Volume Regularized Non-negative Matrix Factorizations
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VOl ume regu |a r|zed N M F Result 2. logdet regularizers work better than det regularizer.

Table. Relative percentage error (mean+std) over 100 trials on fitting X (first column) and W' (second column).

Given X € R, find W € R and H € R"*" by solving 0 = 0.9, no noise 0 = 0.9, 10% noise
W H| — 1 X _ WHT (W W>0 H>0 HI —1 Det 249 +£0.501 9.79+1.49 Det 27.18 +0.45 36.64 4= 3.45
W, H| = Rt X - [ +29(W)st. W =0, H=0, Hl, =1,. Taylor 0.4640.12 3.29 +0.64 Taylor 27.76 +0.33 25.43 + 2.37
Here g(W) are regularizers on the vol. of the cvx hull spanned by the columns of W Eigen 0.01+0.00 1.19 + 0.40 Eigen 23.64 +£0.14 33.21 £5.25
1 1 ¢ = 0.7, no noise 0 = 0.7, 10% noise
(W) = =det(W' W), Giogdet(W) = = log det(W "W + 6L,). ' '
Geer( W) = 5 det( )» Glogaer( W) = 5 log det( oL Det  3.36+0.62 11.74 + 2.05 Det  27.17+042 39.03 + 3.51
We propose a new algorithm based on an eigenvalue upper bound of the logdet function. Taylor 1.76 +0.34 8.63 & 1.13 Taylor 28.00 +0.34 27.97 +2.10
. . o | ] Figen 0.02 4 0.01 2.80 + 1.50 Figen 23.58 4+ 0.14 37.43 4 4.10
Geometric interpretation : 7| @ yytrue e
04l -estimated - "';,“‘“ a'«.‘{'““ ]
H1, = 1, means H row-stochastic, so the AAL ,,sa'"’?ﬁ-;,.:* . . .
convex hull of the columns of W should . AR e Sa 1 D|eg0 dl rpOrt hyperSpeCt ral |mage
: 0o~ _ f'* h"‘"*‘ u,*-ﬁ-i« . . :
approximate the columns of X. ol hﬁffﬂfﬁ_ﬁfmt}w e "Eigen” with r = 8 (other parameters same as the synthetic cases).
We assumes no pure data point. | RN AN e

e Preprocessing : replace negative values to 0, remove spikes by length-20 median filter.
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Volume regularizers and algorithms

We use coorindate descent algorithms.
Update H by fast projected gradient method (FGM).
Update W based on the structure of g, using projected gradient descent method :

~or the Det regularizer det(W''W),
we optimize the column w; of W sequentially [2]. We have

det(W'W) = v;w, B;w;,
where Vi = det(W;W#), B, =1, — W#Z(WTZW#Z)_1W7§Z
Weighting B; is proj. onto orthogonal complement of column space of W ;.
Interpretation : det = reweighted /5 norm regularization on columns.

For the logdet regularizer log det(W 'W + 41,.), San Diego hyperspectral image

we tackle using upper bounds : 110%

e Taylor upper bound logdet(W'W +0I,) < tr(DW W) + ¢, which is the | o dan
first-order Taylor approximation around matrix Y where D = (Y'Y + ¢IL,) L. | ' Erpmpmmg'i
The weighting D is a dense matrix connecting columns of W. DJW & -

It is a tight bound, with theoretical convergence guarantee.
We use projected gradient for updating W. B

e Eigen upper bound logdet(W'W +61,) < vtr(W'W)+c=v> ||wi5+c, 7|
where weighting v = (Vmin(YTY + 5174))_1 IS a scalar. |
It is an eigen-approximation of Taylor bound. Before and after median filter

It is a loose bound, no theoretical convergence guarantee, but decomposable structure.
We use column-wise update for updating W : same as det. 2
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Experiments and results N

Synthetic experiment - given (m,n,r) :

o —

o Generate ground truth W;; ~ /|0 1] for all (z, 7) o

e Generate H ~ Dirichlete(1, 1, 1) such that H is row-stochastic W, the spectra extracted

e Observed data X = WH + N, N is white Gaussian noise - components 1, 2 : roof tops

e Data points with corresponding H;; > 6 are removed, 6 € |0 1| is purity index - components 3, 8 : trees, grass
F(Wini Hini) - others : different road surfaces

o Initialize W™, H™ by SNPA, A =5 - 200 iterations

[g(W™)
Result 1. The new algorithm "Eigen” is competitive with the standard Taylor bound.
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Hesult of 7 Laylor”
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Conclusion

e |logdet regularizers perform better than the det regularizer.
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< inner loop
11| © outer loop

€ e a new algorithm using column-wise update of columns of W called

"Eigen” for logdet regularizer.

1 e "Eigen” has a better numerical performance than the matrix-wise up-
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] date algorithm " Taylor" .

Result of “Eigen e "Eigen”’ can decompose the San Diego airport image into meaningful

components.

[Wo = Wir/IWollr

Error values over 200 1 Refe re n Ces

iterations of "Tavlor" and
"Eigen'" in a particular
experiment with same
initialization. 4 Whispers 2018, 23-26 September 2018, Amsterdam, Netherlands
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