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What is Non-negative Matrix Factorization (NMF) ?

Given X ∈ Rm×n+ and integer r, find matrices W ∈ Rm×r+ ,H ∈ Rr×n+ s.t.

X = WH.

1 This is called : extact NMF and it is NP-hard (Vavasis2007).

2 We consider
I low rank/complexity model 1 ≤ r ≤ min{m,n}.
I approximate NMF

[W,H] = arg min
W≥0,H≥0

1

2
‖X−WH‖2F .

3 Such minimization problem is
I also NP-hard
I a non-convex problem
I an ill-posed problem

4 Assumptions (1) W, H full rank, (2) r is known.

5 Notation note : we use WH instead of WH>
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Separable NMF

Given X ∈ Rm×n+ and integer r, find matrices W ∈ Rm×r+ ,H ∈ Rr×n+ s.t.

X = WH and W = X( : ,K)︸ ︷︷ ︸
separability

.

1 Separable NMF = NMF + additional condition W = X( : ,K)
I Meaning : W is some columns of X.
I K : column index set
I |K| = r

2 Not NP-hard anymore (by Donohol, Arora et al., etc.)

3 Existing algorithms that solve Separable NMF :
I XRAY (Kumar,2013)
I SPA, SNPA (Gillis, 2013)
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Illustrative examples

Figure: NMF, m = 5, n = 10, r = 3.

Figure: Separable NMF, K = {8, 1, 3}. H has some special columns : only one
’1’, and other elements are 0.

”Pure pixels” assumption : matrix H = [ Ir H′ ]Π.

Related terms : self-expressive, self-dictionary
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Motivation — why study NMF

In hyperspectral imaging application, X = image.

W = absorption behaviour of materials : non-negative spectrum.

r = # fundamental materials (e.g. rock, vegetation, water).

H = abundance of materials : non-negative and sum-to-1.

Figure: Hypersectral images decomposition. Figure copied shamelessly from N. Gillis.

Interpretation in short :

X = data, W = basis, r = #basis, H = membership of data w.r.t. basis

NMF has many other signal processing applications.
NMF vs SVD : SVD has lower fitting error (in fact SVD achieve the optimal fitting), but basis
of SVD are not interpretable. Separable NMF basis comes form data, interpretable !
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

Example. m = 5, n = 7, r = 2
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

Consider j = 3
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

A linear combination !
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

Nonnegativity : Hij ≥ 0 so it is in fact conical combination !
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

If H(:, j) are normalized =⇒ 0 ≤ Hij ≤ 1 =⇒ convex combination
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

If columns of H are normalized : it means W is forming a convex hull
encapsulating the data columns of X.
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Geometry of Separable NMF : normalizing columns of H

H tells the membership of data points in X w.r.t basis W.

Column form expression of X = WH is

X( : , j ) = WH( : , j ).

Algebarically, column normalization of H removes the scaling
ambiguity of factorization, prevents huge H and super small W as

W1H1 = W1ΛΠ︸ ︷︷ ︸
W2

Π−1Λ−1H1︸ ︷︷ ︸
H2

No normalization : convex hull→ conical hull =⇒ scaling ambiguity!
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What has been done in literature

The problem statement : given the data points that has pure pixel (i.e.
data points are distributed in the entire data subspace).
Goal : find the vertices = (1) find r (#vertices), (2) locate them.

Figure: A 2D PCA projection of a high dimensional data, showing the data points (black dots)
encapsulated inside convex hull spanned by the generator (vertices).

This problem ⊂ Blind source identification with even distributed data

Existing methods : XRAY, SPA, SNPA ...
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This work : what if pure pixel (Hij = 1) is hidden in data?

The problem statement : given the data points that are at least 1− θ
away from the vertices (i.e. the pure pixel are hidden, data points are not
distributed in the entire data subspace).
Goal – find the vertices : (1) find r (#vertices), (2) locate them.

Figure: A 2D PCA projection of a high dimensional data, showing the data points
encapsulated inside convex hull spanned by the generator vertices.

θ : ”purity” of the data, θ ∈ [ 0 1 ].

θ = 1 : Separable NMF.

Problem (1) is not considered here : r = # vertices (red dots) is
assume known.
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Why separable NMF is not enough ... (1/2)

Existing algorithms aimed solving the Separable NMF (θ = 1) work poorly
on the problems with θ < 1.

