · · · ≥ an.

I Def. of Nu = Def. of u + nonnegativity

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≥ ap+1 ≥ . . . an ≥ 0.

I A vector x is Nu:

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. 0 ≤ x1 ≤ · · · ≤ xp ≥ . . . xn ≥ 0.
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Some Nu vectors

Figure: Four Nu vectors. Black curve: the plot of the sequence. Red dots: the
position of p.

Note:

I p can be any integer in {1, 2, . . . ,m}.

I p can be unique or non-unique
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Nonnegative unimodal factorization

I Factorize data into (low-rank) factors with Nu constraints.

I Examples
I Factorize a matrix M into product WH such that the columns of W

are Nu + (other constraints).

I Factorize a tensor T into product G ×1 U×2 V ×3 W such that the
columns of U are Nu + (other constraints).

I Questions
I Why consider this problem? Motivation

I How to formulate it and how to solve it? Algorithm

I What is known about this model? Theory
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Motivation: some data are Nu

Figure: “Chromatography for monkeys”.

7 / 28



Characterization of Nu set

I A vector x is Nu:

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. 0 ≤ x1 ≤ · · · ≤ xp ≥ . . . xn ≥ 0.

I Notations
I x ∈ Um

+ means x ∈ Rm is Nu
I x ∈ Um,p

+ means x ∈ Rm is Nu with known p

I Facts
I Um,p

+ is a convex set.
I Um

+ =
⋃

k U
m,k
+

I Um
+ is not convex.

Example: ei and ej are Nu but λei + (1− λ)ej is not Nu if |i− j| ≥ 2.
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ei and ej are Nu but 0.5ei + 0.5ej is not Nu if |i− j| ≥ 2.
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Characterization of Nu set

I The set Um,p+ ∪ Um,p+1
+ is convex

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. x ∈ Um,p+ ∪ Um,p+1
+

⇐⇒



0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0

“Nu membership characterized by a system of monic inequalities”.
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0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0︸ ︷︷ ︸

x∈Um,p
+ ∪Um,p+1

+

⇐⇒ Upx ≥ 0

Up =




1
−1 1

. . .
. . .

−1 1


p×p︸ ︷︷ ︸

Dp×p

0p×(m−p)

0(m−p)×p D>(m−p)×(m−p)


.
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NuMF

I Given M ∈ Rm×n+ and r ∈ N, solve

minimize 1
2‖M−WH‖2F subject to H ≥ 0,

wj ∈ Um+ for all j ∈ [r],
w>j 1m = 1 for all j ∈ [r],

I Apply the characterization:

minimize 1
2‖M−WH‖2F subject to H ≥ 0,

Upjwj ≥ 0 for all j ∈ [r],
w>j 1m = 1 for all j ∈ [r],

where p1, p2, . . . , pr are unknown!
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How to solve?

min
W,H
p1,...,pj

1

2
‖M−WH‖2F s.t. H ≥ 0, Upjwj ≥ 0, w>j 1m = 1, ∀j ∈ [r].

I Subproblem on H is simple.

I Subproblem on W involves integer variables and is nonconvex.

I The subproblem on a column of W (in the HALS framework) is

min
wi,pi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉+ c s.t. Upiwi ≥ 0, w>i 1 = 1,

which is a linearly-constrained quadratic program.

I Brute-force algorithm: solve the subproblem on all (even) p, and pick
the best one as pi.

13 / 28



Speed up the brute-force algorithm for large m

I Brute-force search on p among the even integers in {1, 2, . . . ,m} is
slow if m is large.
=⇒ if m is sufficiently small, using brute-force is not a problem.

I Speed up 1: solve the subproblem faster for each p using accelerated
projected gradient

I Speed up 2: reduce the search space for p
I By guessing the location of the p
I By dimension reduction: multi-grid

I It can be show multi-grid preserves Nu: a theorem with proof in 3
sentences!

I Other dimension reduction techniques such as PCA or sampling do not
work here as they destroy the Nu property
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APG: Accelerated Projected Gradient
The subproblem on a column of W (with pi fix)

min
wi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0, w>i 1 = 1,

I The constraint
{
Upiwi ≥ 0, w>i 1 = 1

}
is hard to project.

