
Volume Regularized Non-negative Matrix Factorizations

Andersen M. S. Ang and Nicolas Gillis,
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Volume regularized NMF
Given X ∈ Rm×n

+ , find W ∈ Rm×r
+ and H ∈ Rn×r

+ by solving

[W, H] = argmin
W, H

1

2
‖X−WH>‖ + λg(W) s.t. W ≥ 0, H ≥ 0, H1r = 1r.

Here g(W) are regularizers on the vol. of the cvx hull spanned by the columns of W

gdet(W) =
1

2
det(W>W), glogdet(W) =

1

2
log det(W>W + δIr).

We propose a new algorithm based on an eigenvalue upper bound of the logdet function.

Geometric interpretation :

H1r = 1r means H row-stochastic, so the
convex hull of the columns of W should
approximate the columns of X.
We assumes no pure data point.

Volume regularizers and algorithms
We use coorindate descent algorithms.
Update H by fast projected gradient method (FGM).
Update W based on the structure of g, using projected gradient descent method :

For the Det regularizer det(W>W),
we optimize the column wi of W sequentially [2]. We have

det(W>W) = γiw
>
i Biwi,

where γi = det(W>
6=iW 6=i), Bi = Im −W 6=i(W

>
6=iW 6=i)

−1W 6=i.
Weighting Bi is proj. onto orthogonal complement of column space of W 6=i.
Interpretation : det = reweighted l2 norm regularization on columns.

For the logdet regularizer log det(W>W + δIr),
we tackle using upper bounds :

• Taylor upper bound log det(W>W + δIr) ≤ tr(DW>W) + c, which is the
first-order Taylor approximation around matrix Y where D = (Y>Y + δIr)

−1.
The weighting D is a dense matrix connecting columns of W.
It is a tight bound, with theoretical convergence guarantee.
We use projected gradient for updating W.

• Eigen upper bound log det(W>W+ δIr) ≤ νtr(W>W)+ c = ν
∑

i ‖wi‖22+ c,
where weighting ν =

(
νmin(Y

>Y + δIr)
)−1

is a scalar.
It is an eigen-approximation of Taylor bound.
It is a loose bound, no theoretical convergence guarantee, but decomposable structure.
We use column-wise update for updating W : same as det.

Experiments and results
Synthetic experiment - given (m,n, r) :

• Generate ground truth Wij ∼ U [0 1] for all (i, j)

• Generate H ∼ Dirichlete(1, 1, 1) such that H is row-stochastic

• Observed data X = WH +N, N is white Gaussian noise

• Data points with corresponding Hij > θ are removed, θ ∈ [0 1] is purity index

• Initialize Wini, Hini by SNPA, λ = 5
f (Wini,Hini)

|g(Wini)|
, 200 iterations

Result 1. The new algorithm ”Eigen” is competitive with the standard Taylor bound.

Result 2. logdet regularizers work better than det regularizer.

Table. Relative percentage error (mean±std) over 100 trials on fitting X (first column) and W (second column).

θ = 0.9, no noise
Det 2.49± 0.51 9.79± 1.49
Taylor 0.46± 0.12 3.29± 0.64
Eigen 0.01± 0.00 1.19± 0.40

θ = 0.9, 10% noise
Det 27.18± 0.45 36.64± 3.45
Taylor 27.76± 0.33 25.43± 2.37
Eigen 23.64± 0.14 33.21± 5.25

θ = 0.7, no noise
Det 3.36± 0.62 11.74± 2.05
Taylor 1.76± 0.34 8.63± 1.13
Eigen 0.02± 0.01 2.80± 1.50

θ = 0.7, 10% noise
Det 27.17± 0.42 39.03± 3.51
Taylor 28.00± 0.34 27.97± 2.10
Eigen 23.58± 0.14 37.43± 4.10

San Diego airport hyperspectral image
• ”Eigen” with r = 8 (other parameters same as the synthetic cases).

• Preprocessing : replace negative values to 0, remove spikes by length-20 median filter.

San Diego hyperspectral image

Before and after median filter

W, the spectra extracted

- components 1, 2 : roof tops
- components 3, 8 : trees, grass
- others : different road surfaces

Conclusion
• logdet regularizers perform better than the det regularizer.

• a new algorithm using column-wise update of columns of W called
”Eigen” for logdet regularizer.

• ”Eigen” has a better numerical performance than the matrix-wise up-
date algorithm ”Taylor”.

• ”Eigen” can decompose the San Diego airport image into meaningful
components.
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