Log-determinant Non-Negative Matrix Factorization via Successive Trace Approximation

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

Email: manshun.ang@umons.ac.be Homepage: angms.science

May 23, 2018

Joint work with my supervisor : Nicolas Gillis (UMONS, Belgium)

Non-negative Matrix Factorization (NMF) : given

- Input matrix : $\mathbf{X} \in \mathbb{R}^{m imes n}_+$
- Factorization rank : r, positive integer

We consider

$$\min_{\substack{\mathbf{W}\geq 0\\\mathbf{H}\geq 0}}\frac{1}{2}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_F^2.$$

- optimzation variables : $\mathbf{W} \in \mathbb{R}^{m imes r}_+, \mathbf{H} \in \mathbb{R}^{r imes n}_+$
- problem is : non-convex, NP-hard, ill-posed problem
- we consider low rank/complexity model $1 \le r \le \min\{m, n\}$.
- assumptions : (1) W, H full rank, (2) r is known.

The research problem (2/2)

log-det Non-negative Matrix Factorization (NMF) : given

- Input matrix : $\mathbf{X} \in \mathbb{R}^{m imes n}_+$
- Factorization rank : r, positive integer

We consider

$$\min_{\substack{\mathbf{W}\geq 0\\\mathbf{H}\geq 0}}\frac{1}{2}\|\mathbf{X}-\mathbf{W}\mathbf{H}\|_{F}^{2}+\frac{\lambda}{2}\log\det(\mathbf{W}^{\top}\mathbf{W}+\delta\mathbf{I}_{r}).$$

- optimzation variables : $\mathbf{W} \in \mathbb{R}^{m imes r}_+, \mathbf{H} \in \mathbb{R}^{r imes n}_+$
- we consider low rank/complexity model $1 \le r \le \min\{m, n\}$.
- assumptions (1) \mathbf{W} , \mathbf{H} full rank, (2) r is known.
- $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$: volume regularizer, δ is constant
- $\lambda > 0$: regularization parameter

Solution framework : 2-Block Coordinate Descent (1/3)

Problem : given (\mathbf{X}, r) , solve

$$\min_{\substack{\mathbf{W} \ge 0\\ \mathbf{H} \ge 0}} \frac{1}{2} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \frac{\lambda}{2} \log \det(\mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r).$$

Algorithm 1 BCD framework for logdet-NMF

- 1: **INPUT** : $\mathbf{X} \in \mathbb{R}^{m \times n}$, $r \in \mathbb{N}_+$ Initialization : $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{r \times n}_+$
- 2: **OUTPUT** : $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{r \times n}_+$
- 3: for $k = 1, 2, \dots$ do
- 4: Update(**W**) via $\underset{\mathbf{W}>0}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{X} \mathbf{W}\mathbf{H}\|_{F}^{2} + \frac{\lambda}{2} \log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_{r}).$
- 5: Update(**H**) via $\underset{\mathbf{H}>0}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{X} \mathbf{W}\mathbf{H}\|_{F}^{2}$.
- 6: end for

Solution framework : 2-Block Coordinate Descent (2/3)

• The subproblems are not symmetric.

 $\begin{array}{ll} \text{On } \mathbf{W} : & \underset{\mathbf{W} \geq 0}{\arg\min \frac{1}{2}} \| \mathbf{X} - \mathbf{W} \mathbf{H} \|_{F}^{2} + \frac{\lambda}{2} \log \det(\mathbf{W}^{\top} \mathbf{W} + \delta \mathbf{I}_{r}) \\ \text{On } \mathbf{H} : & \underset{\mathbf{H} \geq 0}{\arg\min \frac{1}{2}} \| \mathbf{X} - \mathbf{W} \mathbf{H} \|_{F}^{2} \end{array}$

• Update(H) is easier, can be solved by FGM^{\dagger}

 $\mathbf{H} \gets \mathsf{FGM}(\mathbf{X}, \mathbf{W}, \mathbf{H})$

- Update(W) is harder as $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$ is :
 - non-convex
 - column-coupled
 - non-proximable

† N. Gillis, "Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation", SIAM J. on Imaging Sciences 7 (2), pp. 1420-1450, 2014.

Theme of the presentation

To handle

$$\underset{\mathbf{W}\geq 0}{\arg\min} \frac{1}{2} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_{F}^{2} + \frac{\lambda}{2} \log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_{r})$$

in

Algorithm 2 BCD framework for logdet-NMF

- 1: **INPUT** : $\mathbf{X} \in \mathbb{R}^{m \times n}$, $r \in \mathbb{N}_+$ Initialization : $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{r \times n}_+$
- 2: **OUTPUT** : $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{r \times n}_+$
- 3: for $k = 1, 2, \dots$ do
- 4: Update(**W**) via $\underset{\mathbf{W}>0}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{X} \mathbf{W}\mathbf{H}\|_{F}^{2} + \frac{\lambda}{2} \log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_{r}).$
- 5: $\mathbf{H} \leftarrow \mathsf{FGM}(\mathbf{X}, \mathbf{W}, \mathbf{H})$.

