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Mathématique et recherche opérationnelle
UMONS, Belgium

Email: manshun.ang@umons.ac.be
Homepage: angms.science

May 23, 2018

Joint work with my supervisor : Nicolas Gillis (UMONS, Belgium)

https://sites.google.com/site/nicolasgillis/


The research problem (1/2)

Non-negative Matrix Factorization (NMF) : given

Input matrix : X ∈ Rm×n+

Factorization rank : r, positive integer

We consider

min
W≥0
H≥0

1

2
‖X−WH‖2F .

optimzation variables : W ∈ Rm×r+ ,H ∈ Rr×n+

problem is : non-convex, NP-hard, ill-posed problem

we consider low rank/complexity model 1 ≤ r ≤ min{m,n}.
assumptions : (1) W, H full rank, (2) r is known.
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The research problem (2/2)

log-det Non-negative Matrix Factorization (NMF) : given

Input matrix : X ∈ Rm×n+

Factorization rank : r, positive integer

We consider

min
W≥0
H≥0

1

2
‖X−WH‖2F +

λ

2
log det(W>W + δIr).

optimzation variables : W ∈ Rm×r+ ,H ∈ Rr×n+

we consider low rank/complexity model 1 ≤ r ≤ min{m,n}.
assumptions (1) W, H full rank, (2) r is known.

log det(W>W + δIr) : volume regularizer, δ is constant

λ > 0 : regularization parameter
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Solution framework : 2-Block Coordinate Descent (1/3)

Problem : given (X, r), solve

min
W≥0
H≥0

1

2
‖X−WH‖2F +

λ

2
log det(W>W + δIr).

Algorithm 1 BCD framework for logdet-NMF

1: INPUT : X ∈ Rm×n, r ∈ N+

Initialization : W ∈ Rm×r+ and H ∈ Rr×n+

2: OUTPUT : W ∈ Rm×r+ and H ∈ Rr×n+

3: for k = 1, 2, ... do
4: Update(W) via argmin

W≥0

1
2‖X−WH‖2F + λ

2 log det(W
>W + δIr).

5: Update(H) via argmin
H≥0

1
2‖X−WH‖2F .

6: end for
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Solution framework : 2-Block Coordinate Descent (2/3)

The subproblems are not symmetric.

On W : argmin
W≥0

1
2‖X−WH‖2F + λ

2 log det(W>W + δIr)

On H : argmin
H≥0

1
2‖X−WH‖2F

Update(H) is easier, can be solved by FGM†

H← FGM(X,W,H)

Update(W) is harder as log det(W>W + δIr) is :
I non-convex
I column-coupled
I non-proximable

† N. Gillis, ”Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source
Separation”, SIAM J. on Imaging Sciences 7 (2), pp. 1420-1450, 2014.
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Theme of the presentation

To handle

argmin
W≥0

1

2
‖X−WH‖2F +

λ

2
log det(W>W + δIr)

in

Algorithm 2 BCD framework for logdet-NMF

1: INPUT : X ∈ Rm×n, r ∈ N+

Initialization : W ∈ Rm×r+ and H ∈ Rr×n+

2: OUTPUT : W ∈ Rm×r+ and H ∈ Rr×n+

3: for k = 1, 2, ... do
4: Update(W) via argmin

W≥0

1
2‖X−WH‖2F + λ

2 log det(W
>W + δIr).

5: H← FGM(X,W,H).
6: end for
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Motivation (1/4)

Why : Mathematician don’t ask why, just want to solve it

Nobody solve it effectively yet

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership

r = model complexity

m = dimension of data

n = # of data points
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Motivation (2/4)

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership

m = dimension of data

n = # of data points

r = model complexity

Matrix X,W and H with m = 5, n = 7, r = 2
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Motivation (2/4)

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership

m = dimension of data

n = # of data points

r = model complexity

Consider 3rd column.
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Motivation (2/4)

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership

m = dimension of data

n = # of data points

r = model complexity

Linear combination :
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Motivation (2/4)

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership

m = dimension of data

n = # of data points

r = model complexity

Non-negativity : conic combination
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Motivation (2/4)

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership

m = dimension of data

n = # of data points

r = model complexity

Non-negativity + normalization : convex combination
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Motivation (3/4)

Application from data science : for X = WH

X = data

W = vertex / generator

H = membership

m = dimension of data

n = # of data points

r = number of basis

Geometrically : given data points, fit a convex hull
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Motivation (3/4)

Application from data science : for X = WH

X = data

W = vertex / generator

H = membership

m = dimension of data

n = # of data points

r = number of basis

Geometrically : given data points, fit a minimum volume convex hull
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Motivation (4/4)

Optimization problem

min
W≥0
H≥0

1>
r H≤1n

1

2
‖X−WH‖2F

+
λ

2
log det(W>W + δIr)

Geometry : fit a min. vol. convex hull

Many applications
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Application 1 : Hyper-spectral imaging

Geoinformatic application : decomposition of hyper spectral images

Input : hyper-sepctral
images data cube

Output: W spectral basis, H weighting maps
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Application 2 : Source Separation (e.g. music)

Music input
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Application 2 : Source Separation (e.g. music)

Decomposition output
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On solving the problem

Optimization problem

min
W≥0
H≥0

1>
r H≤1n

1

2
‖X−WH‖2F

+
λ

2
log det(W>W + δIr)

Geometry : fit a min. vol. convex hull

The key to solve such problem is to use majorization-minimization
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How to solve The key iequality : logdet-trace inequality

Given a positive definite matrix A ∈ Rr×r, we have
log detA ≤ tr(A− Ir).
So we now have an upper bound : put A = W>W + δIr

log det(WtW + δIr) ≤ tr(W>W + (δ − 1)Ir)

‖X−WH‖2F + λ log det(W>W + δIr) ≤ ‖X−WH‖2F + λ tr(W>W + (δ − 1)Ir)

log det(W>W + δIr) is not convex w.r.t. W but the trace is.

