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About this “talk”

I 3 main parts to cover the 8 chapters of the thesis.
I Ch1 Introduction
I Ch2 NMF with minimum volume: minvol NMF
I Ch3 Minvol NMF on hyperspectral unmixing
I Ch4 Minvol NMF on audio source separation
I Ch5 NMF with unimodality: NuMF
I Ch6 Tensor algebra and factorization
I Ch7 Heuristic extrapolation with restarts
I Ch8 Conclusion

I Highly compressed.
→ details in the thesis

I Only core ideas and eye-catching items.

4 / 53



Overview

1 Introduction

2 Part I: Minimum volume NMF

3 Part II: NuMF

4 Part III: HER

5 Summary of contributions

5 / 53



(New) It is cool.
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Thunder-fast review of NMF
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Thunder-fast review of NMF
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NMF

I Numerical optimization

minimize
W,H

1

2
‖M−WH‖2F subject to W ≥ 0 and H ≥ 0.

I Regularized model

min
W,H

1

2
‖M−WH‖2F+g(W) s.t. W ≥ 0,H ≥ 0 and other constraints.

I Notation: hide W ≥ 0, H ≥ 0.

9 / 53



NMF

I Numerical optimization

minimize
W,H

1

2
‖M−WH‖2F subject to W ≥ 0 and H ≥ 0.

I Regularized model

min
W,H

1

2
‖M−WH‖2F+g(W) s.t. W ≥ 0,H ≥ 0 and other constraints.

I Notation: hide W ≥ 0, H ≥ 0.

10 / 53



The details I skipped

I Popularity of NMF in research

I The nonnegative rank

I How NMF is used in application

I How NMF problems are solved

I HALS

I Solution space of NMF

I NMF is NP-hard

I Separable NMF

I How to solve Separable NMF

I Successive Projection Algorithm

... see chapter 1 of the thesis!
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Geometry of M = WH
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Figure: Nested cone geometry of NMF: blue cone ⊆ red cone ⊆ green cone.
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Minimum volume NMF

min
W,H

1

2
‖M−WH‖2F + λV(W) subject to some constraints.
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What is “volume”?

I Lemma 2.1.1 (p.17 in thesis) If W ∈ Rm×r+ is full rank, then√
det(W>W)

is the volume of conv
(
[0 W]

)
in the column space of W, up to a

constant factor.

Proof idea: Gram-Schmidt orthogonalization and SVD.

I Figure illustration.
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What is “volume”?

det(W>W) = ‖w1‖22 ·
∥∥∥P⊥1 w2

∥∥∥2
2

∥∥∥P⊥1,2w3

∥∥∥2
2
. . .
∥∥∥P⊥1,...,r−1wr

∥∥∥2
2
,

where P⊥a = I− aa>

‖a‖22
is the projector on span⊥(a),

P⊥1 = P⊥a1
, a1 = w1

P⊥1,2 = P⊥1 P
⊥
a2
, a2 = P⊥1 w2

P⊥1,2,3 = P⊥1,2P
⊥
a3
, a3 = P⊥1,2w3

...
...

P⊥1,...,r−1 = P⊥1,2,...,r−2P
⊥
ar−1

, ar−1 = P⊥1,2,...,r−2wr−1.
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Some volume functions for min
W,H

1

2
‖M−WH‖2F + λV(W)

Name Definition In g ◦ σ(W)

Determinant (det) Vdet(W) = det
(
W>W

) r∏
i=1

σ2
i

log-determinant (logdet) Vlogdet(W) = log det
(
W>W + δIr

) r∑
i=1

log
(
σ2
i + δ

)
Frobenius norm squared VF(W) = ‖W‖2F

r∑
i=1

σ2
i

Nuclear norm V∗(W) = ‖W‖∗
r∑
i=1

σi

Smooth Schatten-p norm Vp,δ(W) = Tr
(
W>W + δIr

) p
2

r∑
i=1

(σ2
i + δ)

p
2
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New theory developed in the thesis:
Identifiability of a minvol (N)MF

I Theorem 2.1.1 Let M = WH where H ∈ Rr×n+ satisfies the SSC,
W ∈ Rm×r satisfies W>1m = 1r and rank (M) = r. Then the
(exact) solution of

argmin
W,H

Vdet(W) % Det-volume

s.t. M = WH % Matrix factorization
H ≥ 0 % Nonnegativity
W>1m = 1r % Normalization of col. of W

is essentially unique.