6: end for

Why : Mathematician don't ask why, just want to solve it

• Nobody solve it *effectively* yet

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\mathbf{H} = \mathsf{coefficient}$, weighting, encoding, membership
- r = model complexity
- m = dimension of data
- n = # of data points

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\mathbf{H} = \mathsf{coefficient}$, weighting, encoding, membership
- m = dimension of data
- n = # of data points
- r = model complexity

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\mathbf{H} = \mathsf{coefficient}$, weighting, encoding, membership
- m = dimension of data
- n = # of data points
- r = model complexity

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\mathbf{H} = \mathsf{coefficient}$, weighting, encoding, membership
- m = dimension of data
- n = # of data points
- r = model complexity
- Consider <u>3rd</u> column

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\bullet~\mathbf{H}=$ coefficient, weighting, encoding, membership
- m = dimension of data
- n = # of data points
- r = model complexity
- Linear combination :

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\bullet~\mathbf{H}=$ coefficient, weighting, encoding, membership
- m = dimension of data
- n = # of data points
- r = model complexity
- Non-negativity : conic combination

- $\mathbf{X} = \mathsf{data}$
- $\mathbf{W} = \mathsf{basis}$
- $\mathbf{H} = \mathsf{coefficient}$, weighting, encoding, membership
- m = dimension of data
- n = # of data points
- r = model complexity
- Non-negativity + normalization : convex combination

Application from data science : for $\mathbf{X} = \mathbf{W}\mathbf{H}$

Geometrically : given data points, fit a convex hull

Application from data science : for $\mathbf{X} = \mathbf{W}\mathbf{H}$

Geometrically : given data points, fit a minimum volume convex hull

Many applications

16/35

Application 1 : Hyper-spectral imaging

Geoinformatic application : decomposition of hyper spectral images

Output: \mathbf{W} spectral basis, \mathbf{H} weighting maps

Input : hyper-sepctral images data cube

Application 2 : Source Separation (e.g. music)

Music input

Application 2 : Source Separation (e.g. music)

Decomposition output

19/35

On solving the problem

The key to solve such problem is to use majorization-minimization

How to solve The key iequality : logdet-trace inequality

Given a positive definite matrix $\mathbf{A} \in \mathbb{R}^{r \times r}$, we have $\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r)$.

So we now have an upper bound : put $\mathbf{A} = \mathbf{W}^{ op} \mathbf{W} + \delta \mathbf{I}_r$

$$\begin{split} \log \det(\mathbf{W}^t \mathbf{W} + \delta \mathbf{I}_r) &\leq \operatorname{tr}(\mathbf{W}^\top \mathbf{W} + (\delta - 1) \mathbf{I}_r) \\ \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda \log \det(\mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r) &\leq \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda \operatorname{tr}(\mathbf{W}^\top \mathbf{W} + (\delta - 1) \mathbf{I}_r) \end{split}$$

• $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$ is not convex w.r.t. \mathbf{W} but the trace is.

How to solve The key iequality : logdet-trace inequality

Given a positive definite matrix $\mathbf{A} \in \mathbb{R}^{r \times r}$, we have $\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r)$.

So we now have an upper bound : put $\mathbf{A} = \mathbf{W}^{ op} \mathbf{W} + \delta \mathbf{I}_r$

$$\begin{split} \log \det(\mathbf{W}^t \mathbf{W} + \delta \mathbf{I}_r) &\leq \operatorname{tr}(\mathbf{W}^\top \mathbf{W} + (\delta - 1) \mathbf{I}_r) \\ \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda \log \det(\mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r) &\leq \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda \operatorname{tr}(\mathbf{W}^\top \mathbf{W} + (\delta - 1) \mathbf{I}_r) \end{split}$$

• $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$ is not convex w.r.t. \mathbf{W} but the trace is.

• Algorithm that minimizes this upper bound :

1: for k = 1 to itermax do

2:
$$\mathbf{W} \leftarrow \underset{\mathbf{W} \ge 0}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda \operatorname{tr}(\mathbf{W}^\top \mathbf{W} + (\delta - 1)\mathbf{I}_r).$$

3: $\mathbf{H} \leftarrow \mathsf{FGM}(\mathbf{X}, \mathbf{W}, \mathbf{H}).$

4: end for

• Don't stop here, it can be better !!