Figure: Results (2d PCA projection) of SNPA with decreasing θ. The dimensions
are (m,n, r) = (8, 1000, 3).
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Why separable NMF is not enough ... (2/2)

Due to the nature of high dimensional geometry, when (m, r) increase, the
data points are getting more and more concentrated around the annulus of
the origin and thus they are not distributed in entire data subspace.
Making approches that use L2 norm of data points (such as SNPA) less
workable.

Figure: Results (2d PCA proj.) of SNPA with increasing (m, r). Red dots :
ground truth vertices. Blue dots : estimated vertices. The dimensions are
(n, θ) = (1000, 0.999).
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The research problem : find the vertices from the data
without the pure pixel (Hij = 1)

An idea from 19941 : fit a low rank convex hull with minimum volume.

Theoretical result in 20152 : such hull is identifiable if the data points are
well spreaded (the underlying θ is not too small)
=⇒ volume regularized NMF.

Volume is related to determinant =⇒ det W regularization

det W only works for sqaure W =⇒ consider det W>W or log det W>W

detNMF : min
W≥0
H≥0

1>
r H≤1n

1

2
‖X−WH‖2F︸ ︷︷ ︸

data fitting term F

+
λ

2
det(W>W)︸ ︷︷ ︸

volume regularizer G

.

logdetNMF : min
W≥0
H≥0

1T
r H≤1n

1

2
‖X−WH‖2F︸ ︷︷ ︸

data fitting term F

+
λ

2
log det(W>W + δI)︸ ︷︷ ︸

volume regularizer G

.

1Craig, Minimum-volume transforms for remotely sensed data. IEEE Trans. Geosci. Remote
Sensing

2Lin, et. al, Identifiability of the simplex volume minimization criterion for blind
hyperspectral unmixing: The no-pure-pixel case. IEEE Trans Geosci. Remote Sensing
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Log-determinant Non-negative Matrix Factorization

Given X ∈ Rm×n, find matrices W ∈ Rm×r+ ,H ∈ Rr×n+ by solving

min
W≥0
H≥0

1>r H≤1n

1

2
‖X−WH‖2F︸ ︷︷ ︸
data fitting term

+
λ

2
log det(W>W + δIr)︸ ︷︷ ︸

volume regularizer

.

λ > 0 : tuning parameters (regularization parameter).

δ : fix small positive constant (e.g. 1).

Why δIr : to bound log det
(otherwise lim

‖W‖→0
log det W>W→ −∞).

(r ∈ N+ assumed known, W,H assumed full rank).
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Two Block Coordinate Descent solution framework

The optimization problem : given X ∈ Rm×n and r ≥ 1

min
W≥0
H≥0

1>r H≤1n

‖X−WH‖2F + λ log det(W>W + δIr),

1: INPUT : X ∈ Rm×n, r ∈ N+ and λ ≥ 0
2: OUTPUT : W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ and H ∈ Rr×n+

4: for k = 1 to itermax do
5: W← arg min

W≥0
‖X−WH‖2F + λ log det(W>W + δIr).

6: H← arg min
H≥0,1>r H≤1n

‖X−WH‖2F + λ log det(W>W + δIr).

7: end for

From now on, line 1-3 will be skipped (for space)
Subproblems lines 5-6 can be solve by projected gradient.
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On solving H and W

To solve

H← arg min
H≥0

1>r H≤1n

‖X−WH‖2F + λ log det(W>W + δIr)︸ ︷︷ ︸
independent of H

,

the FGM (Fast gradient method on constrainted least sqaure on unit sim-
plex) from N. Gillis† will be used :

1: for k = 1 to itermax do
2: W← arg min

W≥0
‖X−WH‖2F + λ log det(W>W + δIr).

3: Update H using FGM† with {X,W,H}.
4: end for

† N. Gillis, ”Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source
Separation”, SIAM J. on Imaging Sciences 7 (2), pp. 1420-1450, 2014.
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On solving H and W

So the key problem is to solve for W .

Data fitting part ‖X−WH‖2F is easy to handle.

The regularizer log det(W>W + δIr) is problematic : non-convex,
column-coupled, non-proximable.

*Don’t forget we can always solve this problem just by vanilla
projected gradient, but such approach does not utilize the structure of
the problem — not good !

