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Quadratic model m(s;x) := f(x) +
〈
∇f(x), s

〉
+ 1

2
∥s∥2B

Sufficient descent: s = −α∇f(x) then ∆m(s) ≥ ∥∇f(x)∥2
2

min

{
∥∇f(x)∥2

∥B∥ , δ

}
Theory of TR convergence

1. f − m gap:
∣∣f(x + s) − m(s;x)

∣∣ ≤ κH+κB
2

δ2

2. Progress (small radius =⇒ success): ∇f(xk) ̸= 0, δk ≤ ∥∇f(xk)∥2
κH+κB

min
(
1, 1−ηvs

)
=⇒ k ∈ V, δk+1 ≥ δk

3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

!△These notes assume you have seen trust-region method (TRM)
You should be familiar with terms: model, radius, success, model decrease, actual decrease
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Problem setup: smooth unconstrained optimization

(P) : min
x

f(x).

▶ C2 ∋ f : Rn → R
▶ domf = Rn and the target of f is R. standard Euclidean space and inner product

▶ f is twice differentiable. f ∈ C2
▶ For all point ξ, we have gradient ∇xf(ξ) and Hessian H(ξ) := ∇xxf(ξ) and they are continuous

▶ f is possibly nonconvex

▶ x ∈ Rn is the optimization variable. No constraint: all x ∈ Rn feasible.

▶ Solve P by iterative method: starting from x0, generate a sequence
{
xk

}
k∈N.

Two ways:

▶ Gradient descent / line-search method
▶ Trust-region method ← our focus here
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Review of gradient descent (GD) (P) : min
x

f(x)

▶ Line search: generate
{
xk

}
k∈N as xk+1 = xk + αkdk = xk − αk∇f(xk).

▶ αk ∈ R++ stepsize
▶ dk ∈ Rn update direction
▶ GD set dk = −∇f(xk)

▶ Understanding GD: xk − αk∇f(xk) comes from a local quadratic model m(ξ;x, α), and GD is doing is
xk+1 = argmin

ξ
m(ξ;xk, αk)

x− α∇f(x) = argmin
ξ

m(ξ;x, α) := f(x) + ⟨∇f(x), ξ − x⟩+ 1

2α
∥ξ − x∥22

How to see it: take ∇ξm(ξ;x, α) = 0, see here for details.

▶ See angms.science for more on GD
▶ introduction
▶ descent lemma
▶ convergence on convex smooth function
▶ convergence on strongly convex smooth function
▶ projected gradient descent
▶ proximal gradient descent
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https://angms.science/doc/CVX/CVX_PGD.pdf
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Trust-region (TR) method: a “dual” of GD

▶ Notation: δ > 0 denotes the TR radius.

▶ Given a fixed δ, TR finds an update direction s via solving a model m

s = argmin
∥s∥≤δ

m(s;x) := f(x) +
〈
∇f(x), s

〉
+

1

2

〈
Bs, s

〉
, (TR subproblem)

and then perform the update
x+ =

{
x+ s if f(x+ s) “ < ” f(x)

x otherwise

▶ We minimize m instead of f to get s

▶ m(s;x) is a simple local approximation of f at x
▶ m(s;x) may not resemble f(x+ s) for big s =⇒ limit ∥s∥ ≤ δ

• we have to choose a norm ∥ · ∥ (Euclidean may not be the best)
▶ easier to find s via minm than min f

!△ TR subproblem can be hard to solve.
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About m(s;x) := f(x) +
〈
∇f(x), s

〉
+

1

2

〈
Bs, s

〉

s = argmin
∥s∥≤δ

m(s;x) := f(x)︸ ︷︷ ︸
constant

+
〈
∇f(x), s

〉
+

1

2

〈
Bs, s

〉
. (TR subproblem)

▶ argmin ignores constant:

s = argmin
∥s∥≤δ

m(s;x) :=
〈
∇f(x), s

〉
+

1

2

〈
Bs, s

〉
.

▶ The constant term f(x) is actually m with s = 0

m(0;x) = f(x) . (0th-order equivalence)
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Equivalence between f and m(s;x) := f(x) +
〈
∇f(x), s

〉
+

1

2

〈
Bs, s

〉
▶ “Tangential properties” / “Taylor-equivalence” / coincident property

▶ 0th-order equivalence: m(0;x) = f(x) . f and m coincide at current iterate

▶ 1st-order equivalence: ∇sm(s;x)
∣∣∣
s=0

= ∇f(x). gradf and gradm coincide at current iterate

▶ 2nd-order equivalence: If B = Hessian H(ξ) of f at ξ ∈ [x,x+ s]︸ ︷︷ ︸
this is mean value theorem

(this assumes f ∈ C2)

Then ∇2
sm(s;x)

∣∣∣
s=0

= H(ξ).

