Log-determinant Non-Negative Matrix Factorization via

Successive Trace Approximation

Andersen Ang

Mathématique et recherche opérationnelle
UMONS, Belgium

Email: manshun.ang@umons.ac.be
Homepage: angms.science

May 23, 2018

Joint work with my supervisor : Nicolas Gillis (UMONS, Belgium)


https://sites.google.com/site/nicolasgillis/

The research problem (1/2)

Non-negative Matrix Factorization (NMF) : given
H . mXn
@ Input matrix : X € R
@ Factorization rank : 7, positive integer
We consider 1
min ~||X — WH||%.
win 2| I3
H>0
@ optimzation variables : W € RT*" H € R"*"
@ problem is : non-convex, NP-hard, ill-posed problem

@ we consider low rank/complexity model 1 < r < min{m,n}.
e assumptions : (1) W, H full rank, (2) r is known.
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The research problem (2/2)

log-det Non-negative Matrix Factorization (NMF) : given
e Input matrix : X € RT"*"
o Factorization rank : r, positive integer

We consider
1 9 A T

min §||X - WH||% + 5 logdet(W ' W +01,).

wW>
H>0

optimzation variables : W € R H e R"*"
we consider low rank/complexity model 1 < r < min{m,n}.

assumptions (1) W, H full rank, (2) r is known.
log det(W W + 6I,.) : volume regularizer, § is constant

A > 0 : regularization parameter
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Solution framework : 2-Block Coordinate Descent (1/3)

Problem : given (X, ), solve

! 9 A T
oiny §||X - WH||% + ) logdet(W ' W +01,).
H>0

Algorithm 1 BCD framework for logdet-NMF
1: INPUT : X e R™*", r € Ny
Initialization : W € R"*" and H € R'*"
2. OUTPUT : W € R and H € R*"

3: fork=1,2,... do
Update(W) via arg min & |X — WH]|Z + 3 log det(W W + 61,.).
W>0

»

5. Update(H) via argmin 3| X — WH]|%..
H>0

6: end for
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Solution framework : 2-Block Coordinate Descent (2/3)

@ The subproblems are not symmetric.
On W : argmin || X — WH|% + 5 logdet(W W + 41,
W>0

OnH: argminl||X - WH||%
H>0
o Update(H) is easier, can be solved by FGMT

H « FGM(X, W, H)
o Update(W) is harder as log det(W W + 41,.) is :
> non-convex

» column-coupled
> non-proximable

1 N. Gillis, " Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source
Separation”, SIAM J. on Imaging Sciences 7 (2), pp. 1420-1450, 2014.
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Theme of the presentation

To handle
1 , A .
argmin —|| X — WH||% + = logdet(W ' W + 41,
W>0 2 2

in

Algorithm 2 BCD framework for logdet-NMF
1: INPUT : X € R™*" r € Ny
Initialization : W € R"*" and H € R*"
2. OUTPUT : W € R and H € R*"

cfork=1,2,... do
Update(W) via arg min 3 || X — WH]||% + 3 log det(W TW + 41,.).
W>0

H « FGM(X, W, H).
6: end for

&~ W

o
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Motivation (1/4)

Why : Mathematician don't ask why, just want to solve it
@ Nobody solve it effectively yet

Application from data science : for X = WH
o X = data
® W = basis
o H = coefficient, weighting, encoding, membership
@ r = model complexity
@ m = dimension of data
°

n = # of data points
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Motivation (2/4)

Application from data science : for X = WH
o X = data
© W = basis
o H = coefficient, weighting, encoding, membership
@ m = dimension of data
@ n = # of data points
°

r = model complexity

Matrix X, W and Hwith m=5n="7,r=2

e 7 (—

! :
o xw
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Motivation (2/4)

Application from data science : for X = WH
o X = data
o W = basis
o H = coefficient, weighting, encoding, membership
@ m = dimension of data
@ n = # of data points
@ r = model complexity

Consider 3" column.
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Motivation (2/4)

Application from data science : for X = WH
o X = data
® W = basis
o H = coefficient, weighting, encoding, membership
e m = dimension of data
@ n = # of data points
@ r = model complexity

Consider 3" column
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Motivation (2/4)

Application from data science : for X = WH
o X = data
® W = basis
o H = coefficient, weighting, encoding, membership
@ m = dimension of data
@ n = # of data points
@ r = model complexity

Linear combination :

E [ =

1
+
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Motivation (2/4)

Application from data science : for X = WH

X = data
‘W = basis

H = coefficient, weighting, encoding, membership

m = dimension of data
n = # of data points
r = model complexity

Non-negativity : conic combination

[

.*.

