Orthogonal Matching Pursuit Algorithm

Andersen Ang

Mathématique et recherche opérationnelle, UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: August 14, 2017
Last update: December 31, 2020
Overview

1. Problem Setting: Compressive Sensing

2. The idea behind OMP

3. Orthogonal Matching Pursuit Algorithm
Signal model

- General setting: given $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, $n \gg m$ (short-fat matrix, more columns than rows). Find $x \in \mathbb{R}^m$ such that

 $$Ax = b + \epsilon.$$

 where $\epsilon \in \mathbb{R}^m$ is modeling error (or interpreted as measurement noise).

- Special case: noiseless ($\epsilon = 0$) and

 $$Ax = b.$$

 Why noiseless case: easier to understand.

- For noisy case, the analysis is more involved (which will be presented in other document).
Signal recovery of sparse signal

▶ A more columns than rows means \(Ax = b \) is under-determined, which has \(\infty \) many sol.

▶ Statistician George Box: “all models are wrong, some are useful.” Here: “All solutions are wrong, but some are useful”.

▶ For example, one want to find \(x \) with only a few non-zero elements (why: easier to interpret). Mathematically \(x \) can be found by solving the following NP-hard problem

\[
(\mathcal{P}) : \min_x \| x \|_0 \text{ subject to } Ax = b.
\]

where \(\| x \|_0 = \text{number of non-zero element in vector } x \).

▶ The key message: if \(A \) fulfills some conditions, such NP-hard problem can be solved by the *Orthogonal Matching Pursuit* algorithm.
Terminologies and definitions

- **Support** The support of a vector \(x \in \mathbb{R}^m \) is a set, denoted by \(\text{supp}(x) \), that contains all the indices of non-zero elements in \(x \):

 \[
 \text{supp}(x) = \{ i : x_i \neq 0 \}.
 \]

- **Sparsity** The sparsity of \(x = \) the cardinality of the set \(\text{supp}(x) \). i.e., sparsity of \(x = \) the number of non-zero element in \(x \). Notation: \(|\text{supp}(x)| \) or \(\|x\|_0 \). A vector is \(k \)-sparse if its sparsity is less than or equal to \(k \). Mathematically, \(|\text{supp}(x)| \leq k \).

- **Mutual incoherence** For a set of \(n \) vectors \(\{x_1, x_2, \ldots, x_n\} \), where \(x_i \in \mathbb{R}^m \) for all \(i \), the mutual incoherence \(M \) is the largest absolute value of normalized correlation between these vectors.

 \[
 M = \max_{i \neq j} \frac{|\langle x_i, x_j \rangle|}{\|x_i\|_2 \|x_j\|_2}.
 \]
Theorem. Given $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ with $n \gg m$, if $Ax = b$, $x \in \mathbb{R}^n$ can be recovered by OMP if A and x satisfy following inequality:

$$\mu < \frac{1}{2k - 1},$$

where $\mu =$ mutual coherence of column vectors of A and $k =$ sparsity of x.

That is, assumes we know x is k-sparse, then as long as the mutual coherence of A satisfies the inequality, x can be recovered from the given (A, b) by the OMP.

Proof: in other document.
This document : show the OMP algorithm.
How sparse the recoverable x can be

- Rearranging the inequality $\mu < \frac{1}{2^{k-1}}$ gives

$$k < \frac{1}{2} \left(\frac{1}{\mu} - 1 \right) = \frac{1}{2\mu} - \frac{1}{2}.$$

- As k is integer, a “better” expression is

$$k \leq \left\lfloor \frac{1}{2\mu} - \frac{1}{2} \right\rfloor$$

- Algebra of floor function $\lfloor a + b \rfloor \leq \lfloor a \rfloor + \lfloor b \rfloor + 1$ gives

$$k \leq \left\lfloor \frac{1}{2\mu} - \frac{1}{2} \right\rfloor \leq \left\lfloor \frac{1}{2\mu} \right\rfloor + \left\lfloor -\frac{1}{2} \right\rfloor + 1 = \left\lfloor \frac{1}{2\mu} \right\rfloor - 1,$$

i.e., recoverable x can be at most $\left\lfloor \frac{1}{2\mu} \right\rfloor$-sparse.