1: for k = 1 to itermax do
2: W← arg min

W≥0
‖X−WH‖2F + λ log det(W>W + δIr).

3: Update H using FGM† with {X,W,H}.
4: end for

† N. Gillis, ”Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source
Separation”, SIAM J. on Imaging Sciences 7 (2), pp. 1420-1450, 2014.
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Previous lines of attack on log det

Previous lines of attack (fails or no result) :

Proximal operator on + log detW>W

Hadamard’s inequality : | det(A)| <
∏
i ‖ai‖22

(Upper bound of volume spanned by A = [a1 a2 ...])

exp-trace-log equation : det(Ir + A) = exp tr log(Ir + A)

Approximating the determinant 1. Diagonal Approximations

Approximating the determinant 2. Eigenspectrum approximations

det(Ir + δA) = det(Ir + δP−1JP )

= det(P−1(I + δJ)P )

= det(P−1P (I + δJ))

=
∏
i

(1 + δJii)

= 1 + δ
∑
i

Jii + δ2
∑
i,j,j 6=i

JiiJjj + ...

A bound from telecom research :
log det(W>W + δIr) ≤ tr(DTaylorA>A)− log det(DTaylor)− r where
DTaylor = (W>

−1W−1 + δIr)−1, this is infact the first order Taylor convex upper bound
of the function log det(X). Reference includes : S.Christensen et al., ”Weighted
Sum-Rate Maximization using Weighted MMSE for MIMO-BC Beamforming Design”,
IEEE Trans. Wireless Com., pp. 4792-4799, vol. 7, issue 12, 2008
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The key iequality : logdet-trace inequality

Given a positive definite matrix A ∈ Rr×r, we have

tr(Ir −A−1) ≤ log det A ≤ tr(A− Ir)

Sowe now have an upper bound : put A = W>W + δIr

log det(WtW + δIr) ≤ tr(W>W + (δ − 1)Ir)

‖X−WH‖2F + λ log det(W>W + δIr) ≤ ‖X−WH‖2F + λ tr(W>W + (δ − 1)Ir)

log det(W>W + δIr) is not convex w.r.t. W but the trace is.

Algorithm that minimizes this upper bound :

1: for k = 1 to itermax do
2: W← arg min

W≥0
‖X−WH‖2F + λ tr(W>W + (δ − 1)Ir).

3: Update H using FGM with X,W,H.
4: end for

Don’t stop here, it can be better !!
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A closer look on the logdet-trace inequality

Given a positive definite matrix A ∈ Rr×r, we have

log det A ≤ tr(A− Ir).

Let µ denotes eigenvalues, we have

det A =
∏
i

µi and tr A =
∑
i

µi.

=⇒

log det A ≤ tr(A− Ir) ⇐⇒
∑
i

logµi ≤
∑
i

(µi − 1).

logµi means matrix A has to be positive definite (µi > 0∀ i), which
is satisfied for A = W>W + δIr.∑

i logµi ≤
∑

i(µi − 1) ⇐ logµi ≤ µi − 1∀ i. We can focuse on
the inequality logµi ≤ µi − 1 with µi ≥ 0
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log det A ≤ tr(A− Ir).

Let µ denotes eigenvalues, we have

det A =
∏
i

µi and tr A =
∑
i

µi.

=⇒

log det A ≤ tr(A− Ir) ⇐⇒
∑
i

logµi ≤
∑
i

(µi − 1).

logµi means matrix A has to be positive definite (µi > 0∀ i), which
is satisfied for A = W>W + δIr.

∑
i logµi ≤

∑
i(µi − 1) ⇐ logµi ≤ µi − 1∀ i. We can focuse on

the inequality logµi ≤ µi − 1 with µi ≥ 0
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On log x ≤ x− 1, x ≥ 0

log x is concave.
x− 1 is the first order Taylor approximation of log x at x = 1.
x− 1 is the only convex-tight upper bound of log x.†

Tight : x− 1 touch log x at the point x = 1.

Generalize to point x0 : log x ≤ g(x|x0) = a1(x0)x+ a0(x0) is

log x ≤ 1

x0
x+ log x0 − 1.