I Significance: justify the use of minvol NMF in application.
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Illustration

http://angms.science/eg_SNPA_ini.gif
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The details I skipped

I Details of the formulation of the minvol NMF

I Motivation of minvol NMF

I Details on the volume regularizer

I Comparing the volume regularizer

I Parameter tuning

I Rank deficiency case

I The proof of the identifiability theorem

I How to solve minvol NMF

I Computational cost of the algorithm

I Convergence analysis of the algorithm

... see chapter 2 of the thesis!
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Hyperspectral Unmixing
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Minvol NMF on Hyperspectral Unmixing
Image w.r.t. wavelength `5'
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The details I skipped

I Details of the hyperspectral image

I Pure-pixel assumption

I Performance metrics for ranking algorithms

I Parameter tuning and experiment setup

I Details of many experimental results
I minvol NMF � SPA, MVC-NMF and RVolMin on synthetic and real

datasets.
I minvol NMF with Vdet and Vlogdet are the top two methods among the

tested methods.

... see chapter 3 of the thesis!
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Audio source separation
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Illustration

https://www.youtube.com/watch?v=1BrpxvpghKQ
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Correct identification of the note sequence
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How does it work?

X(f,t)x(t) Ψ Amplitude V(f,t)

Phase

w1h1

NMF

[WH](f,t)

wrhr

y1(t)

yr(t) Ψ-1

y(t)

+
Ψ-1

...... ...

...

Time domain Time-frequency domain

Y1(f,t)

Yr(f,t)

...

Complex-valued Real-valued

Input

Estimate

And the data fitting term is changed from
1

2
‖M−WH‖2F to the

β-divergence.
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Assumptions on applying minvol NMF on audio data

On using minvol NMF to estimate the source s:

A1 No time delay in the mixing.

A2 Linear mixing model.

A3 Sources are balanced.

A4 Additive mixture V =
∑

i |Si|.

A5 |Si| are well approximated by nonnegative rank-1 matrices.

A6 Reconstructed components are consistent.

A7 The data has no outlier.

Violating any one of these assumptions leads to errors, or ... new research
opportunities!
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On the consistency assumption

𝒙
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Figure: Illustrating the consistency issue of decomposing a time-frequency matrix.
Here the NMF result W1H1 is consistent as the matrix Y while the result
W2H2 is not. 30 / 53



The details I skipped

I Details of the audio source separation process

I Time frequency transform

I β-divergence and β-divergence NMF

I Assumptions on applying NMF on audio data

I Parameter tuning and experiment setup

I Details of experimental results

... see chapter 4 of the thesis!
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Nonnegative unimodality

I A vector x is nonnegative unimodal ∃p ∈ [m] such that

0 ≤ x1 ≤ x2 ≤ · · · ≤ xp and xp ≥ xp+1 ≥ · · · ≥ xm ≥ 0.

Um+ : the set of Nu vectors in Rm
Um,p+ : the set of Nu vectors in Um+ with tonicity change at p.

I Examples
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Characterizing the Nu set

x ∈ Um+︸ ︷︷ ︸
“x is unimodal”

⇐⇒ ∃p s.t. x ∈ Um,p+ ∪ Um,p+1
+︸ ︷︷ ︸

a convex set

⇐⇒



0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0︸ ︷︷ ︸

Union of two systems
of monic inequalities.
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Characterizing the Nu set

0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0

⇐⇒ Upx ≥ 0

Up =




1
−1 1

. . .
. . .

−1 1


p×p︸ ︷︷ ︸

D

0p×(m−p)

0(m−p)×p


1 −1

. . .
. . .

1 −1
1


(m−p)×(m−p)︸ ︷︷ ︸

D



∈ {−1, 0, 1}m×m,
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NuMF

min
W,H

1

2
‖M−WH‖2F

subject to Upjwj ≥ 0 for all j ∈ [r],

w>j 1m = 1 for all j ∈ [r],

hi ≥ 0 for all i ∈ [r],

How to solve it?

I There are r integer unknowns p1, . . . , pr

I Idea to solve it: brute force

I Improvement: accelerated projected gradient, peak detection,
multi-grid
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New theory developed in the thesis:
Restriction operator preserves Nu

I Theorem 5.2.1 Let x ∈ Um+ and R ∈ Rm×m′ with the structure

R(a, b) =



a b

b a b
. . .

. . .
. . .

b a b

b a


, a > 0, b > 0, a+ 2b = 1,

then y = Rx ∈ Um′+ . Furthermore, if x ∈ Um,p+ where p is even, then

y ∈ Um,py+ with py ∈
{ p

2
− 1,

p

2
,
p

2
+ 1
}

.

I Significance: justify the use of Multi-grid as a dimension reduction
step in solving NuMF.
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New theory developed in the thesis:
3 theorems related to identifiability of NuMF

I Theorem 5.3.1 Informally, if wi are Nu and have strictly disjoint
support, then the sol. of NuMF is essentially unique.
I Specialty of the theorem: it works with n ≥ 1, even if r > n.