- This $\frac{1}{2\mu}$-sparse condition on x links to the uniqueness of solving the problem (\mathcal{P}), see page12 here for details.
The idea behind OMP ... (1/2)

- The inequality $k \leq \left\lfloor \frac{1}{2\mu} \right\rfloor$ makes sense: Imagine if x has only 1 non-zero element and all the rest are zeros, say the 3rd element is non-zero and has the value 0.47 and all rest are zeros.

$$x = [0, 0, 0.47, 0, \ldots, 0]^\top.$$

- The product Ax will be the 3rd column of A multiplied by 0.47. Let a_i denotes the ith columns of A and x_i denotes the ith element of x. So for $Ax = b$, the vector b we get will be $x_3a_3 = 0.47a_3$.

- Now, suppose we ask somebody to find x given only (A, b). How to recover x?
The idea behind OMP ... (1/2)

▶ The key to find \(x \) is to **utilize the fact that \(x \) is sparse** \(\Rightarrow \) we know \(b \) will be a **sparse linear combination of columns of \(A \)**.

▶ In the example, \(b = \) the 3rd column of \(A \) scaled by 0.47, so \(b \) will have the highest correlation towards the 3rd column of \(A \).

▶ Thus we can compute the correlations of \(b \) to all columns of \(A \), and see which columns gives the “highest correlation”. The column with the highest correlation with \(b \) tells which index of \(x \) is non-zero.

▶ The above is the idea behind OMP for 1-sparse \(x \).

▶ In general, \(x \) is \(k \)-sparse with \(k > 1 \), but the same idea applies with one more step: each time when a column in \(A \) is extracted, the effect of the extracted column on vector \(b \) has to be “removed” so that next time the same column will not be extracted again.
Orthogonal Matching Pursuit Algorithm

- OMP is
 - **an iterative algorithm**: it finds x element-by-element in a step-by-step iterative manner.
 - **a greedy algorithm**: at each stage, the problem is solved optimally.

- Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, an optional step is to normalize all the column vectors of A to unit norm:

 $$ a_i \leftarrow \frac{a_i}{\|a_i\|_2}. $$

 This normalization make sure the dot product (correlation) between any two columns of A is within the range $[-1+1]$ and hence the absolute value of it is bounded by 1. i.e.

 $$ 0 \leq |\langle a_i, a_j \rangle| \leq 1. $$

 Note: here $\langle x, y \rangle = x^\top y$.

10 / 17
OMP algorithm ... initialization phase

- (Optional step) Normalize the columns of A.

- (Optional step) Remove duplicated columns in A.

- Set residue $r_0 \leftarrow b$
 r_k is the key in extracting the “important columns” of A. It is the “remaining portion” of b that has not been “explained” by Ax_k.

- Set the index set $\Lambda_0 = \emptyset$
 Λ_k stores all the indices of the “important columns” of A.

- Set iteration counter $k \leftarrow 1$
 k keeps track of the number of times the “column extraction” has occurred.
OMP algorithm ... main loop step 1

- **Step-1. Important column extraction.**

 \[
 \lambda_k = \arg \max_{j \notin \Lambda_k} |\langle a_j, r_{k-1} \rangle|.
 \]

 “Important column” = the column in A that has the largest absolute value of correlation with the residue vector \(r_{k-1}\).

- The constraint \(j \notin \Lambda_{k-1}\) is to avoid repeatedly extracting the same column index that has been extracted previously.

- It is possible that \(\arg \max_{j} |\langle a_j, r_{k-1} \rangle|\) produces multiple solutions (if \(A\) has duplicated columns). The step in the initialization to remove duplicated columns is thus necessary.

- For implementation: this step can be done as

 \[
 h_k = A^\top r_{k-1},
 \lambda_k = \arg \max_{j \notin \Lambda_k} |h_k|.
 \]
OMP algorithm ... main loop steps 2

- Step-2. Augment the index set: $\Lambda_k = \Lambda_{k-1} \cup \{\lambda_k\}$ (put the index into the index set).