I Transform the problem via y = Uw:

min
y

1

2

〈
‖hi‖22U−>pi y , y

〉
−
〈
U−>pi Mih

i> , y
〉

s.t. y ≥ 0, y>U−1pi 1 = 1,

or equivalently

min
y

1

2
〈Qy,y〉 − 〈p,y〉 s.t. y ≥ 0, y>b = 1.

I Once we get y∗, we get w∗i by y = Uw.
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APG on solving y
I The key is the projection onto the irregular simplex: given a point z

P (z) = argmin
y

1

2
‖y − z‖22 s.t. y ≥ 0,y>b = 1.

I Optimal solution given by the partial Lagrangian

y∗ = min
y≥0

max
ν

1

2
‖y − z‖22 + ν(y>b− 1)︸ ︷︷ ︸

L(y,ν)

= [z− ν∗b]+,

with closed-form solution given by soft-thresholding, where the
Lagrangian multiplier ν∗ is the root of a piece-wise linear equation

m∑
i=1

max
{

0, zi − νbi
}
bi − 1 = 0,

which takes O(m) to O(m logm) to solve by sorting the break points
zi
bi

. After sorting, the magical-one-line-code that no one can read is

nu = max((cumsum(z.*b)-1)./(cumsum(b.*b)));
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Multi-grid

I Instead of working on w, we work on RN . . .R1w with much smaller
search space of p.

I Restriction R ∈ Rm1×m
+ change x ∈ Rm+ to Rx ∈ Rm1

+ with m1 < m.

R(a, b) =



a b

b a b
. . .

. . .
. . .

b a b

b a


,
a > 0, b > 0,

a+ 2b = 1.

I Key fact: if x is NU, then Rx is Nu.
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Multi-grid preserves Nu
I Theorem: if x is Nu, then Rx is Nu.

I The 3-sentence-proof:
1. R can be expressed as a suma b

b a b
b a


︸ ︷︷ ︸

R

=
a 0

0 a 0
0 a


︸ ︷︷ ︸

A

+
0 b

0 b
0


︸ ︷︷ ︸

B

+
0

b 0
b 0


︸ ︷︷ ︸

C

so Rx = Ax + Bx + Cx.

2. A,B,C are sampling operators picking the odd or even indices of x, so
Ax, Bx and Cx are all Nu.

3. The sum Ax + Bx + Cx is Nu because their p values differ at most 1.

I Theorem (formally): let x ∈ Um,p+ with p is even1 and R ∈ Rm1×m

defined as in page 17. Then y = Rx ∈ Nm1,py
+ with

Nm,p
+ = Um,p+ ∪ Um,p+1

+ and py ∈ {bp2 + 1c, bp2c}.
1If p is odd, by considering the vector [0,x] does not change the unimodality and

increases p by one.
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The whole algorithm (in words)
Goal: given M, solve NuMF.
Steps:

1. Perform restriction M[N ] = RN . . .R1M and W
[N ]
0 = RN . . .R1W0

2. Solve NuMF on coarse grid:

(W
[N ]
∗ ,H∗,p

[N ]
∗ )← NuMF(M[N ],W

[N ]
0 ,H0)

by brute-forcing the pi and using APG on solving subproblem on W.

3. Interpolate: (W0,p0)← Interpolate(W
[N ]
∗ ,p

[N ]
∗ ).

4. Solve NuMF on the original fine grid:

(W∗,H∗,p∗)← NuMF(M,W0,H0,p0).

without brute-forcing the pi.

* step 1-4 can be repeated several times: V-cycle, W-cycle, blablabla.

20 / 28



Identifiability: when does solving NuMF give a unique sol?

I Definition: for x ∈ Rm+ , supp(x) := {i ∈ [m] | xi 6= 0}.

I ∀ Nu vectors, supp is a closed-interval [a, b] ∵ no “internal zeros”.

