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NMF on very fat matrices

e Given a matrix M € IR’?™", NMF is the problem to find W € IR’"*"
and H € IR"*" such that M ~ WH.

e If n > m and n is big!, we have a short fat matrix.

o If we treat the columns of M as data points, m is the dimension of
the feature and n is the number of data points.

@ In this case we have many data points, if we run NMF algorithm on
M, it may takes a very long time.

@ We can instead run NMF algorithm on M’ which has far fewer
number of columns than n.

@ There are multiple way to generate M’. Randomized approach
includes : select columns of M by random, or take M’ = MX, where
X is a random matrix of size n-by-n’ with n’ < n, so that M’ is
m-by-n/'.

!Big means > 10°
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NMF on big data with tall matrices

@ What about the case m is large?
o If m > n and m is large, in this case we have a thin tall matrix.

@ In the case with big n, size reduction can be performed as
M’ = MX. Now we can do the same as M’ = XM. That is, we
perform a left-multiplication on M to change m to m’, m’ < m.

o If X is not random but designed derministically, we arrived at the
multi-grid method.
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Multi-grid

@ Multi-grid methods were initially used to develop fast numerical solver
for boundary value problems in differential equation.

@ The word “grid” means the discretization of continuous smooth
function f by choosing a set of points.

@ The word “multi” means there are different levels of approximation

> a fine grid means a higher number of points is used for the discretizaton
» a coarse grid means a low number of point is used for the discretization

@ The solution process of multi-grid method is as follows

» Perform discretization on the problem, get a smaller sized problem

> Perform iterative method to get the solution of the small problem

» Get the solution of the original big problem from the solution of the
small problem
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Restriction and Interpolation / Prolongation

@ Restriction operator R

R:]RT—HRT/ :x — R(x) = Rx, REIRTXW, m < m/
@ Interpolation operator 7

I:R7 - R7?:x— I(x)=Jx, JeR™*™ m<m

Remarks
@ Symbol I is reserved for the identity matrix, so we use J for Z.
@ R and J are nonnegative and preserve nonnegativity on multiplication.
@ R is short fat matrix and J is thin tall matrix

@ The two operators are defined on vector x. For matrix X, we apply
the operator columnwise :

R(X) = R([x1,%2, -+ , Xp]) = [R(x1)R(x2) - . - R(x1)]
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Condition for multi-grid to work

We want the information loss during transistion from one level to another

level to be small : the reconstruction Z(R(x)) must be close to the
original x. i.e., s is small

_ Ix=T(R)I:
[[x]]2
In matrix case X,
o IX TR
X = .
X #
Using R and J, we have
_ llx—JRx||s _ IX-JRX]|p
Sy = ——m——, Sx = —————.
[BS|P X[
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A “bad” upper bound

It seems natural to factor out x in sx and get
[x = Z(R(x))]l2 = [[x = JRx[|2 = [[(T = JR)x][|2 < ¢[x]]2,
where ¢ = ||I = JR||2.

For the matrix case :
X =ZRX)Ir = |X-Z([Rx1 Rxz ... Rxy])||p
= HX - [JRXI JRX2 e JRxn])HF
= [[@-JR)x; I-JR)x2 ... I—-JIR)x,])[F
H(I - JR)[Xl X2 ... Xn]HF
[(IT—JIR)X|[r
clIX||#.

So we have sx and sx both upper bounded by the constant c.

IA

But, ¢ is a bad upper bound for s.
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Why c is a bad upper bound

@ By design JR is very far away from I, so ¢ = ||[I — JR||2 is a large
number.

@ Factorizing x in the expression of s removes the role of x in s. Note
that there are some vectors x that sy is zero.

For example, the vector of all-ones gives x — JRx = 0. And in fact,
there are subsets of IR™ for which the upper bound ¢ will be far from

good.

Therefore, we should stick with the definition of s, not doing any
simplification.
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The multi-grid NMF process

Given M € IR™*"™, the goal is to solve M ~ WH.
@ Given M € IR™", and two matrices Wy € R"™", Hy € IR}".

@ Compute M/ = R(M) and W, = R(Wj), so now we have M’ and
W/, with smaller size (fewer rows).

© Compute NMF for M’ using W{,, Hy as initial estimate.
i.e. we have M’ ~ W'H.

© Get W back by Z(W’) from the last step.
Now we have W, H that approximately solve NMF of M.

@ The solution can be improved further by using W, H as input in
other NMF algorithm.
The above describes a single-level grid process. To have “multi”-grid,
repeats steps 2 to 4.

Note that the NMF computation in step 3 is cheap due to smaller size.
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Why multi-grid NMF works

o Operators R, Z both preserve nonnegativity.

@ The error between M and Z(W')H is small.

M —Z(R(M)) + Z(R(M)) - Z(W')H||p
M —Z(R(M))lr + [Z(R(M)) - Z(W")H||
sm|[Ml|p + |[Z(R(M) - WH)|

sm|[Ml|p + [J(RM) — WH)|

sm|IM||p + [|J]|#[|M" = W'HJ| p

As M’ ~ W'H, and both M/, W’ has smaller size, thus it is not
difficult for algorithm to achieve high accuracy on M’ ~ W'H, so
M’ — W'H||r can be very small (says 1079).

So if sp is small, then [|[M — Z(W')H|| ¢ is small, and the grid
approximation works.

M — Z(W")H]|p

A

IN I
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When does multi-grid NMF works

A part from the design of R and Z, the matrix M itself also contribute to
sm, and therefore whether multi-grid works also depends on M.

@ For some matrices, spg is small thus the multi-gird approach works.
These matrices are those containing a lots of low frequency
component. In image, these component corresponds to a large region
of slowly changing pixels. At those regions, as the pixel values change
slowly, their pixel value can be well approixmated by the pixel values
of its neighbors.

o If the matrix has lots of sudden changes (high frequency component),
then multi-grid may not work.
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