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The approximate NMF problem

I Given M ∈ Rm×n+ , find W ∈ Rm×r+ , H ∈ Rr×n+ by solving

[W∗,H∗] = argmin
W,H

1

2
‖M−WH‖2F

subject to W ≥ 0,H ≥ 0.

I a non-convex optimization problem in two variables W and H

I a constrained optimization problem: W, H have to be nonnegative

I a NP-Hard problem, see Vavasis2008: On the complexity of
nonnegative matrix factorization

I There are many approaches to solve NMF:
I Alternating projected gradient descent (this document)
I Exact Block coordinate descent
I Extrapolated inexact block coordinate descent
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https://arxiv.org/pdf/0708.4149.pdf
https://arxiv.org/pdf/0708.4149.pdf


Projected gradient descent algorithm — PGD
I PGD is a way to solve constrained optimization problem

min
x∈Q

f(x)

where Q is the constraint set.

I Starting from a initial feasible point x0 ∈ Q, PGD iterates

xk+1 = PQ

(
xk − tk∇f(xk)

)
where PQ( · ) is the projection operator, which itself is also an
optimization problem:

PQ(x0) = argmin
x∈Q

1

2
‖x− x0‖22,

i.e. given a point x0, PQ finds a point x ∈ Q that is closest to x0.

I Note that projected gradient = proximal gradient on indicator
function
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The PGD algorithm

Algorithm 1: PGD

Result: A solution x that approximately solves min
x∈Q

f(x)

Initialization Pick x0 ∈ Q
while stopping condition is not met do

xk+1 = PQ
(
xk − tk∇f(xk)

)
end

I If f is L-smooth (∇f is L-Lipschitz), we can pick tk =
1

L
.

I For nonnegative cone, [·]+ = max(·, 0) is the projection.
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The PGD algorithm on NMF
Algorithm 2: The PGD algorithm on NMF

Result: A solution x that approximately solves min
x∈Q

f(x)

Initialization Pick inital matrices W 0 ≥ 0 and H0 ≥ 0
while stopping condition is not met do

W k+1 =
[
W k − tkW∇f(W k;Hk)

]
+

;

Hk+1 =
[
Hk − tkH∇f(Hk;W k+1)

]
+

;

end

I This algorithm is an inexact block coordinate descent with PGD
update.

I That is, we update each block one-by-one, where the sub-problem,
e.g.

argmin
W≥0

1

2
‖M−WHk‖2F

is not solved exactly: the projected gradient update on W does not
solve the above minimization problem.
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Lipschitz constant step size

I For f(W,H) =
1

2
‖X −WH‖2F , the gradients are

∇W f(W,H) = (WH −X)HT , ∇Hf(W,H) =W T (WH −X)

Key inequality: for any matrices A and B we have ‖AB‖F ≤ ‖A‖F ‖B‖2.

‖∇W f(W1)−∇W f(W2)‖F = ‖(W1H −X)HT − (W2H −X)HT ‖F
= ‖(W1 −W2)HH

T ‖F
≤ ‖HHT ‖2 · ‖W1 −W2‖F

Similarly

‖∇Hf(H1)−∇Hf(H2)‖F ≤ ‖W TW‖2 · ‖H1 −H2‖F

We can put tkW =
1

‖HHT ‖2
and tkH =

1

‖W TW‖2
in the previous

algorithm.
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An example : rice image (m,n, r) = (256, 256, 86)
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Reconstruction of the rice image at different iteration
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PGD on NMF with optimal stepsize

Stepsize t can be selected that achieve maximum decrease in objective
function.

t∗W = argmin
t

f
(
W − tg(W ), H

)
, t∗H = argmin

t
f
(
W,H − tg(H)

)
where g(W ) = ∇W f(W,H) and g(H) = ∇Hf(W,H). Then,

∂f

∂tW
= Tr

(
X −WH + tg(W )H

)T
g(W )H

t∗W =
Tr
(
(WH −X)T g(W )H

)
Tr
(
HT g(W )T g(W )H

)
∂f

∂tH
= Tr

(
X −WH + tWg(H)

)T
Wg(H)

t∗H =
Tr
(
(WH −X)TWg(H)

)
Tr
(
g(H)TWTWg(H)

)
However, using optimal size, the computational cost is much higher than
constant stepsize.
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Rice image example
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The Accelerated PG algorithm
I We can apply Nesterov’s acceleration on PGD, which adds

momentum on the sequence.