▶ Predicted decrease / model decrease

∆m(s) := m(0;x)−m(s;x)

= f(x) −
(
f(x) +

〈
∇f(x), s

〉
+

1

2

〈
Bs, s

〉)
= −

〈
∇f(x), s

〉
− 1

2

〈
Bs, s

〉
.
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About B s = argmin
∥s∥≤δ

m(s;x) := f(x) + ⟨∇f(x), s⟩+ 1

2
⟨Bs, s⟩

▶ B ∈ S : B is symmetric

▶ Indefinite B: TR subproblem is unbounded below .

▶ Positive semi-definite B: TR subproblem is possibly unbounded below .
▶ This includes the case B = 0n×n
▶ recall 0n×n is both positive semi-definite and negative semi-definite
▶ B = 0n×n: we have linear model m

▶ Positive definite B: TR subproblem is bounded below.

▶ If B = H(x) (Hessian of f at x) then we have a Newton-type quadratic model m.

▶ Quasi-Newton approach use B to approximate H.

▶ Importance of : in this case s∗ is simply the extreme value in the constraint set ∥s∥ ≤ δ.
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If s = −α∇f(x) (GD direction) s = argmin
∥s∥≤δ

m(s;x) := f(x) + ⟨∇f(x), s⟩+ 1

2
⟨Bs, s⟩

α∗ = argmin
0≤α∥∇f(x)∥≤δ

f(x) +
〈
∇f(x),−α∇f(x)

〉
+

1

2

〈
Bα∇f(x), α∇f(x)

〉
= argmin

0≤α≤ δ
∥∇f(x)∥

〈
B∇f(x),∇f(x)

〉
2

α2 − ∥∇f(x)∥22 α

▶ A simple quadratic scalar optimization problem

x = argmin
0≤x≤u

ax2 − bx b, u ≥ 0

!△ a can be negative if B is indefinite / semi-positive definite.

▶ s = −α∇f(x) is called Cauchy point in some books.
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On x = argmin
0≤x≤u

ax2 − bx with b ≥ 0, u ≥ 0

▶ Case a ≤ 0
Problem is unbounded below: a︸︷︷︸

≤0

x2︸︷︷︸
≥0︸ ︷︷ ︸

≤0

− b︸︷︷︸
≥0

x︸︷︷︸
≥0︸ ︷︷ ︸

≤0

. Optimal x is at the boundary x∗ = u.

▶ Case a > 0
Completing the squares ax2 − bx = a

(
x2 − b

a

)
gives

ax2 − bx = a
(
x2 − b

a
+

( b

2a

)2 − ( b

2a

)2)
= a

((
x− b

2a

)2 − b2

4a2

)
= a

(
x− b

2a

)2 − b2

4a
.

The minimum of the quadratic occurs at x = b
2a
. Depends on where is b

2a
, we have

x∗ = median
(
0,

b

2a
, u

)
=



0
b

2a
≤ 0

b

2a
0 <

b

2a
≤ u

u
b

2a
> u
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Summary of TR-subproblem

s = argmin
∥s∥≤δ

m(s;x) := f(x)︸ ︷︷ ︸
=:m(0;x)

+⟨∇f(x), s⟩+ 1

2
⟨Bs, s⟩.

▶ Predicted decrease ∆m(s) := m(0;x)−m(s;x) = −⟨∇f(x), s⟩ − 1

2
⟨Bs, s⟩

▶ If s = −α∇f(x),

∆m
(
− α∇f(x)

)
= −

〈
B∇f(x),∇f(x)

〉
2

α2 + ∥∇f(x)∥22 α.
Two cases

1. α∗ = δ
∥∇f(x)∥ ⟨B∇f(x),∇f(x)⟩ ≤ 0

2. α∗ =


0

∥∇f(x)∥22
⟨B∇f(x),∇f(x)⟩ ≤ 0

∥∇f(x)∥22
⟨B∇f(x),∇f(x)⟩ 0 <

∥∇f(x)∥22
⟨B∇f(x),∇f(x)⟩ ≤

δ
∥∇f(x)∥

δ
∥∇f(x)∥

∥∇f(x)∥22
⟨B∇f(x),∇f(x)⟩ > δ

∥∇f(x)∥

⟨B∇f(x),∇f(x)⟩ > 0

Usually we use positive definite B so α∗ = 0 is impossible.
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Weighted norm

▶ We will see the term
〈
B∇f(x),∇f(x)

〉
many times.