† Higher order Taylor approximation of log x is tight, more accurate but not convex. 41 / 95
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A parametric trace upper bound for log detA

log det A =
∑

logµi

≤
∑ 1

µ−i
µi + logµ−i − 1

≤
∑ 1

µ−min

µi + logµ−i − 1

= tr(D1A + D0)

D1 =
1

µ−min

Ir, D0 = Diag(logµ−i − 1), µ−i is µi of the previous step

Put A = W>W + δIr, we have

log det(W>W + δIr) ≤ tr(D1W>W + δD1 + D0)

(ignore constants) = tr D1W>W
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A note on weighted sum of eigenvalues and trace

Consider the matrix A has eigen-decomposition as A = VΛVT .
Let the weighting 1

µ−i
be ai, then

∑
i

1
µ−i
µi =

∑
i aiµi and

∑
i

aiµi = tr

a1µ1

a2µ2

. . .

 = tr

a1

a2

. . .


︸ ︷︷ ︸

Da

µ1

µ2

. . .


︸ ︷︷ ︸

Λ=V TAV

= tr DaV>AV

6= tr DaA
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Comparing upper bounds for log detA

The original function F (W) = log det(W>W + δIr) is upper bounded by
:

Eigen bound (B1) : tr D1W>W + constants.

Taylor bound (B2) : tr DTaylorW>W + constants.

Constants D1, D0 are defined as before, and constant
DTaylor = (W>

−1W−1 + δIr)
−1.

Both bounds are trace functional with an relaxation gap :
I (B1) has eigen gap µi ≥ µmin

I (B2) has convexification gap
I D1 is diagonal but DTaylor is not (it is dense) =⇒ column-wise

decomposition is possible
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Successive Trace Approximation (STA)

Algorithm 1 Successive Trace Approximation

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0, δ > 0.
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+ .
3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ , D1 = Ir
4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: W← arg min

W≥0
‖X−WH‖2F + λ tr D1W>W.

7: Update H using FGM with X,W,H.
8: end for
9: µi ←svd(W>W + δIr), D1 =Diag(µ−1

min)
10: end for
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Small summary : a model relaxation

‖X −WH‖2F ‖X −WH‖2F + λ log det(W>W + δIr)

‖X −WH‖2F + λ tr(W>W + (δ − 1)Ir)

‖X −WH‖2F + λ tr(D1W>W + D0)

In one sentence : Eigenval-wise convex relaxation of a non-convex problem
using logdet – trace ineqaulity.
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D1 is diagonal : column decoupling and column-wise BCD

Consider one vector wi while fixing all other things :

‖X−WH‖2F + λtr(D1W>W + D0)

= ‖X−
∑
i

wihi‖2F + λ
∑
i

(
D1
ii‖wi‖22 + D0

ii

)

= ‖
(
X −

∑
j 6=i

wjhj)︸ ︷︷ ︸
Xi

−wihi‖2F + λ
(
D1
ii‖wi‖22 +

∑
j 6=i

(
D1
jj‖wj‖22 + D0

ii

)
︸ ︷︷ ︸

c

)

= ‖Xi − wihi‖2F + λD1
ii‖wi‖22 + c

≤ ‖Xi − wihi‖2F + λD1
ii‖wi‖22 +

γ

2
‖wi − w−i ‖

2
2 + c.

Ignoring constants, we have a constrainted regularized QP

min
wi≥0

‖Xi − wihi‖2F + λD1
ii‖wi‖22 +

γ

2
‖wi − w−i ‖

2
2.

where w−i is the previous iterate of wi, γ > 0 is a (small) constant. The
proximal term ‖wi − w−i ‖22 penalizes w for leaving w− too far.
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A non-negative quadratic program (NNQP)

min
wi≥0

‖Xi − wihi‖2F + λD1
ii‖wi‖22 +

γ

2
‖wi − w−i ‖

2
2.

Introducing the proximal term :

turns the QP problem strongly convex.

gurantees ‖h‖22 + λD1
ii + γ > 0 :

Lemma Given X, h, z, α, β, the optimal solution of

min
w≥0
‖X− wh‖2F + α‖w‖22 + β‖w − z‖22

is

w =

[
XhT + βz

]
+

‖h‖22 + α+ β
.

Proof : skiped.

