Blind Audio Source Separation with min.vol. β -divergence NMF

- ► Andersen Ang $\begin{pmatrix} Math et recherche opérationnelle \\ UMONS, Belgium \end{pmatrix}$ → $\begin{pmatrix} Dept. Combinatorics and Optimization \\ UWaterloo, Canada \end{pmatrix}$
- Joint work with Valentin Leplat (UMONS → UCLOUVAIN) and Nicolas Gillis (UMONS)
- [1] Leplat, V, Gillis, N., Ang, M.S., "Blind audio source separation with minimum-volume betadivergence NMF", IEEE Trans. Signal Processing 68, pp.3400-3410, May, 2020. DOI: 10.1109/TSP.2020.2991801
 - arxiv: 1907.02404
 - MATLAB: https://sites.google.com/site/nicolasgillis/publications
 - Youtube Decomposition of El Doudou song: https://www.youtube.com/watch?v=1BrpxvpghKQ

Single-channel

Single-channel blind

Single-channel blind source separation

- · Single-channel blind source separation on audio data
- ► How

- Single-channel blind source separation on audio data
- ► How

minimum-vol. Nonnegative Matrix Factorization in $\beta\text{-divergence},$

- Single-channel blind source separation on audio data
- ► How

- Single-channel blind source separation on audio data
- ► How

minimum-vol. Nonnegative Matrix Factorization in $\beta\text{-divergence},$ a unsupervised model that

- with theoretical identifiability guarantee $\ensuremath{\textcircled{\sc 0}}$

- Single-channel blind source separation on audio data
- ► How

- ${\scriptstyle \bullet}\,$ with theoretical identifiability guarantee
- ${\boldsymbol{\cdot}}$ algorithm with theoretical convergence guarantee $\textcircled{\sc {\sc {\circ}}}$

- · Single-channel blind source separation on audio data
- ► How

- ${\scriptstyle \bullet}\,$ with theoretical identifiability guarantee ${\scriptstyle \textcircled{\sc 0}}$
- ${\scriptstyle \bullet}\,$ algorithm with theoretical convergence guarantee $\textcircled{\sc s}$
- ${\scriptstyle \bullet}\,$ empirically found that can automatically select model order ${\scriptstyle \odot}\,$

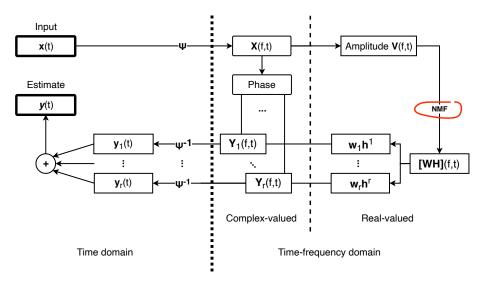
- · Single-channel blind source separation on audio data
- How

- with theoretical identifiability guarantee $\ensuremath{\textcircled{\sc 0}}$
- algorithm with theoretical convergence guarantee $\ensuremath{\textcircled{\sc 0}}$
- empirically found that can automatically select model order $\ensuremath{\textcircled{\sc 0}}$
- (the only drawback) not fast Improved in V. Leplat, N. Gillis and J. Idier, "Multiplicative Updates for NMF with β-Divergences under Disjoint Equality Constraints", October 2020; arXiv2010.16223

- · Single-channel blind source separation on audio data
- How

- with theoretical identifiability guarantee $\ensuremath{\textcircled{}}$
- algorithm with theoretical convergence guarantee $\ensuremath{\textcircled{\sc 0}}$
- empirically found that can automatically select model order \odot
- (the only drawback) not fast Improved in V. Leplat, N. Gillis and J. Idier, "Multiplicative Updates for NMF with β-Divergences under Disjoint Equality Constraints", October 2020; arXiv2010.16223
- The model actually also works for other applications.

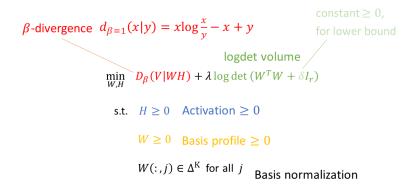
• Given
$$x(t) = \sum_{k=1}^{K} s^{(k)}(t)$$
: observed recording in \mathbb{R}^{T}


•
$$s^{(k)}(t), k = 1, 2, \dots, K$$
 : source signals

• Goal: find $s^{(k)}$ from x(t)

•
$$x(t) \xrightarrow{STFT} X \in \mathbb{C}^{F \times T}$$

- Amplitude spectrogram $V = |X| \in \mathbb{R}^{F \times T}$
- ▶ BSS: perform NMF on V, assuming
 - Each source \iff each rank-1 component
 - No sound cancellation: NMF