A closer look on the logdet-trace inequality

• Given a positive definite matrix $\mathbf{A} \in \mathbb{R}^{r imes r}$, we have

 $\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r).$

A closer look on the logdet-trace inequality

• Given a positive definite matrix $\mathbf{A} \in \mathbb{R}^{r imes r}$, we have

 $\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r).$

• Let μ denotes eigenvalues, we have

det
$$\mathbf{A} = \prod_{i} \mu_{i}$$
 and $\operatorname{tr} \mathbf{A} = \sum_{i} \mu_{i}$.

$$\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r) \iff \sum_i \log \mu_i \leq \sum_i (\mu_i - 1).$$

• $\log \mu_i$ means matrix **A** has to be positive definite $(\mu_i > 0 \forall i)$, which is satisfied for $\mathbf{A} = \mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r$.

A closer look on the logdet-trace inequality

• Given a positive definite matrix $\mathbf{A} \in \mathbb{R}^{r imes r}$, we have

 $\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r).$

• Let μ denotes eigenvalues, we have

$$\det \mathbf{A} = \prod_i \mu_i$$
 and $\operatorname{tr} \mathbf{A} = \sum_i \mu_i$.

$$\log \det \mathbf{A} \leq \operatorname{tr}(\mathbf{A} - \mathbf{I}_r) \iff \sum_i \log \mu_i \leq \sum_i (\mu_i - 1).$$

- $\log \mu_i$ means matrix **A** has to be positive definite $(\mu_i > 0 \forall i)$, which is satisfied for $\mathbf{A} = \mathbf{W}^{\top} \mathbf{W} + \delta \mathbf{I}_r$.
- $\sum_i \log \mu_i \leq \sum_i (\mu_i 1) \iff \log \mu_i \leq \mu_i 1 \,\forall i$. We can focuse on the inequality $\log \mu_i \leq \mu_i 1$ with $\mu_i \geq 0$

On $\log x \le x - 1$, $x \ge 0$

- $\log x$ is concave.
- x 1 is the first order Taylor approximation of $\log x$ at x = 1.
- x-1 is the only **convex-tight** upper bound of $\log x$.[†]
- Tight : x 1 touch $\log x$ at the point x = 1.

On $\log x \le x - 1$, $x \ge 0$

- $\log x$ is concave.
- x 1 is the first order Taylor approximation of $\log x$ at x = 1.
- x-1 is the only **convex-tight** upper bound of $\log x$.[†]
- Tight : x 1 touch $\log x$ at the point x = 1.
- Generalize to point x_0 : $\log x \le g(x|x_0) = a_1(x_0)x + a_0(x_0)$ is

$$\log x \le \frac{1}{x_0}x + \log x_0 - 1.$$

 \dagger Higher order Taylor approximation of $\log x$ is tight, more accurate but not convex.

A parametric trace upper bound for $\log \det \mathbf{A}$

$$\log \det \mathbf{A} = \sum \log \mu_i$$

$$\leq \sum \frac{1}{\mu_i^-} \mu_i + \log \mu_i^- - 1$$

$$\leq \sum \frac{1}{\mu_{\min}^-} \mu_i + \log \mu_i^- - 1$$

$$= \operatorname{tr}(\mathbf{D}^1 \mathbf{A} + \mathbf{D}^0)$$

 $\mathbf{D}^1 = \frac{1}{\mu_{\min}^-} \mathbf{I}_r$, $\mathbf{D}^0 = \mathsf{Diag}(\log \mu_i^- - 1)$, μ_i^- is μ_i of the previous step

Put $\mathbf{A} = \mathbf{W}^{\top} \mathbf{W} + \delta \mathbf{I}_r$, we have

$$\begin{split} \log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) &\leq \operatorname{tr}(\mathbf{D}^1\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{D}^1 + \mathbf{D}^0) \\ (\text{ignore constants}) &= \operatorname{tr} \mathbf{D}^1\mathbf{W}^{\top}\mathbf{W} \end{split}$$

:

The original function $F(\mathbf{W}) = \log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$ is upper bounded by

Eigen bound (B_1) : tr $\mathbf{D}^{\mathsf{T}}\mathbf{W}^{\mathsf{T}}\mathbf{W}$ + constants. Taylor bound (B_2) : tr $\mathbf{D}^{\mathsf{Taylor}}\mathbf{W}^{\mathsf{T}}\mathbf{W}$ + constants.