[
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Motivation (2/4)

Application from data science : for X = WH

X = data

W = basis

H = coefficient, weighting, encoding, membership
m = dimension of data

n = # of data points

r = model complexity

Non-negativity + normalization :

convex combination

[

.*.

[
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Motivation (3/4)

Application from data science : for X = WH

(o). ® « Data points
e X = data N T~ O Generators / Endmembers
R .\\\\ — Convex Hull
o W = vertex / generator \\ oo~ ° Outlier / Noisy Points
, '
o H = membership % . '/Q‘x

@ m = dimension of data .
@ n = F# of data points

@ 7 = number of basis +e)

Geometrically : given data points, fit a convex hull
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Motivation (3/4)

Application from data science : for X = WH

C\-\ ° ¢ Data points
X = data N O Generators /| Endmembers
T — Convex Hull
W = vertex / generator NS \.\,\\ » Outlier / Noisy Points

H = membership
m = dimension of data

]
o
o
o
@ n = F# of data points
o

r = number of basis

L]
Geometrically : given data points, fit a minimum volume convex hull
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Motivation (4/4)

Geometry : fit a min. vol. convex hull

Optimization problem (o) ° ¢ Data points
P P \%\‘\\ O Generators / Endmembers
1 o — Convex Hull
min = HX _ VVI_I”2 N “Js-_© Outlier / Noisy Points
wW>0 2 F N8e Ty
H>0 o% o0 T
1/H<1, 2 e e
A T
+§ log det(W ' W + ¢1,.) .

Many applications
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Application 1 : Hyper-spectral imaging

Geoinformatic application :

Input : hyper-sepctral
images data cube

decomposition of hyper spectral images

Output: W spectral basis, H weighting maps
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Application 2 : Source Separation (e.g. music)

Music input

Ma ry had a lit tle lamb
Input Audio Signal x

T T T

0 05 1 15 2 25 3 35 4 45 5
Time[s]
Spectrogram: Representation Frequency vs Time of Input Signal

Frequency
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Application 2 : Source Separation (e.g. music)

Decomposition output
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On solving the problem

Geometry : fit a min. vol. convex hull
Optimization problem

C\\ e ¢ Data points
N T O Generators / Endmembers
1 . \.‘\\\ — Convex Hull
min = HX _ WH”% N\ e © Outlier / Noisy Points
wW>0 2 AN L
H>0 % ¢ DA
1TH<1, E N I

A
+§ log det(W W + 41,

The key to solve such problem is to use majorization-minimization
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How to solve The key iequality : logdet-trace inequality

Given a positive definite matrix A € R™*", we have
logdet A < tr(A —I,).
So we now have an upper bound : put A = WTW + 61,

logdet(W'W +61,.) < tr(WTW 4 (6 — 1)I.)
IX = WH|%Z + Mogdet(WTW +6I,) < | X—-WH|%Z +Atr(WTW 4 (6§ —1)L.)

o logdet(W W + 6I,) is not convex w.r.t. W but the trace is.
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How to solve The key iequality : logdet-trace inequality

Given a positive definite matrix A € R™*", we have
logdet A < tr(A —I,).
So we now have an upper bound : put A = WTW + 61,
logdet(W'W +61,.) < tr(WTW 4 (6 — 1)I.)
IX = WH|%Z + Mogdet(WTW +6I,) < | X—-WH|%Z +Atr(WTW 4 (6§ —1)L.)

o logdet(W W + 6I,) is not convex w.r.t. W but the trace is.
@ Algorithm that minimizes this upper bound :

[y

: for k =1 to itermax do
W « argmin | X — WH||%Z + Atr(WTW + (§ — 1)L,.).
W2>0

H + FGM(X, W, H).
end for

n

s w

@ Don't stop here, it can be better !
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A closer look on the logdet-trace inequality

@ Given a positive definite matrix A € R™™", we have

logdet A < tr(A —L,).
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A closer look on the logdet-trace inequality

@ Given a positive definite matrix A € R™™", we have
logdet A < tr(A —1I,).

@ Let u denotes eigenvalues, we have

detA:H,ui and tI"A:ZMi-
i i

logdet A < tr(A — ZloguZ < Z

@ log 1; means matrix A has to be positive definite (u; > 0V7), which
is satisfied for A = WTW + 4I,.
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A closer look on the logdet-trace inequality

@ Given a positive definite matrix A € R™™", we have
logdet A < tr(A —1I,).

@ Let u denotes eigenvalues, we have

detA:H,ui and tI"A:ZMi-
i i

logdet A < tr(A = ZloguZ < Z

@ log 1; means matrix A has to be positive definite (u; > 0V7), which
is satisfied for A = WTW + 4I,.