I Interactions between two Nu vectors x,y:
let supp(x) = [ax, bx] and supp(y) = [ay, by],
I Strictly disjoint: ax > by + 1.
I Adjacent: ax = by + 1.
I Disjoint = strictly disjoint ∪ adjacent
I Overlap: not disjoint

I Partial overlap: supports overlap but supp(x)
(
)supp(y)

I Complete overlap: supp(x) ⊆ supp(y)

I Current research status: identifiability for the first two cases.
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Identifiability of the strictly disjoint case

Theorem

Assumes M = W̄H̄. Solving NuMF recovers (W̄, H̄) if

1. W̄ is Nu and all the columns have strictly disjoint support.

2. H̄ ∈ Rr×n+ has n ≥ 1, ‖h̄i‖∞ > 0 for i ∈ [r].

Proof Assume there is another solution (W∗,H∗) that solves the NuMF.
The columns w̄j contribute in M a series of disjoint unimodal components.
For the solution W∗H∗ to fit M, each w∗i has to fit each of these disjoint
component in M, and hence W∗ recovers W̄ up to permutation. There is
no scaling ambiguity here because of the normalization constraints
w>i 1 = 1. Moreover, W∗ and W̄ have rank r, since their columns have
disjoint support, and hence H∗ and H̄ are uniquely determined (namely,
using the left inverses of W∗ and W̄), up to permutation.

Note: this theorem holds for r ≥ n. You can have a r = 1000 factorization
with n = 1.
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Demixing two non-fully overlapping Nu vectors

I Given non-zero partially overlap vectors x,y in Um+ , if x,y are
generated by two non-zero Nu vectors u,v as x = au + bv and
y = cu + dv with nonnegative coefficients a, b, c, d , then we can only
have either u = x, v = y or u = y, v = x.

I Let X = UQ, where X := [x,y], U := [u,v] and Q :=

[
a c
b d

]
≥ 0.

What we show: Q is a permutation matrix.
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Sketch of the proof
I x,y are Nu with partial-overlap supports imply

I u,v are linearly independent: U is rank-2
I x 6= 0, y 6= 0 and x,y are linearly independent: X is rank-2
I non-zero indices

supp(x) * supp(y) =⇒ ∃i∗ ∈ [m] s.t. xi∗ > 0, yi∗ = 0,

supp(y) * supp(x) =⇒ ∃j∗ ∈ [m] s.t. yj∗ > 0, xj∗ = 0.
(1)

I X,U are rank 2 imply Q is rank-2, hence

U = XQ−1 = X

[
d −c
−b a

]
1

ad− bc
, ad− bc 6= 0. (2)

Put i∗, j∗ from (1) into (2), together with the fact that x,y,u,v are
nonnegative give Q−1 ≥ 0.

I Q ≥ 0 and Q−1 ≥ 0 imply Q is the permutation of a diagonal matrix
with positive diagonal, where the diagonal matrix here is I.
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Fancy picture: multi-grid saves 75% time with 2-layer

Figure: Experiment on a toy example. All algorithms run 100 iterations with same
initialization. For algorithms with MG, the computational time taken on the
coarse grid are also taken into account, as reflected by the time gap between time
0 and the first dot in the curves. 25 / 28



Fancy picture: on Belgian beers
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Fancy picture: on r > n

I On a GCMS data vector in R947
+ (dotted black curve) with

r = 8 > 1 = n.
I Cyan curves are the components wihi.
I Relative error ‖M−WH‖F /‖M‖F = 10−8.
I The first two peaks in the data satisfy Theorem 1 and hence NuNMF

identifies them perfectly.
I For the other peaks, their supports overlap, and hence the

decomposition is not unique. Investigating the identifiability of NuMF
on data with overlapping supports is a direction of future research.
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Last page - summary
I NuMF: motivation, modeling, algorithm, identifiability

I Not discussed
I The log-concavity
I Guessing location of p by peak detection
I Non-uniform adaptive multi-grid
I Identifiability of NuMF for Nu vectors with adjacent support.
I The traditional approach used in analytical chemistry other than NuMF
I Minimum-volume NuMF?

I References
I Chapter 5 of my thesis “Nonnegative Matrix and Tensor Factorizations:

Models, Algorithms and Applications”.

I A, Gillis, Vandaele and De Sterck, “Nonnegative Unimodal Matrix
Factorization”, submitted to ICASSP21.

I Slide, paper, thesis available at https://angms.science/research.html
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