Volume Regularized Non-negative Matrix Factorizations

Andersen M. S. Ang and Nicolas Gillis, Université de Mons, Belgium {manshun.ang, nicolas.gillis}@umons.ac.be

Volume regularized NMF

Given
$$\mathbf{X} \in \mathbb{R}^{m \times n}_+$$
, find $\mathbf{W} \in \mathbb{R}^{m \times r}_+$ and $\mathbf{H} \in \mathbb{R}^{n \times r}_+$ by solving
 $[\mathbf{W}, \mathbf{H}] = \underset{\mathbf{W}, \mathbf{H}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{X} - \mathbf{W}\mathbf{H}^\top\| + \lambda g(\mathbf{W}) \text{ s.t. } \mathbf{W} \ge 0, \ \mathbf{H} \ge 0, \ \mathbf{H}\mathbf{1}_r = \mathbf{1}_r.$

Here $g(\mathbf{W})$ are regularizers on the vol. of the cvx hull spanned by the columns of \mathbf{W} $g_{\text{det}}(\mathbf{W}) = \frac{1}{2} \det(\mathbf{W}^{\top}\mathbf{W}), \quad g_{\text{logdet}}(\mathbf{W}) = \frac{1}{2} \log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r).$

We propose a new algorithm based on an eigenvalue upper bound of the logdet function.

Geometric interpretation :

 $H1_r = 1_r$ means H row-stochastic, so the

Result 2. logdet regularizers work better than det regularizer.

Table. Relative percentage error (mean \pm std) over 100 trials on fitting X (first column) and W (second column).

$\theta = 0.9$, no noise	$\theta = 0.9$, 10% noise
Det 2.49 ± 0.51 9.79 ± 1.49	Det 27.18 ± 0.45 36.64 ± 3.45
Faylor 0.46 ± 0.12 3.29 ± 0.64	Taylor 27.76 ± 0.33 25 .43 \pm 2.37
Eigen 0.01 ± 0.00 1.19 ± 0.40	Eigen 23.64 \pm 0.14 33.21 \pm 5.25
$\theta = 0.7$. no noise	$\theta = 0.7.10\%$ noise
• • • • • • • • • • • • • • • • • • • •	
Det 3.36 ± 0.62 11.74 ± 2.05	Det 27.17 ± 0.42 39.03 ± 3.51
Det 3.36 ± 0.62 11.74 ± 2.05 Faylor 1.76 ± 0.34 8.63 ± 1.13	Det 27.17 ± 0.42 39.03 ± 3.51 Taylor 28.00 ± 0.34 27.97 ± 2.10
Det 3.36 ± 0.62 11.74 ± 2.05 Faylor 1.76 ± 0.34 8.63 ± 1.13 Eigen 0.02 ± 0.01 2.80 ± 1.50	Det 27.17 ± 0.42 39.03 ± 3.51 Taylor 28.00 ± 0.34 27.97 ± 2.10 Eigen 23.58 ± 0.14 37.43 ± 4.10

convex hull of the columns of \mathbf{W} should approximate the columns of \mathbf{X} . We assumes no pure data point.

Volume regularizers and algorithms

We use coorindate descent algorithms.

Update **H** by fast projected gradient method (FGM).

Update W based on the structure of g, using projected gradient descent method :

For the **Det regularizer** $det(\mathbf{W}^{\top}\mathbf{W})$,

we optimize the column \mathbf{w}_i of \mathbf{W} sequentially [2]. We have

 $\det(\mathbf{W}^{\top}\mathbf{W}) = \gamma_i \mathbf{w}_i^{\top} \mathbf{B}_i \mathbf{w}_i,$

where $\gamma_i = \det(\mathbf{W}_{\neq i}^\top \mathbf{W}_{\neq i})$, $\mathbf{B}_i = \mathbf{I}_m - \mathbf{W}_{\neq i}(\mathbf{W}_{\neq i}^\top \mathbf{W}_{\neq i})^{-1}\mathbf{W}_{\neq i}$. Weighting \mathbf{B}_i is proj. onto orthogonal complement of column space of $\mathbf{W}_{\neq i}$. Interpretation : det = reweighted l_2 norm regularization on columns.

For the logdet regularizer $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r)$, we tackle using upper bounds :

• Taylor upper bound $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) \leq \operatorname{tr}(\mathbf{D}\mathbf{W}^{\top}\mathbf{W}) + c$, which is the first-order Taylor approximation around matrix Y where $\mathbf{D} = (\mathbf{Y}^{\top}\mathbf{Y} + \delta \mathbf{I}_r)^{-1}$. The weighting D is a dense matrix connecting columns of W. It is a tight bound, with theoretical convergence guarantee. We use projected gradient for updating \mathbf{W} .

San Diego airport hyperspectral image

- "Eigen" with r = 8 (other parameters same as the synthetic cases).
- Preprocessing : replace negative values to 0, remove spikes by length-20 median filter.

• Eigen upper bound $\log \det(\mathbf{W}^{\top}\mathbf{W} + \delta \mathbf{I}_r) \leq \nu \operatorname{tr}(\mathbf{W}^{\top}\mathbf{W}) + c = \nu \sum_i \|\mathbf{w}_i\|_2^2 + c$, where weighting $\nu = (\nu_{\min}(\mathbf{Y}^{\top}\mathbf{Y} + \delta \mathbf{I}_r))^{-1}$ is a scalar.

It is an eigen-approximation of Taylor bound.

It is a loose bound, no theoretical convergence guarantee, but decomposable structure. We use column-wise update for updating W : same as det.

Experiments and results

Synthetic experiment - given (m, n, r) :

- Generate ground truth $\mathbf{W}_{ij} \sim \mathcal{U}[0 \ 1]$ for all (i, j)
- Generate $\mathbf{H} \sim \mathsf{Dirichlete}(1, 1, 1)$ such that \mathbf{H} is row-stochastic
- Observed data $\mathbf{X} = \mathbf{W}\mathbf{H} + \mathbf{N}$, N is white Gaussian noise
- Data points with corresponding $\mathbf{H}_{ii} > \theta$ are removed, $\theta \in [0 \ 1]$ is purity index
- Initialize \mathbf{W}^{ini} , \mathbf{H}^{ini} by SNPA, $\lambda = 5 \frac{f(\mathbf{W}^{\text{ini}}, \mathbf{H}^{\text{ini}})}{|q(\mathbf{W}^{\text{ini}})|}$, 200 iterations Result 1. The new algorithm "Eigen" is competitive with the standard Taylor bound.

Conclusion

- logdet regularizers perform better than the det regularizer.
- ullet a new algorithm using column-wise update of columns of ${f W}$ called "Eigen" for logdet regularizer.
- "Eigen" has a better numerical performance than the matrix-wise update algorithm "Taylor".
- "Eigen" can decompose the San Diego airport image into meaningful components.

References

[1] Andersen M.S. Ang and Nicolas Gillis, "Volume regularized Non-negative Matrix Factorizations", IEEE Whispers 2018, 23-26 September 2018, Amsterdam, Netherlands

[2] Zhou, G., Xie, S., Yang, Z., Yang, J.M. and He, Z., "Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts", IEEE Trans. NN, vol. 22, no. 10, pp.1626–1637, 2011 [3] Nicolas Gillis and Stephen Vavasis, "Fast and robust recursive algorithmsfor separable nonnegative matrix factorization", IEEE Trans. PAMI, vol. 36, no. 4, pp.698–714, 2014