Yo logpi < .(wi —1) <« logu; < py —1Vi. We can focuse on
the inequality log p; < py — 1 with p; >0
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Onlogz <x—1,2>0

@ logx is concave.

@ x — 1 is the first order Taylor approximation of logx at = = 1.
e x — 1 is the only convex-tight upper bound of log z.

o Tight : = — 1 touch logx at the point x = 1.

1 Higher order Taylor approximation of log x is tight, more accurate but not convex. 26 / 35



Onlogz <x—1,2>0

log x is concave.

x — 1 is the first order Taylor approximation of logx at x = 1.
x — 1 is the only convex-tight upper bound of log z.!

Tight : = — 1 touch log x at the point x = 1.

Generalize to point xg : logz < g(z[z0) = a1(wo)r + ap(wo) is

1
logz < —z +logxzg — 1.
o

loga and g at © =1 logx and g at = = 0.5
2 2
0 0
-2 —_—log x -2 — g %

g g

4 4

o 05 1 15 2 o 05 1 15 2

x x

1 Higher order Taylor approximation of log x is tight, more accurate but not convex. 27 / 35



A parametric trace upper bound for log det A

logdet A = Z log 14

1 _
E —u; +logp; —1
l}LA

1

IN

IN

1 _
> ——pi+logp; —1
min

= tr(D'A + DY)

1
D! = —1,, D° = Diag(log p1; — 1), p;

; is p; of the previous step

Hmin

Put A = WTW + 6L, we have

logdet(W'W +6I,) < tr(D'W'W +6D! + DY)
(ignore constants) = trD'WTW
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Comparing upper bounds for log det A

The original function F(W) = logdet(W "W + §1,.) is upper bounded by

Eigen bound (B;): trD'W'W + constants.
Taylor bound (B): trD™°"WTW + constants.

e Constants D!, D? are defined as before, and constant
D™er — (W, W_; +6I,)" L.
@ Both bounds are trace functional with an relaxation gap :
» (Bj) has eigen gap ft; > fimin
» (Bs) has convexification gap
» D! is diagonal but D™ is not (it is dense) = column-wise
decomposition is possible
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Successive Trace Approximation (STA)

Algorithm 3 Successive Trace Approximation
1 INPUT: X e RT*"™, r e Ny, A >0, 6 > 0.

2: OUTPUT: W ¢ ]R’f” and H € ]RCFX".

3: INITIALIZATION : W € RT” ,He RQX”, D' =1,

4: for K =1 to itermax do

5.  for k =1 to itermax do

6: W + argmin | X — WH|Z + Atr D'WTW.
W>0

7 H + FGM(X, W, H).

8: end for

9:  p; +svd(WTW +61,.), D! =Diag(u_.)

10: end for
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Improving STA

The STA algorithm with decomposed f(w;)

Algorithm 4 Successive Trace Approximation
1L INPUT: X e R?*", r €Ny, A>0and 6 >0

2. OUTPUT: W € R"*" and H € R}*"

3: INITIALIZATION : W e R, He R" and D! = [,,, y =107°

4: for K =1 to itermax do

5.  for £ =1 to itermax do

6: for i =1tor do

7: w; = argﬂtin fwi) = |\Xz'*wihi||%+>\D}¢||wz‘H§+%||wz‘*w;|!%
Wi =

8: H + FGM(X, W, H).

0: end for

10: end for
11 p; — svd(WTW +61) and D! =Diag(s_L)
12: end for
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Improving STA

Finally we have

Algorithm 5 STA, Final form

1 INPUT: X e RT™", re Ny, A>0and 6 >0
2. OUTPUT: W € R"*" and H € R}*"
3: INITIALIZATION : W € RT” , He RQX" and D' =1, y=10"6
4: for K =1 to itermax do
5. for k =1 to itermax do
6: P=XH" and Q=HH'.
7 for i =1 tor do
[P = 322 wi Qi — Sy wy Qi+ ywy |,

8: w; =

Qii + ADj; + %
o p1i < svd(WTW +61,) and D' =Diag(ys;,.,)
10: end for

111 H <+ FGM(X, W, H),
12:  end for
13: end for 32/35



Experimental result : comparing the two logdet inequality
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Experimental result : comparing the two logdet inequality

Result of " Taylor” Result of "Eigen”
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Last page - summary

@ Nonegative Matrix Factorization with logdet regularizer

@ Algorithmic development of solving the logdet NMF

Slides (and code) avaliable at angms.science

— END OF PRESENTATION -
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