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NMF on very fat matrices

Given a matrix M ∈ IRm×n
+ , NMF is the problem to find W ∈ IRm×r

+

and H ∈ IRr×n
+ such that M ≈WH.

If n > m and n is big1, we have a short fat matrix.

If we treat the columns of M as data points, m is the dimension of
the feature and n is the number of data points.

In this case we have many data points, if we run NMF algorithm on
M, it may takes a very long time.

We can instead run NMF algorithm on M′ which has far fewer
number of columns than n.

There are multiple way to generate M′. Randomized approach
includes : select columns of M by random, or take M′ = MX, where
X is a random matrix of size n-by-n′ with n′ < n, so that M′ is
m-by-n′.

1Big means ≥ 106

2 / 12



NMF on big data with tall matrices

What about the case m is large?

If m > n and m is large, in this case we have a thin tall matrix.

In the case with big n, size reduction can be performed as
M′ = MX. Now we can do the same as M′ = XM. That is, we
perform a left-multiplication on M to change m to m′, m′ < m.

If X is not random but designed derministically, we arrived at the
multi-grid method.
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Multi-grid

Multi-grid methods were initially used to develop fast numerical solver
for boundary value problems in differential equation.

The word “grid” means the discretization of continuous smooth
function f by choosing a set of points.

The word “multi” means there are different levels of approximation
I a fine grid means a higher number of points is used for the discretizaton
I a coarse grid means a low number of point is used for the discretization

The solution process of multi-grid method is as follows
I Perform discretization on the problem, get a smaller sized problem
I Perform iterative method to get the solution of the small problem
I Get the solution of the original big problem from the solution of the

small problem
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Restriction and Interpolation / Prolongation

Restriction operator R

R : IRm
+ → IRm′

+ : x � R(x) = Rx, R ∈ IRm×m′
+ , m < m′

Interpolation operator I

I : IRm′
+ → IRm

+ : x � I(x) = Jx, J ∈ IRm′×m, m < m′

Remarks

Symbol I is reserved for the identity matrix, so we use J for I.

R and J are nonnegative and preserve nonnegativity on multiplication.

R is short fat matrix and J is thin tall matrix

The two operators are defined on vector x. For matrix X, we apply
the operator columnwise :

R(X) = R([x1,x2, · · · ,xn]) = [R(x1)R(x2) . . .R(xn)]
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Condition for multi-grid to work

We want the information loss during transistion from one level to another
level to be small : the reconstruction I(R(x)) must be close to the
original x. i.e., s is small

sx :=
‖x− I(R(x))‖2

‖x‖2
.

In matrix case X,

sX :=
‖X− I(R(X))‖F

‖X‖F
.

Using R and J, we have

sx :=
‖x− JRx‖2
‖x‖2

, sX :=
‖X− JRX‖F
‖X‖F

.
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A “bad” upper bound

It seems natural to factor out x in sx and get

‖x− I(R(x))‖2 = ‖x− JRx‖2 = ‖(I− JR)x‖2 ≤ c‖x‖2,

where c = ‖I− JR‖2.

For the matrix case :

‖X− I(R(X))‖F = ‖X− I([Rx1 Rx2 . . . Rxn])‖F
= ‖X− [JRx1 JRx2 . . . JRxn])‖F
= ‖[(I− JR)x1 (I− JR)x2 . . . (I− JR)xn])‖F
= ‖(I− JR)[x1 x2 . . . xn]‖F
= ‖(I− JR)X‖F
≤ c‖X‖F .

So we have sx and sX both upper bounded by the constant c.

But, c is a bad upper bound for s.
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Why c is a bad upper bound

By design JR is very far away from I, so c = ‖I− JR‖2 is a large
number.

Factorizing x in the expression of s removes the role of x in s. Note
that there are some vectors x that sx is zero.

For example, the vector of all-ones gives x− JRx = 0. And in fact,
there are subsets of IRn for which the upper bound c will be far from
good.

Therefore, we should stick with the definition of s, not doing any
simplification.
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The multi-grid NMF process

Given M ∈ IRm×n, the goal is to solve M ≈WH.

1 Given M ∈ IRm×n, and two matrices W0 ∈ IRm×r
+ , H0 ∈ IRr×n

+ .

2 Compute M′ = R(M) and W′
0 = R(W0), so now we have M′ and

W′
0 with smaller size (fewer rows).

3 Compute NMF for M′ using W′
0,H0 as initial estimate.

i.e. we have M′ ≈W′H.

4 Get W back by I(W′) from the last step.
Now we have W,H that approximately solve NMF of M.

5 The solution can be improved further by using W,H as input in
other NMF algorithm.

The above describes a single-level grid process. To have “multi”-grid,
repeats steps 2 to 4.

Note that the NMF computation in step 3 is cheap due to smaller size.
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Why multi-grid NMF works

Operators R, I both preserve nonnegativity.

The error between M and I(W′)H is small.

‖M− I(W′)H‖F = ‖M− I(R(M)) + I(R(M))− I(W′)H‖F
≤ ‖M− I(R(M))‖F + ‖I(R(M))− I(W′)H‖F
= sM‖M‖F + ‖I(R(M)−W′H)‖F
= sM‖M‖F + ‖J(R(M)−W′H)‖F
≤ sM‖M‖F + ‖J‖F ‖M′ −W′H‖F

As M′ ≈W′H, and both M′,W′ has smaller size, thus it is not
difficult for algorithm to achieve high accuracy on M′ ≈W′H, so
‖M′ −W′H‖F can be very small (says 10−9).

So if sM is small, then ‖M− I(W′)H‖F is small, and the grid
approximation works.
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When does multi-grid NMF works

A part from the design of R and I, the matrix M itself also contribute to
sM, and therefore whether multi-grid works also depends on M.

For some matrices, sM is small thus the multi-gird approach works.
These matrices are those containing a lots of low frequency
component. In image, these component corresponds to a large region
of slowly changing pixels. At those regions, as the pixel values change
slowly, their pixel value can be well approixmated by the pixel values
of its neighbors.

If the matrix has lots of sudden changes (high frequency component),
then multi-grid may not work.
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