Note. This is also related to solving the problem using Newton iteration.
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Optimizing STA ... 1

The STA algorithm with decomposed f(wi)

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: for i = 1 to r do
7: wi = arg min

wi≥0
f(wi) = ‖Xi−wihi‖2F+λD1

ii‖wi‖22+
γ

2
‖wi−w−i ‖22

8: Update H by FGM with X,W,H
9: end for

10: end for
11: µi ← svd(W>W + δI) and D1 =Diag(µ−1

min)
12: end for
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Optimizing STA ... 2

Apply close form solution to f(wi)

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: for i = 1 to r do

7: wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑

j 6=iwjhj

8: Update H by FGM with X,W,H
9: end for

10: end for
11: µi ← svd(W>W + δIr) and D1 =Diag(µ−1

min)
12: end for
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Optimizing STA ... 3

Move the update of H outside the loop to reduce computation burden

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: for i = 1 to r do

7: wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑

j 6=iwjhj

8: end for
9: Update H by FGM with X,W,H

10: end for
11: µi ← svd(W>W + δIr) and D1 =Diag(µ−1

min)
12: end for
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Optimizing STA ... 4

Move the update of D1 inside the loop (W>W is r-by-r, small !)

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: for i = 1 to r do

7: wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑

j 6=iwjhj

8: µi ← svd(W>W + δIr) and D1 =Diag(µ−1
min)

9: end for
10: Update H by FGM with X,W,H
11: end for
12: end for
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Optimizing STA ... 5

Now consider line 7, it can be show that it can be further optimized3.

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: for i = 1 to r do

7: wi =

[
Xih

T + γw−i
]
+

‖h‖22 + λD1
ii +

γ

2

where Xi = X−
∑

j 6=iwjhj

8: µi ← svd(W>W + δIr) and D1 =Diag(µ−1
min)

9: end for
10: Update H by FGM with X,W,H
11: end for
12: end for

3N. Gillis and F. Glineur, ”Accelerated Multiplicative Updates and Hierarchical ALS
Algorithms for Nonnegative Matrix Factorization”, Neural Computation 24 (4), 2012 57 / 95



On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

Matrix X,W and H with m = 5, n = 7, r = 3
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On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

Consider w2.
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On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

X−WH = Xi − wihi.
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On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

The term Xih
T
i
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On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

Xih
T
i = XhTi −

∑
j 6=iwjhjh

T
i
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On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

XhTi −
∑
j 6=i wjhjh

T
i = [XH>](:, i)−W(:, 1, ..., i− 1, i+ 1, ..., r)[HH>](j, i)
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On update of wi

Line 7

wi =

[
Xih

T
i + γw−i

]
+

‖hi‖22 + λD1
ii +

γ

2

where Xi = X−
∑
j 6=i

wjhj .

is equivalent to

wi =

[
Pi −

∑i−1
j=1wjQji −

∑r
j=i+1w

−
j Qji + γw−i

]
+

Qii + λD1
ii +

γ

2

where P = XH>, Pi = P (:, i), Q = HH> and Qji = Q(j, i).
P and Q can be pre-computed.
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Finally we have

Algorithm 2 STA

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: P = XH> and Q = HH>.
7: for i = 1 to r do

8: wi =

[
Pi −

∑i−1
j=1wjQji −

∑r
j=i+1w

−
j Qji + γw−i

]
+

Qii + λD1
ii +

γ

2
9: µi ← svd(W>W + δIr) and D1 =Diag(µ−1

min)
10: end for
11: Update H by FGM with X,W,H
12: end for
13: end for

In fact, line 7− 10 can be run multiple times for ”better” convergence.
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Small summary

‖X −WH‖2F ‖X −WH‖2F + λ log det(W>W + δIr)

‖X −WH‖2F + λ tr(W>W + (δ − 1)Ir)

‖X −WH‖2F + λ tr(D1W>W + D0)

∑
i
‖Xi−wihi‖2F+λD1

ii‖wi‖22+ γ
2‖wi−w

−
i ‖22
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Experiments and fancy figures - setup (1/3)

Synthetic data

Ground truth : W0 ∈ Rm×r+ and H0 ∈ Rr×n+ (with HT1 = α)

m, n are sizes, r is rank, α ∈ (0 1] tells how ”well spread” the data
are (α = 1 means pure pixel)

Form X0 as X0 = W0H0 ∈ Rm×n+

Add noise N ∈ Rm×n and N ∼ N (0, R) as X = X0 +N .