The BSS pipeline

Minvol β -divergence NMF

$$\begin{split} \min_{W,H} & D_{\beta}(V|WH) + \lambda \log \det \left(W^{T}W + \delta I_{r} \right) \\ \text{s.t.} & H \geq 0 \\ & W \geq 0 \\ & W(:,j) \in \Delta^{r} \text{ for all } j \end{split}$$

Minvol β -divergence NMF

Identifiability Theorem

► Theorem 1 Assume V = W^{*}H^{*} where rank(V) = K, W^{*} ≥ 0, and H^{*} satisfies the sufficiently scattered condition, then the optimal sol. of

$$\min_{W \ge 0, H \ge 0} \det \left(W^T W \right) \quad \text{s.t.} \quad V = WH, \ W^T e = e,$$

recovers (W^*, H^*) up to permutation and scaling.

- It is the first result of this type in the audio source separation literature.
- For the DEF of sufficiently scattered condition and the proof of theorem 1, see [1].

Algorithm to solve minvol β -NMF

• Propose an algo. to solve the minvol β -NMF.

$$\min_{\substack{W \ge 0, H \ge 0}} D_{\beta}(V|WH) + \lambda \operatorname{logdet}(W^{\mathsf{T}}W + \delta I_r)$$

s.t. $H \ge 0, W \ge 0, W(:, j) \in \Delta^K$

Idea: majorization-minimization (MM)

 $f(x) \le g(x;\theta),$

where f are the β -divergence and $logdet(W^{\mathsf{T}}W + \delta I)$; see [1].

 \blacktriangleright Objective function monotonically decrease \rightarrow theoretical convergence.

Mary had a little lamb

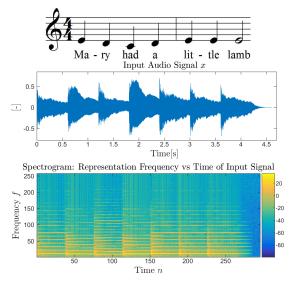


Figure: Three representations of the sample "Mary had a little lamb": (top) music score, (middle) time-domain signal x, and (bottom) log amplitude spectrogram (in dB). 8 / 13

Decomposing Mary had a little lamb

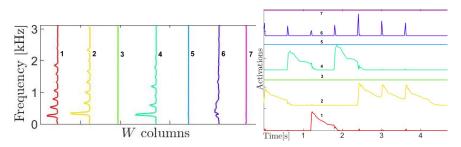
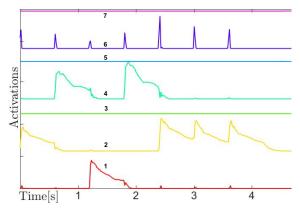
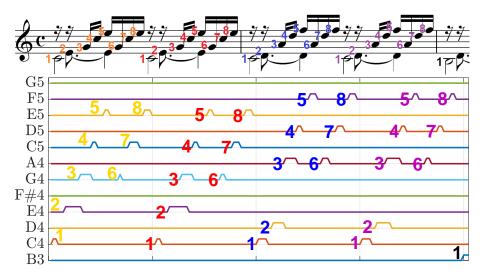


Figure: Minvol β -NMF applied to "Mary had a little lamb" amplitude spectrogram with K = 7 > 3. The sources 1,2,4 corresponds to the three notes, and source 6 corresponds to mechanical vibration of the piano.


Validating the source estimates

The frequency peaks correspond to the theoretical values.

Notes / Octaves		1-lined	2-lined	3-lined
С	Theoretical	262	523	1046.5
	By NMF	250	531.3	1031
D	Theoretical	294	587	1175
	By NMF	281.3	593.8	1188
Е	Theoretical	330	659	1318.5
	By NMF	343.8	656.3	1313


Table: Comparing frequency peaks (Hz) of the octaves obtained by minvol β -NMF

Automatic model order selection

- ▶ Note that factorization rank = 7 > 3 = number of sources.
- Two source estimates are zero.
- ▶ 6: Hammer noise (of piano)

More complicated example: Prelude by J.S. Bach

* Rows of H here are threshold-ed to make it clear to view.

Last page - summary

[1] Leplat, V, Gillis, N., Ang, M.S., "*Blind audio source separation with minimum-volume betadivergence NMF*", IEEE Trans. Signal Processing 68, 2020.

- ► Minvol β-NMF
- Single-channel audio BSS
- Identifiability theorem
- MM algorithm with convergence guarantee
- Capacity of automatic model order selection

Slide, paper, code available: angms.science

End of document