I To apply momentum on NMF, the easiest way is to apply it on the
exact block coordinate descent scheme:

1. Pick inital matrices W 0 ∈ Rm×r
+ and H0 ∈ Rr×n

+ and parameters.
2. On W , loop until stopping condition is met

2.1 Update and project
2.2 Extrapolate

3. On H, loop until stopping condition is met
3.1 Update and project
3.2 Extrapolate

4. Repeat 2 and 3 until converge.

I If we apply momentum on the inexact block coordinate descent
scheme, the situation becomes much much more complicated as the
theory changes drastically. In this case the algorithm belong to the
Bolte-Sabach-Teboulle’s PALM, or Xu-Yin’s APG, or
Hien-Gillis-Patrinos’s IBP.
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https://angms.science/doc/CVX/CVX_NAGD.pdf
https://angms.science/doc/NCVX/PALM0.pdf
https://angms.science/doc/NCVX/APG_handwritten.pdf
https://www.dropbox.com/s/btuiw0r8x18qyhl/IBPG_ICML2020.pdf?dl=0
https://www.dropbox.com/s/btuiw0r8x18qyhl/IBPG_ICML2020.pdf?dl=0


Exact BCD algorithm with momentum for NMF

1. (On W ) Initalize W 0, ε, set V 0 =W 0, λ0 = 0, then loop until stopping
condition is met :

1.1 λk =
1

2

(
1 +

√
1 + 4λ2k−1

)
, γk =

1− λk−1

λk

1.2 Update: V k = max
(
[Wk − tkW∇W f(Wk;H)]ij , ε

)
1.3 Extrapolation : Wk = (1− γk)V k + γV k−1

2. (On H) Initalize H0, ε, set G0 = H0, λ0 = 0 , then loop until stopping
condition is met :

2.1 λk =
1

2

(
1 +

√
1 + 4λ2k−1

)
, γk =

1− λk−1

λk

2.2 Update: Gk = max
(
[Hk − tkH∇Hf(H

k;W )]ij , ε
)

2.3 Extrapolation : Hk = (1− γk)Gk + γGk−1

The acceleration is achieved by extrapolating current W,H by the coupling
variables V,G with the extrapolation weights {γk}.

MATLAB code (click me)

13 / 18

https://angms.science/doc/NMF/nmf_apgd.m


The wrong way to apply momentum on NMF
Note in each Update step the other variable is held fix (without the superscript k). That is, the
matrix H when updating Wk for k = 1, 2, ... is all the same. The following shows a wrong way
to apply APGD on NMF :

1. Initalize W 0, H0 and ε, set V 0 =W 0, G0 = H0, and λ0 = 0

2. Loop until stopping condition is met

2.1 Update: V k = max
(
[Wk − tkW∇W f(Wk;Hk)]ij , ε

)
2.2 Extrapolation : Wk = (1− γk)V k + γV k−1

2.3 Update: Gk = max
(
[Hk − tkH∇Hf(H

k;Wk+1)]ij , ε
)

2.4 Extrapolation : Hk = (1− γk)Gk + γGk−1

Why it is wrong : consider step 2, at k = 1

k = 1 V 1 = max
(
[W 1 − t1W∇W f(W 1;H1)]ij , ε

)
.

k = 2 V 2 = max
(
[W 2 − t2W∇W f(W 2;H2)]ij , ε

)
Unless variable H is already optimal (H converges and so H1 = H2) otherwise the update of H
at k = 1 makes H2 6= H1 and so the optimization problem on minimizing W at k = 1 is
different from that at k = 2.
Therefore, for applying extrapolation directly on the block variable, we have to use the
framework of PALM, APG or IBP.
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PGD(inexact BCD with gradient update) vs APG(exact
BCD with momentum)
Example : MATLAB rice image (m,n, r) = (256, 256, 64)
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PGD vs APGD
Here APGD takes about 50% of the computation to achieve the same
amount of fitting error of PGD.
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Further discussion

Recall that accelerated GD for unconstrained convex problem with single
variable is not monotone, it has ripples in the trace of the objective
function value.

In this case adaptive restart can be used. That is, if the extrapolated
solution produces objective function value higher than that of the previous
iterate, the extrapolated solution is thrown away, the momentum and
extrapolation weight are all reset to initial state.

That is : if at step k, f(W k) > f(W k−1) :

I W k =W k−1

I V k =W k

I λk = 0
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Last page - summary

I Alternating projected gradient descent for NMF
MATLAB code (click me)

I Alternating projected gradient descent = Inexact block coordinate
descent

I Exact block coordinate descent with internal Nesterov’s acceleration

End of document
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https://angms.science/doc/NMF/nmf_pgd.m
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