▶ Shorthand notation: ⟨x,y⟩A := ⟨Ax,y⟩ is called weighted inner product under the weight A

▶ Weighted norm: ∥x∥A :=
√
⟨x,x⟩A =

√
⟨Ax,x⟩

▶ Weighted norm-squared: ∥x∥2A = ⟨x,x⟩A = ⟨Ax,x⟩

▶ Easy careless-mistake: ∥x∥2A ̸= ∥Ax∥22

∥x∥2A = ⟨x,x⟩A = ⟨Ax,x⟩ ≠ ⟨Ax,Ax⟩ = ∥Ax∥22

▶ Using weighted norm,
〈
B∇f(x),∇f(x)

〉
=

〈
∇f(x),∇f(x)

〉
B

= ∥∇f(x)∥2B
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Summary of TR-subproblem, in weighted norm

s = argmin
∥s∥≤δ

m(s;x) := f(x)︸ ︷︷ ︸
=:m(0;x)

+⟨∇f(x), s⟩+ 1

2
∥s∥2B .

▶ Predicted decrease ∆m(s) := m(0;x)−m(s;x) = −⟨∇f(x), s⟩ − 1

2
∥s∥2B

▶ If s = −α∇f(x),

∆m
(
− α∇f(x)

)
= −∥∇f(x)∥

2
B

2
α2 + ∥∇f(x)∥22 α.

Two cases

1. α∗ = δ
∥∇f(x)∥ ∥∇f(x)∥2B ≤ 0

2. α∗ =


0

∥∇f(x)∥22
∥∇f(x)∥2

B
≤ 0

∥∇f(x)∥22
∥∇f(x)∥2

B
0 <

∥∇f(x)∥22
∥∇f(x)∥2

B
≤ δ

∥∇f(x)∥

δ
∥∇f(x)∥

∥∇f(x)∥22
∥∇f(x)∥2

B
> δ

∥∇f(x)∥

∥∇f(x)∥2B > 0

Usually we use positive definite B so α∗ = 0 is impossible.
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Summary of TR-subproblem, in compact form

s = argmin
∥s∥≤δ

m(s;x) := f(x)︸ ︷︷ ︸
=:m(0;x)

+⟨∇f(x), s⟩+ 1

2
∥s∥2B .

▶ Predicted decrease ∆m(s) := m(0;x)−m(s;x) = −⟨∇f(x), s⟩ − 1

2
∥s∥2B

▶ If s = −α∇f(x),

∆m
(
− α∇f(x)

)
= −∥∇f(x)∥

2
B

2
α2 + ∥∇f(x)∥22 α.

Two cases

1. α∗ = δ
∥∇f(x)∥ ∥∇f(x)∥2B ≤ 0

2. α∗ = median
(
0,

∥∇f(x)∥22
∥∇f(x)∥2

B
, δ
∥∇f(x)∥

)
∥∇f(x)∥2B > 0

Usually we use positive definite B so α∗ = 0 is impossible.
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If ∥∇f(x)∥2B ≤ 0 m(s;x) := f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2B

▶ Form previous slide, α∗ = δ
∥∇f(x)∥2

if .

▶ Put s = −α∇f(x) in m(s;x)

m
(
− α∇f(x);x

)
= f(x)− α∥∇f(x)∥22 + α2

2
∥∇f(x)∥2B (i)

α2

2
∥∇f(x)∥2B ≤ 0 (ii)

m
(
− α∇f(x);x

)
≤ f(x)− α∥∇f(x)∥22 (i) + (ii)

= f(x)− δ∥∇f(x)∥2 α∗ = δ
∥∇f(x)∥2

if
m(0;x)=f(x)

= m(0;x)− δ∥∇f(x)∥2

Hence
∆m

(
− α∇f(x)

)
:= m(0;x)−m

(
− α∇f(x);x

)
≥ δ∥∇f(x)∥2.