As N ∈ R not R+, corrupted data points may lie outside the convex
hull.
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Experiments and fancy figures - setup (2/3)

Real data (An example : Copperas Cove Texas Walmart)

Figure: RGB image of Copperas Cove Texas Walmart

Figure: Three spectral images of Copperas Cove Texas Walmart

X ∈ R94249×162
+ , or X ∈ R307×307×162

+ , pick r = 5, 6, 7.
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Experiments and fancy figures - setup (3/3)

Performance measurements. Algorithm produces Ŵ and Ĥ and
X̂ = ŴĤ

For simulation with known W0, H0, X0:

I Data fitting errror :
‖X0 − X̂‖F
‖X0‖F

I Endmember fitting error :
‖W0 − Ŵ‖F
‖W0‖F

I Computational time

For real data without knowing W0, H0, X0:

I Data fitting errror :
‖X− X̂‖F
‖X‖F

I Volume of convex hull : log det(Ŵ>Ŵ + δIr)
I Computational time
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Results and fancy figures

What iterations of the algorithm looks like : the gif file

Effect of fix lambda : EXAMPLE Rotate

Effect of very big lambda : EXAMPLE Big lambda
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Comparing the two logdet inequality - error
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Comparing the two logdet inequality - fitting
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Theoretical stuff — convergence

We have problems :

(P0) minimizes ‖X−WH‖2F + λ log det(W>W + δIr),

(P1) minimizes ‖X−WH‖2F + λ tr(D1W>W + D0),

under the constaints : W ≥ 0,H ≥ 0,H>1 ≤ 1.

Convergence properties :

1 STA algorithm produces a stationary point for problem P1.

2 The solution of P1 obtained by STA converges to the solution of P0.

3 Convergence rate of STA algorithm.

Idea : consider W, H and D1, (and D0) as variables and treat STA is as an
Inexact Block Coordinate Descent (BCD) algorithm / Block Successive Upper
bound Minimization (BSUM) : at each iteration on variable W, we are not
considering the original problem but an upper bound function (with the proximal

term) ‖Xi − wihi‖2F + λD1
ii +

γ

2
‖wi − w−i ‖22, notice that the inexactness is also

contributed by the eigen-gap introduced by µi ≥ µmin.
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Extension : accelerated coordinate descent ... (1/3)

The ”simplified” STA algorithm (the updates of D and H are hidden here)

Algorithm 3 STA with cyclic indexing

1: for k = 1 to itermax do
2: for i = 1 to r do
3: Update wi by doing something
4: end for
5: end for

STA is a Inexact BCD with cycling indexing. That is, wi is selected
according to i = 1, 2, ..., r, 1, 2, ..., r, ....

In fact, cyclic indexing is not optimal. Acceleration can be made on using
random indexing and extrapolation. The next page will discuss accelerated
STA that, in expectation, converges faster.
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Extension : accelerated coordinate descent ... (2/3)

Algorithm 4 Accelerated STA with random indexing

1: Set vki = wi for i = 1, 2, ..., r.
2: for k = 1 to itermax do
3: Pick i = ik by random (with uniform probability)
4: yki = akv

k
i + (1− ak)wki

5: wk+1
i = yki −

1

Lik
∇ikf(yki )

6: vk+1
i = bkv

k
i + (1− bk)yk − ck

Lik
∇ikf(yki )

7: end for

where σ is strong convexity parameter and Lik is smoothness parameter of
function f(wi). And parameters a, b, c are obtained by solving the
following non-linear equations

c2k −
ck
r

=
(
1− ckσ

r

)
c2k−1, ak =

r − ckσ
ck(r2 − σ)

, bk = 1− ckσ

r

Idea is similar to the ”extrapolation induced acceleration” of the Nesterov’s
accelerated (full-)graident. 75 / 95



Extension : accelerated coordinate descent ... (3/3)

The ”simplified” acceelrated STA algorithm :

Algorithm 5 Accelerated STA with random indexing

1: for k = 1 to itermax do
2: Pick i = ik by random
3: update wi by doing something, together with two additional series vki

and yki
4: end for

The trade off of faster convergence is the ”randomness” : picking up
repeated index is possible i = 1,3,3,3, 4, 2, 5, ...

Solution is to use random shuffle instead of totally random. For example,
r = 3, and

i = [1, 3, 2], [3, 2, 1], [3, 1, 2], [1, 2, 3], [2, 1, 3], ...