Algorithm that minimizes this upper bound :

1: for k = 1 to itermax do
2: W← argmin

W≥0
‖X−WH‖2F + λ tr(W>W + (δ − 1)Ir).

3: H← FGM(X,W,H).
4: end for

Don’t stop here, it can be better !!
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A closer look on the logdet-trace inequality

Given a positive definite matrix A ∈ Rr×r, we have

log detA ≤ tr(A− Ir).

Let µ denotes eigenvalues, we have

detA =
∏
i

µi and trA =
∑
i

µi.

=⇒

log detA ≤ tr(A− Ir) ⇐⇒
∑
i

logµi ≤
∑
i

(µi − 1).

logµi means matrix A has to be positive definite (µi > 0∀ i), which
is satisfied for A = W>W + δIr.∑

i logµi ≤
∑

i(µi − 1) ⇐ logµi ≤ µi − 1∀ i. We can focuse on
the inequality logµi ≤ µi − 1 with µi ≥ 0
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On log x ≤ x− 1, x ≥ 0

log x is concave.
x− 1 is the first order Taylor approximation of log x at x = 1.
x− 1 is the only convex-tight upper bound of log x.†

Tight : x− 1 touch log x at the point x = 1.

Generalize to point x0 : log x ≤ g(x|x0) = a1(x0)x+ a0(x0) is

log x ≤ 1

x0
x+ log x0 − 1.

† Higher order Taylor approximation of log x is tight, more accurate but not convex. 26 / 35
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A parametric trace upper bound for log detA

log detA =
∑

logµi

≤
∑ 1

µ−i
µi + logµ−i − 1

≤
∑ 1

µ−min

µi + logµ−i − 1

= tr(D1A+D0)

D1 =
1

µ−min

Ir, D
0 = Diag(logµ−i − 1), µ−i is µi of the previous step

Put A = W>W + δIr, we have

log det(W>W + δIr) ≤ tr(D1W>W + δD1 +D0)

(ignore constants) = trD1W>W
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Comparing upper bounds for log detA

The original function F (W) = log det(W>W + δIr) is upper bounded by
:

Eigen bound (B1) : trD1W>W + constants.

Taylor bound (B2) : trDTaylorW>W + constants.

Constants D1, D0 are defined as before, and constant
DTaylor = (W>

−1W−1 + δIr)
−1.

Both bounds are trace functional with an relaxation gap :
I (B1) has eigen gap µi ≥ µmin

I (B2) has convexification gap
I D1 is diagonal but DTaylor is not (it is dense) =⇒ column-wise

decomposition is possible
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Successive Trace Approximation (STA)

Algorithm 3 Successive Trace Approximation

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0, δ > 0.
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+ .
3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ , D1 = Ir
4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: W← argmin

W≥0
‖X−WH‖2F + λ trD1W>W.

7: H← FGM(X,W,H).
8: end for
9: µi ←svd(W>W + δIr), D

1 =Diag(µ−1min)
10: end for
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Improving STA

The STA algorithm with decomposed f(wi)

Algorithm 4 Successive Trace Approximation

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: for i = 1 to r do
7: wi = argmin

wi≥0
f(wi) = ‖Xi−wihi‖2F+λD1

ii‖wi‖22+
γ

2
‖wi−w−i ‖22

8: H← FGM(X,W,H).
9: end for

10: end for
11: µi ← svd(W>W + δI) and D1 =Diag(µ−1min)
12: end for
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Improving STA

Finally we have

Algorithm 5 STA, Final form

1: INPUT: X ∈ Rm×n+ , r ∈ N+, λ > 0 and δ > 0
2: OUTPUT: W ∈ Rm×r+ and H ∈ Rr×n+

3: INITIALIZATION : W ∈ Rm×r+ , H ∈ Rr×n+ and D1 = Ir, γ = 10−6

4: for K = 1 to itermax do
5: for k = 1 to itermax do
6: P = XH> and Q = HH>.
7: for i = 1 to r do

8: wi =

[
Pi −

∑i−1
j=1wjQji −

∑r
j=i+1w

−
j Qji + γw−i

]
+

Qii + λD1
ii +

γ

2
9: µi ← svd(W>W + δIr) and D1 =Diag(µ−1min)

10: end for
11: H← FGM(X,W,H).
12: end for
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Experimental result : comparing the two logdet inequality
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Experimental result : comparing the two logdet inequality
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Last page - summary

Nonegative Matrix Factorization with logdet regularizer

Algorithmic development of solving the logdet NMF

Slides (and code) avaliable at angms.science

– END OF PRESENTATION –
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