- At $k = 0$, $\Lambda_k = \emptyset$

- At $k = 1$, Λ_k holds 1 index

- At $k = 2$, Λ_k holds 2 indices

- As Λ_k holds k indices, so in the nth step, Λ_n will hold all the column indices in A. That means we should stop OMP at this point and the x is just fully-dense (there is no zero element).

- As λ_k is selected based on $j \notin \Lambda_{k-1}$, hence $\Lambda_{k-1} \cup \{\lambda_k\}$ will not have duplicated indices.
OMP algorithm ... main loop step 3

- Step-3. Obtain signal estimate x_k. This can be done by solving a regression

$$x_k(i \in \Lambda_k) = \arg \min_x \|A_{\Lambda_k} x - b\|_2, \quad x_k(i \notin \Lambda_k) = 0,$$

where A_{Λ_k} is a sub-matrix of A with columns indicated by Λ_k. The analytical solution of this problem is

$$x_k(\Lambda_k) = A_{\Lambda_k}^\dagger b,$$

where \dagger denotes pseudo-inverse.

- What this means: use the columns in A_{Λ_k} to regress the vector b.

As we only use some columns of A to regress b, for those unused columns in A, they contribute nothing in such regression, and hence those corresponding x_i should be zero.
OMP algorithm ... main loop steps 4 and 5

- **Step-4.** Compute $\hat{b}_k = Ax_k$.
 \hat{b}_k is the approximation of b using the column A with the coefficients x_k at iteration k. In other words, \hat{b}_k is the portion of b being "explained" by Ax_k.

- If we use the notation A_{Λ_k} to form \hat{b}, the expression is then $\hat{b} = A_{\Lambda_k}x_k(i \in \Lambda_k)$. Note that it is important to limit the vector x_k for those $i \in \Lambda_k$, otherwise the dimensions of the matrix and vector do not match.

- **Step-5.** Update residue $r_{k+1} \leftarrow b - \hat{b}_k$.
 It means removing the “explained portion of b at iteration k” from b, and take this “unexplained portion” of b as the residue.

- **Step-4 and Step 5** can be combine into one single step

 \[r_k = b - Ax_k \]
The OMP algorithm

Algorithm 1: OMP(A, b)

Input: A, b
Result: x_k

Initialization r_0 = b, \Lambda_0 = \emptyset;
- Normalize all columns of A to unit L_2 norm;
- Remove duplicated columns in A (make A full rank);

for k = 1, 2, ... do
 Step-1. \lambda_k = \arg\max_{j \notin \Lambda_{k-1}} |\langle a_j, r_{k-1} \rangle|;
 Step-2. \Lambda_k = \Lambda_{k-1} \cup \{\lambda_k\};
 Step-3. x_k(i \in \Lambda_k) = \arg\min_x \|A_{\Lambda_k} x - b\|_2, \ x_k(i \notin \Lambda_k) = 0;
 Step-4. \hat{b}_k = Ax_k;
 Step-5. r_k \leftarrow b - \hat{b}_k;
end
Compact OMP algorithm

Algorithm 2: OMP(A, b)

Input: A, b
Result: x_k

Initialization r_0 = b, \(\Lambda_0 = \emptyset \);
- Normalize all columns of A to unit \(L_2 \) norm;
- Remove duplicated columns in A (make A full rank);

for \(k = 1, 2, \ldots \) do
 \begin{align*}
 \text{Step-1-2. } & \Lambda_k = \Lambda_{k-1} \cup \left\{ \arg\max_{j \notin \Lambda_{k-1}} |\langle a_j, r_{k-1} \rangle| \right\}; \\
 \text{Step-3. } & x_k(i \in \Lambda_k) = \arg\min_x \| A_{\Lambda_k} x - b \|_2, \quad x_k(i \notin \Lambda_k) = 0; \\
 \text{Step-4-5. } & r_k \leftarrow b - A x_k;
 \end{align*}
end

End of document