- Constants \mathbf{D}^1 , \mathbf{D}^0 are defined as before, and constant $\mathbf{D}^{\mathsf{Taylor}} = (\mathbf{W}_{-1}^{\top}\mathbf{W}_{-1} + \delta \mathbf{I}_r)^{-1}$.
- Both bounds are trace functional with an relaxation gap :
 - (B_1) has eigen gap $\mu_i \ge \mu_{\min}$
 - (B_2) has convexification gap
 - ▶ D¹ is diagonal but D^{Taylor} is not (it is dense) ⇒ column-wise decomposition is possible

Algorithm 3 Successive Trace Approximation

- 1: INPUT: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}_+$, $\lambda > 0$, $\delta > 0$.
- 2: OUTPUT: $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{r \times n}_+$.
- 3: INITIALIZATION : $\mathbf{W}\in\mathbb{R}^{m imes r}_+$, $\mathbf{H}\in\mathbb{R}^{r imes n}_+$, $\mathbf{D}^1=\mathbf{I}_r$
- 4: for K = 1 to itermax do
- 5: for k = 1 to itermax do

6:
$$\mathbf{W} \leftarrow \operatorname*{arg\,min}_{\mathbf{W} \ge 0} \|\mathbf{X} - \mathbf{W}\mathbf{H}\|_F^2 + \lambda \operatorname{tr} \mathbf{D}^1 \mathbf{W}^\top \mathbf{W}.$$

7: $\mathbf{H} \leftarrow \mathsf{FGM}(\mathbf{X}, \mathbf{W}, \mathbf{H}).$

8: end for

9: $\mu_i \leftarrow \mathsf{svd}(\mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r), \ \mathbf{D}^1 = \mathsf{Diag}(\mu_{\min}^{-1})$

10: end for

Improving STA

The STA algorithm with decomposed $f(w_i)$

Algorithm 4 Successive Trace Approximation

- 1: INPUT: $\mathbf{X} \in \mathbb{R}^{m imes n}_+$, $r \in \mathbb{N}_+$, $\lambda > 0$ and $\delta > 0$
- 2: OUTPUT: $\mathbf{W} \in \mathbb{R}^{m imes r}_+$ and $\mathbf{H} \in \mathbb{R}^{r imes n}_+$
- 3: INITIALIZATION : $\mathbf{W} \in \mathbb{R}^{m imes r}_+$, $\mathbf{H} \in \mathbb{R}^{r imes n}_+$ and $\mathbf{D}^1 = I_r$, $\gamma = 10^{-6}$
- 4: for K = 1 to itermax do
- 5: for k = 1 to itermax do
- 6: for i = 1 to r do
- 7: $w_{i} = \operatorname*{arg\,min}_{w_{i} \ge 0} f(w_{i}) = \|\mathbf{X}_{i} w_{i}h_{i}\|_{F}^{2} + \lambda \mathbf{D}_{ii}^{1} \|w_{i}\|_{2}^{2} + \frac{\gamma}{2} \|w_{i} w_{i}^{-}\|_{2}^{2}$
- 8: $\mathbf{H} \leftarrow \mathsf{FGM}(\mathbf{X}, \mathbf{W}, \mathbf{H}).$
- 9: end for
- 10: end for

11:
$$\mu_i \leftarrow \mathsf{svd}(\mathbf{W}^\top \mathbf{W} + \delta I)$$
 and $\mathbf{D}^1 = \mathsf{Diag}(\mu_{\min}^{-1})$

12: end for

Improving STA

Finally we have

Algorithm 5 STA, Final form

- 1: INPUT: $\mathbf{X} \in \mathbb{R}^{m \times n}_+$, $r \in \mathbb{N}_+$, $\lambda > 0$ and $\delta > 0$
- 2: OUTPUT: $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{r \times n}_+$
- 3: INITIALIZATION : $\mathbf{W} \in \mathbb{R}^{m imes r}_+$, $\mathbf{H} \in \mathbb{R}^{r imes n}_+$ and $\mathbf{D}^1 = \mathbf{I}_r$, $\gamma = 10^{-6}$
- 4: for K = 1 to itermax do
- 5: for k = 1 to itermax do
- 6: $P = \mathbf{X}\mathbf{H}^{\top}$ and $Q = \mathbf{H}\mathbf{H}^{\top}$.

7: **for**
$$i = 1$$
 to r **do**
8: $w_i = \frac{\left[P_i - \sum_{j=1}^{i-1} w_j Q_{ji} - \sum_{j=i+1}^{r} w_j^- Q_{ji} + \gamma w_i^-\right]_+}{Q_{ii} + \lambda \mathbf{D}_{ii}^1 + \frac{\gamma}{2}}$

9:
$$\mu_i \leftarrow \mathsf{svd}(\mathbf{W}^\top \mathbf{W} + \delta \mathbf{I}_r) \text{ and } D^1 = \tilde{\mathsf{D}}\mathsf{iag}(\mu_{\min}^{-1})$$

- 10: end for
- 11: $\mathbf{H} \leftarrow \mathsf{FGM}(\mathbf{X}, \mathbf{W}, \mathbf{H}).$
- 12: end for
- 13: end for

Experimental result : comparing the two logdet inequality

33 / 35

Experimental result : comparing the two logdet inequality

- Nonegative Matrix Factorization with logdet regularizer
- Algorithmic development of solving the logdet NMF

Slides (and code) available at angms.science

- END OF PRESENTATION -