But the analysis of the convergence property becomes complicated.

76 / 95



Extension : noise, outlier and robustness (1/3)

Formulation (P0) and (P1) are sensitive to outlier and noise.

Outlier : a single outlier can kill the algorithm.

Solution : robust norm on data fitting:

‖X−WH‖2F
changed to−−−−−−−→ ‖X−WH‖2φ

Examples of φ
I ‖X−WH‖22−1 + λ tr(D1W>W + D0) (L2−1 norm, column robust)
I ‖X−WH‖21 + λ tr(D1W>W + D0) (L1 norm, matrix robust)
I ‖X−WH‖2p + λ tr(D1W>W + D0) (Lp norm, tunable)
I ‖X−WH‖2B =

∑
ij Bij(X−WH)2ij = ‖B � (X−WH)‖2F
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Extension : noise, outlier and robustness (2/3)

Formulation (P0) and (P1) are sensitive to outlier and noise.

Noise : F -norm is for additive Gaussian noise.

Other noises and corresponding denoising norms :
I Kullback Leibler divergence for Poisson noise
I Itakura Saito divergence for Gamma Expoential noise
I Laplacian / Double Expoential noise , Uniform noise, Lorentz noise

Figure: Noises. Source : https://gimper.net/resources/noise-generator.576/
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Extension : noise, outlier and robustness (3/3)

Formulations (P0) and (P1) are sensitive to outlier and noise.
Solution - 1 : solve ‖X−WH‖2p + λ tr(D1W>W + D0) by Iterative
Reweighted Least Squares (IRLS)
Idea :

‖x‖p =
(∑

i

|xi|p
)1/p

=
(∑

i

w2
i |xi|2

)1/2

where weight wi = x
p−2
2

i . For application wi can be set as x−i .

i.e. Approximate ‖X−WH‖2p as a weighted L2 norm problem.

Or, approximate matrix L1 norm by IRLS :

‖X−WH‖2B =
∑
ij

Bij(X−WH)2
ij

≈ ‖X−WH‖21

for Bij =
1

‖X−WH‖ij + ε
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Extension : noise, outlier and robustness (3/3)

Formulations (P0) and (P1) are sensitive to outlier and noise.
Solution - 2 : use L2−1 norm, or more specific :

n∑
j=1

1

2

(
‖X(:, j)−WH(:, j)‖22 + ε

) p
2 + λ tr(D1W>W + D0)

where ε > 0 is smoothness constant and p ∈ (0 2] is robustness parameter.

FGM cannot be used directly on this formulation, need some modifications.
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Small summary

‖X −WH‖2F

‖X −WH‖2φ

‖X −WH‖2F + λ log det(W>W + δI)

‖X −WH‖2F + λ tr(W>W + (δ − 1)Ir)

‖X −WH‖2F + λ tr(D1W>W + D0)

∑
i
‖Xi − wihi‖2F +

λD1
ii‖wi‖22 +

γ

2
‖wi − w−i ‖22
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Further discussions

Standard open problems

How to tune λ
I small noise λ→ 0
I large noise λ→∞
I λ(N) =?

How to find r (in real world application you don’t know the r !)

Other directions

On solving H

On super-big data

Parallelism: divide-and-conquer / decompose-and-recombine.

Acceleration by weighted formulation
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Further discussions : how to tune λ

A very difficult problem. How to tune λ dynamically within the
iterations ?? That is, find an expression in the form as :

λ = λ(X,Wk,Hk, k)

where k is the current number of iteration.
Don’t expect I can give a global solution ! A rough idea of approaches :

Simulated Annealing

Dynamic approach

Hybrid approach

Pros : easy to implement
Cons : very hard to establish theoretical convergence gurantee
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Simulated Annealing parameter tuning of λ

Annealing (metallurgy) = heat treatment of metal

At the beginning, start with very high temperature to make coarse
adjustment of the metal (hammering)

Temperature is gradually decrease in the process, and graudally
moving from coarse adjustment to fine adjustment

Finally the metal is cooled down

On the problem f(W,H) + λG(W),

high temperature = starting with very large λ

Coarse adjustment of the metal = rotation of the convex hull

Temperature is gradually decrease = gradually decrease the value of λ

Fine adjustment = growth of convex hull

metal is cooled down = λk is very close to zero

(Reminder to myself : refer to the ”rotate.gif”)
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Some discussions on the tuning

Very primitive, not robust, non-determinstic

Only works with cases that W0 is known : is log det(W>W + δIr)
really a good estimator of ‖W0 − Ŵ‖F ? How about det W>W ?

