Penalty method is not effective for nonnegative least square

 Iterative Rewieighted Least SquareAndersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium
manshun.ang@umons.ac.be Homepage: angms.science

First draft : Feburary 19, 2020
Last update : February 19, 2020

The max function and absolute value

The max function can be seen as the sum of identity and absolute function

$$
\max (x, y)=\frac{x+y+|x-y|}{2}
$$

Hence, we have

$$
\max (x, 0)=\frac{x+|x|}{2} .
$$

Quadratic characterization of absolute value

$$
|x|=\min _{\alpha} \frac{1}{2} \frac{x^{2}}{\alpha}+\frac{1}{2} \alpha
$$

where the optimal $\alpha=|x|$.

Penalty method

The problem

$$
\underset{x \geq 0}{\operatorname{argmin}} f(x),
$$

has the following penalized form

$$
\underset{x}{\operatorname{argmin}} f_{\lambda}(x)=f(x)+\lambda g(x), \quad g(x)=\max \{-x, 0\} .
$$

See here for smoothing the max operator using softmax.

Penalty method

By using the quadratic characterization of absolute value, we have

$$
\begin{aligned}
f_{\lambda}(x) & =f(x)+\lambda \max \{-x, 0\} \\
& =f(x)+\lambda \frac{-x+|-x|}{2} \\
& =f(x)+\frac{\lambda}{2}(|x|-x) \\
& =f(x)+\frac{\lambda}{2}\left(\min _{\alpha}\left(\frac{1}{2} \frac{x^{2}}{\alpha}+\frac{1}{2} \alpha\right)-x\right) \\
& =\min _{\alpha} f(x)+\frac{\lambda}{2}\left(\frac{1}{2} \frac{x^{2}}{\alpha}+\frac{1}{2} \alpha-x\right) \\
& =\min _{\alpha} f(x)+\frac{\lambda}{4} \frac{x^{2}}{\alpha}+\frac{\lambda}{4} \alpha-\frac{\lambda}{2} x
\end{aligned}
$$

Hence, we have

$$
\underset{x, \alpha}{\operatorname{argmin}} f(x)+\frac{\lambda}{4} \frac{x^{2}}{\alpha}+\frac{\lambda}{4} \alpha-\frac{\lambda}{2} x .
$$

Application to nonnegative least squares

Nonnegative Least Squares (NNLS) : given $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$, find $\mathbf{x} \in \mathbb{R}_{+}^{n}$ by solving

$$
(\mathcal{P}): \underset{\mathbf{x} \geq 0}{\operatorname{argmin}} f(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

Using quadratic characterization, we have
$\left(\mathcal{P}^{\prime}\right): \underset{\mathbf{x}, \alpha_{i}}{\operatorname{argmin}} f_{\lambda_{i}}(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\sum_{i=1}^{n}\left(\frac{\lambda_{i}}{4} \frac{x_{i}^{2}}{\alpha_{i}}+\frac{\lambda_{i}}{4} \alpha_{i}-\frac{\lambda_{i}}{2} x_{i}\right)$.

Solving the penalized least squares

$$
\left(\mathcal{P}^{\prime}\right): \underset{\mathbf{x}, \alpha_{i}}{\operatorname{argmin}} f_{\lambda_{i}}(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\sum_{i=1}^{n}\left(\frac{\lambda_{i}}{4} \frac{x_{i}^{2}}{\alpha_{i}}+\frac{\lambda_{i}}{4} \alpha_{i}-\frac{\lambda_{i}}{2} x_{i}\right) .
$$

Denote the column of \mathbf{A} as \mathbf{a}_{i}, we have

$$
f_{\lambda}(\mathbf{x})=\frac{1}{2}\left\|\sum_{i=1}^{n} x_{i} \mathbf{a}_{i}-\mathbf{b}\right\|_{2}^{2}+\sum_{i=1}^{n}\left(\frac{\lambda_{i}}{4} \frac{x_{i}^{2}}{\alpha_{i}}+\frac{\lambda_{i}}{4} \alpha_{i}-\frac{\lambda_{i}}{2} x_{i}\right) .
$$

