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What
▸ Single-channel

blind source separation on audio data

▸ How

minimum-vol. Nonnegative Matrix Factorization in β-divergence,

a unsupervised model that

▸ with theoretical identifiability guarantee ,

▸ algorithm with theoretical convergence guarantee ,

▸ empirically found that can automatically select model order ,

▸ (the only drawback) not fast
Improved in V. Leplat, N. Gillis and J. Idier, ”Multiplicative Updates for NMF with

β-Divergences under Disjoint Equality Constraints”, October 2020; arXiv2010.16223

▸ The model actually also works for other applications.
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What

▸ Given x(t) =
K

∑

k=1
s(k)(t) : observed recording in RT

▸ s(k)(t), k = 1,2, . . . ,K : source signals

▸ Goal: find s(k) from x(t)

▸ x(t)
STFT
Ð→ X ∈ CF×T

▸ Amplitude spectrogram V = ∣X ∣ ∈ RF×T

▸ BSS: perform NMF on V , assuming
▸ Each source ⇐⇒ each rank-1 component
▸ No sound cancellation: NMF
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The BSS pipeline
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Minvol β-divergence NMF
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Minvol β-divergence NMF
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Identifiability Theorem

▸ Theorem 1 Assume V =W ∗H∗ where rank(V ) =K, W ∗
≥ 0, and

H∗ satisfies the sufficiently scattered condition, then the optimal sol.
of

min
W≥0,H≥0

det (W TW ) s.t. V =WH, W T e = e,

recovers (W ∗,H∗
) up to permutation and scaling.

▸ It is the first result of this type in the audio source separation
literature.

▸ For the DEF of sufficiently scattered condition and the proof of
theorem 1, see [1].
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Algorithm to solve minvol β-NMF

▸ Propose an algo. to solve the minvol β-NMF.

min
W≥0,H≥0

Dβ(V ∣WH) + λlogdet(W ⊺W + δIr)

s.t. H ≥ 0,W ≥ 0,W (∶, j) ∈ ∆K

▸ Idea: majorization-minimization (MM)

f(x) ≤ g(x; θ),

where f are the β-divergence and logdet(W ⊺W + δI); see [1].

▸ Objective function monotonically decrease → theoretical convergence.
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Mary had a little lamb

Figure: Three representations of the sample “Mary had a little lamb”: (top) music
score, (middle) time-domain signal x, and (bottom) log amplitude spectrogram (in dB).
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Decomposing Mary had a little lamb

Figure: Minvol β-NMF applied to “Mary had a little lamb” amplitude spectrogram with
K = 7 > 3. The sources 1,2,4 corresponds to the three notes, and source 6 corresponds
to mechanical vibration of the piano.
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Validating the source estimates

The frequency peaks correspond to the theoretical values.

Notes / Octaves 1-lined 2-lined 3-lined

C
Theoretical 262 523 1046.5

By NMF 250 531.3 1031

D
Theoretical 294 587 1175

By NMF 281.3 593.8 1188

E
Theoretical 330 659 1318.5

By NMF 343.8 656.3 1313

Table: Comparing frequency peaks (Hz) of the octaves obtained by minvol β-NMF
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Automatic model order selection

▸ Note that factorization rank = 7 > 3 = number of sources.

▸ Two source estimates are zero.

▸ 6: Hammer noise (of piano)
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More complicated example: Prelude by J.S. Bach
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* Rows of H here are threshold-ed to make it clear to view.
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Last page - summary

[1] Leplat, V, Gillis, N., Ang, M.S., “Blind audio source separation with
minimum-volume betadivergence NMF ”, IEEE Trans. Signal Processing 68,

2020.

▸ Minvol β-NMF

▸ Single-channel audio BSS

▸ Identifiability theorem

▸ MM algorithm with convergence guarantee

▸ Capacity of automatic model order selection

Slide, paper, code available: angms.science
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