=⇒ Compare the models log det(W>W + δIr) with det W>W

Equivalent problems:

(P0) min ‖X−WH‖2F + λ log det(W>W + δIr),

(P1) min. tr(D1W>W + D0) s.t. ‖X−WH‖2F ≤ ε

For every ε in P1, there exists a λ in P0 that both of them share the same
solution. Solving P1 does not involve parameter tuning.
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Further improving STA : on H (1/3)

Recall the STA algorithm (with first 3 lines remoeved)

1: for K = 1 to itermax do
2: for k = 1 to itermax do
3: P = XH> and Q = HH>.
4: for i = 1 to r do

5: wi =

[
Pi−

∑i−1
j=1 wjQji−

∑r
j=i+1 w

−
j Qji+γw

−
i

]
+

Qii+λD1
ii+

γ
2

6: µi ← svd(W>W + δIr) and D1 =Diag(µ−1
min)

7: end for
8: Update H by FGM with X,W,H
9: end for

10: end for

This line is to solve

H← arg min
H≥0,1>r H≤1n

‖X−WH‖2F + λ log det(W>W + δIr)︸ ︷︷ ︸
a constant for H

.
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Further improving STA : on H (2/3)

Is the FGM (Fast gradient method on constrainted least sqaure on unit
simplex) really the best ?

1: for K = 1 to itermax do
2: for k = 1 to itermax do
3: P = XH> and Q = HH>.
4: for i = 1 to r do

5: wi =

[
Pi−

∑i−1
j=1 wjQji−

∑r
j=i+1 w

−
j Qji+γw

−
i

]
+

Qii+λD1
ii+

γ
2

6: µi ← svd(W>W + δIr) and D1 =Diag(µ−1
min)

7: end for
8: Update H by FGM with X,W,H
9: end for

10: end for
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Further improving STA : on H (3/3)

Currently, yes.

Figure: Four methods on H.

* primal algorithm vs primal-dual algorithm.
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Further issues : on r

We assumed r is known, it is only true for synthetic experiment. In real
application, no one know the true r.

Idea : if input r is larger than the true r, when the minimum volume is
’achieved’, then there will be (almost-)colinear columns in W =⇒ a way
to auto-detect r!!

Reminder to me : run the large r.gif in chrome.
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Further issues : acceleration by weighted sum formulation

Since
‖X−WH‖2F =

∑
j

‖X(:, j)−WH(:, j)‖22.

What if the data fitting terms becomes∑
j

αi‖X(:, j)−WH(:, j)‖22,

where αi are weights.

Idea : increase the weight on the points that /∈ conv(W) to speed up the fitting
of the vertices of the next iteration

Not a simple problem : outlier is always outside the conv(W) !!!
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Last page - summary

Introduce / review NMF ‖X−WH‖2F
Minimum volume NMF ‖X−WH‖2F + λ log det(W>W + δIr)

Successive Trace Approximation tr(D1W>W + D0)

The STA algorithm and refinments

BCD acceleration by randomization (on index)

Convergence of STA (just rough idea)

Robust STA (just rough idea) : ‖X−WH‖φ, φ ∈ {1 ≤ p ≤ 2, 2− 1}
, Iterative reweighted least sqaures

Experiments : some rough illustrations

Some open / unsolved problems and further refinments

Slides (and code) avaliable at angms.science

– END OF PRESENTATION –
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Extra - 1. What if some elements of H is very very small

If some H of the data are very small, convex hull looks like conical hull
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Extra - 1. What if some elements of H is very very small

Solution-1 See them as outliers
Their Hij small =⇒ norm small =⇒ error small =⇒ ok if only a few of them

Solution-2 Augmenting W = [W′ a] where a is a small vector.
Note : r changes, and a cannot be 0 as matrix [W 0] is not full rank
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Extra - 2. What if data are clustered

What if :
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Extra - 2. What if data are clustered

Still works, but other method will be better (e.g. some clustering method
such as K-means)
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