I Theorem 5.3.2 Informally, if wi are Nu and have strictly disjoint
support, H satisfies the independent sensing condition, then the
(exact) sol. of NuMF is essentially unique.

I Theorem 5.3.3 Informally, given x,y ∈ Um+ s.t. supp(x)
*
+supp(y).

If x, y can be generated by two non-zero Nu vectors u, v as
x = au+ bv and y = cu+ dv, then the only possibilities are either
u = x, v = y or u = y, v = x.

38 / 53
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The details I skipped

I Details of the accelerated projected gradient

I Details of the peak detection

I Details of multi-grid

I Details of the identifiability results

... see chapter 5 of the thesis!
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HER

I A framework for accelerating algo. for solving NMF, NTF and CPD.

a1

1

1

XXX a

a

+ … +
ar

ar

ar

(1)

(2)

(3)

(1)

(3)

(2)

=

I Key ideas
I Extrapolation with restart.
I Cheap computation by making use of computed component in the

update.

I Many numerical evidences on the effectiveness of HER.
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Extrapolation? Why?
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k-1

Up A1

Ex A1

Pr A1

Up A2

Ex A2

Pr A2

Up AN

Ex AN

Pr AN
. . .

k
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Results

See thesis:
Chapter 7, p.113- p.125.
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The details I skipped

I The discussion of HER in the original form for solving NMF problem.

I The details of HER on NMF and NTF problems.

I Other similar algorithms.

... see chapter 7 of the thesis!
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Summary of contributions: the modeling aspect

I Minvol NMF
I It generalizes Separable NMF, an important class of NMF.

I Minvol NMF with Vdet is identifiable under the SSC condition.

I Minvol NMF is empirically superior than other approaches.

I Minvol NMF with nuclear norm: new model.

I NuMF
I Proposed a brute-force heuristic to solve it, with acceleration by APG,

peak detection and a dimension reduction step based on a multi-grid
method.

I The multi-grid method preserves unimodality.

I 3 identifiability theorems of NuMF in 3 special cases.
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Summary of contributions: the algorithm aspect
I A generic framework named HER on accelerating both exact and

inexact BCD type of algorithms in solving NMF, NTF and CPD.

I Many empirical evidences on the effectiveness of HER.

I The benefits of HER:
I it can accelerate any BCD algorithm

I it extrapolates the variable sequence without increasing the
per-iteration computational cost of the algorithm

I the auxiliary extrapolation sequence it produces is always feasible.

I The main shortcomings of HER are: no theoretical convergence
guarantee; requires parameter tuning.

I Apart from HER, we provided efficient algorithms for solving minvol
NMF and NuMF.
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Summary of contributions: the application aspect

I Geography
Hyperspectral unmixing in remote sensing.

I Music
Audio blind source separation.

I Chemistry
Chromatography - mass spectrometry
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The end

I PhD Thesis:
Nonnegative Matrix and Tensor Factorizations: Models, Algorithms and Applications
Available online: https://angms.science/doc/PhDThesis.pdf

Errata: https://angms.science/doc/PhDThesisErrata.pdf

I Works during the PhD period

green = journal paper, black = conference paper
1. A., and Gillis, Volume regularized non-negative matrix factorizations, WHISPERS18
2. A., and Gillis, Algorithms and comparisons of nonnegative matrix factorizations with volume regularization for

hyperspectral unmixing, JSTAR, 19
3. A., and Gillis, Accelerating nonnegative matrix factorization algorithms using extrapolation, Neural

Computation, 19
4. A., Cohen and Gillis, Accelerating approximate nonnegative canonical polyadic decomposition using

extrapolation, GRETSI19
5. Leplat, Gillis, Siebert and A., Séparation aveugle de sources sonores par factorization en matrices positives avec

pénalité sur le volume du dictionnaire, GRETSI19
6. Leplat, A. and Gillis, Minimum-volume rank-deficient nonnegative matrix factorizations, ICASSP19
7. Leplat, Gillis and A., Blind Audio Source Separation with Minimum-Volume Beta-Divergence NMF, TSP, 20
8. A., Cohen, Le and Gillis, Extrapolated Alternating Algorithms for Approximate Canonical Polyadic

Decomposition, ICASSP20
9. A., Cohen, Gillis and Le, Accelerating Block Coordinate Descent for Nonnegative Tensor Factorization, NLAA,

under review, 20
10. A., Gillis, Vandaele and De Sterck, Nonnegative Unimodal Matrix Factorization, submitted to ICASSP (NEW)
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