Focusing on the $i^{\text {th }}$ term, we have

$$
f_{\lambda}\left(x_{i}\right)=\frac{1}{2}\left\|x_{i} \mathbf{a}_{i}-\mathbf{b}_{-i}\right\|_{2}^{2}+\frac{\lambda_{i}}{4} \frac{x_{i}^{2}}{\alpha_{i}}+\frac{\lambda_{i}}{4} \alpha_{i}-\frac{\lambda_{i}}{2} x_{i}+c .
$$

where $\mathbf{b}_{-i}=\sum_{j \neq i} x_{j} \mathbf{a}_{j}-\mathbf{b}$. Expand it we get

$$
f_{\lambda}\left(x_{i}\right)=\frac{1}{2}\left\|\mathbf{a}_{i}\right\|_{2}^{2} x_{i}^{2}-\mathbf{a}_{i}^{\top} \mathbf{b}_{-i} x_{i}+\frac{\lambda_{i}}{4} \frac{x_{i}^{2}}{\alpha_{i}}+\frac{\lambda_{i}}{4} \alpha_{i}-\frac{\lambda_{i}}{2} x_{i}+c .
$$

Solving the penalized least squares

We now arrive at a coordinate descent with componentwise subproblem

$$
x_{i}=\underset{x, \alpha}{\operatorname{argmin}} f_{\lambda}(x)=\frac{1}{2}\left\|\mathbf{a}_{i}\right\|_{2}^{2} x^{2}-\mathbf{a}_{i}^{\top} \mathbf{b}_{-i} x+\frac{\lambda_{i}}{4} \frac{x^{2}}{\alpha}+\frac{\lambda_{i}}{4} \alpha-\frac{\lambda_{i}}{2} x
$$

in which the objective function is easy to solve on x, it has close form solution. To solve it, we can solve $\frac{\partial}{\partial x} f_{\lambda}(x)=0$. The derivative is

$$
\frac{\partial}{\partial x} f_{\lambda}(x)=\left\|\mathbf{a}_{i}\right\|_{2}^{2} x-\mathbf{a}_{i}^{\top} \mathbf{b}_{-i}+\frac{\lambda_{i}}{2} \frac{x}{\alpha}-\frac{\lambda_{i}}{2}
$$

One can see that solving $\frac{\partial}{\partial x} f_{\lambda, \mu}(x)=0$ requires to find the root of a linear equation, which is very simple :

$$
x=\frac{\mathbf{a}_{i}^{\top} \mathbf{b}_{-i}+\frac{\lambda_{i}}{2}}{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\frac{\lambda_{i}}{2}}
$$

Solving NNLS by iterative reweighted least squares

$$
\left(\mathcal{P}^{\prime}\right): \underset{\mathbf{x}, \alpha_{i}}{\operatorname{argmin}} f_{\lambda_{i}}(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\sum_{i=1}^{n}\left(\frac{\lambda_{i}}{4} \frac{x_{i}^{2}}{\alpha_{i}}+\frac{\lambda_{i}}{4} \alpha_{i}-\frac{\lambda_{i}}{2} x_{i}\right) .
$$

Algorithm 1: Iterative reweighted least square for NNLS
Result: A solution x that approximately solves (\mathcal{P})
Initialization Set $\mathbf{x}_{0} \in \mathbb{R}_{+}^{n}, \lambda_{i}>0, \alpha_{i}>0$
while stopping condition is not met do for $i=1 \ldots n$ do

Compute $\mathbf{b}_{-i}=\sum_{j \neq i} \mathbf{x}_{j} \mathbf{a}_{i}-\mathbf{b}$
$x_{i}=\frac{\mathbf{a}_{i}^{\top} \mathbf{b}_{-i}+\frac{\lambda_{i}}{2}}{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\frac{\lambda_{i}}{2}}$
Update $\alpha_{i}=\left|x_{i}\right|$

end

end

As \mathbf{b}_{-i} has to be recomputed n times per iteration k, thus the complexity of this algorithm is high. Once again, penalty method on NNLS may not be a good choice.

Last page - summary

- Max function and absolute value.
- Quadratic characterization of absolute value.
- Penalty term on nonnegative constrained problem.
- Solving NNLS using iteratively reweighted least squares.

End of document