▶ We have:
IF ∥∇f(x)∥2B ≤ 0 THEN ∆m

(
− α∇f(x)

)︸ ︷︷ ︸
=:m(0;x)−m(−α∇f(x);x)

≥ δ∥∇f(x)∥2.
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If ∥∇f(x)∥2B > 0, case 1 m(s;x) := f(x) + ⟨∇f(x), s⟩ + 1
2∥s∥B

m(−α∇f(x);x) = f(x) − α∥∇f(x)∥2
2 + α2

2 ∥∇f(x)∥2
B

α
∗

= median
(
0,

∥∇f(x)∥2
2

∥∇f(x)∥2
B

,
δ

∥∇f(x)∥

)
=



0
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤ 0

∥∇f(x)∥2
2

∥∇f(x)∥2
B

0 <
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤
δ

∥∇f(x)∥
δ

∥∇f(x)∥
∥∇f(x)∥2

2

∥∇f(x)∥2
B

>
δ

∥∇f(x)∥

▶ What we want: to derive bound for

∆m
(
− α∗∇f(x)

)
:= m(0;x)−m(−α∗∇f(x);x) = α∗∥∇f(x)∥22 −

α∗2

2
∥∇f(x)∥2B .

▶ Consider case 1 α∗ = 0: we have no update: ∆m
(
− α∗∇f(x)

)
= 0.

▶ Note that this case is impossible if we use positive definite B
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If ∥∇f(x)∥2B > 0, case 2 m(s;x) := f(x) + ⟨∇f(x), s⟩ + 1
2∥s∥B

m(−α∇f(x);x) = f(x) − α∥∇f(x)∥2
2 + α2

2 ∥∇f(x)∥2
B

α
∗

= median
(
0,

∥∇f(x)∥2
2

∥∇f(x)∥2
B

,
δ

∥∇f(x)∥

)
=



0
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤ 0

∥∇f(x)∥2
2

∥∇f(x)∥2
B

0 <
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤
δ

∥∇f(x)∥
δ

∥∇f(x)∥
∥∇f(x)∥2

2

∥∇f(x)∥2
B

>
δ

∥∇f(x)∥

▶ Consider case 2 α∗ =
∥∇f(x)∥2

2

∥∇f(x)∥2
B

∆m
(
− α∗∇f(x)

)
= α∗∥∇f(x)∥2

2 −
α∗2

2
∥∇f(x)∥2

B

α∗
=

∥∇f(x)∥4
2

∥∇f(x)∥2
B

−
∥∇f(x)∥4

2

2∥∇f(x)∥2
B

=
∥∇f(x)∥4

2

2∥∇f(x)∥2
B

∥∇f(x)∥2
B ≤ ∥∇f(x)∥2

2∥B∥2

≥
∥∇f(x)∥2

2

2∥B∥2

.

Where ∥∇f(x)∥2
B ≤ ∥B∇f(x)∥2∥∇f(x)∥2 ≤ ∥B∥2∥∇f(x)∥2∥∇f(x)∥2 = ∥B∥2∥∇f(x)∥2

2
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If ∥∇f(x)∥2B > 0, case 3 m(s;x) := f(x) + ⟨∇f(x), s⟩ + 1
2∥s∥B

m(−α∇f(x);x) = f(x) − α∥∇f(x)∥2
2 + α2

2 ∥∇f(x)∥2
B

α
∗

= median
(
0,

∥∇f(x)∥2
2

∥∇f(x)∥2
B

,
δ

∥∇f(x)∥

)
=



0
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤ 0

∥∇f(x)∥2
2

∥∇f(x)∥2
B

0 <
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤
δ

∥∇f(x)∥
δ

∥∇f(x)∥
∥∇f(x)∥2

2

∥∇f(x)∥2
B

>
δ

∥∇f(x)∥

▶ For case 3 α∗ =
δ

∥∇f(x)∥
:

∆m
(
− α

∗∇f(x)
)

= α
∗∥∇f(x)∥2

2 −
α∗2

2
∥∇f(x)∥2

B
α∗
= δ∥∇f(x)∥ −

δ2

2∥∇f(x)∥2
2

∥∇f(x)∥2
B (∗)

▶ Because we are in case 3,

∥∇f(x)∥2
2

∥∇f(x)∥2
B

>
δ

∥∇f(x)∥
⇐⇒

∥∇f(x)∥
δ

>
∥∇f(x)∥2

B

∥∇f(x)∥2
2

=⇒ −
∥∇f(x)∥2

B

∥∇f(x)∥2
2

> −
∥∇f(x)∥

δ
(∗∗)

▶ Put (∗∗) into (∗) gives

∆m
(
− α

∗∇f(x)
)

≥
δ

2
∥∇f(x)∥2.
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Summary: sufficient descent condition of m if s = −α∇f(x)

▶ From the last 4 slides: after solving the TR-subproblem with s = −α∇f(x), if α∗ ̸= 0,

∆m
(
− α∇f(x)

)
:= m(0;x) − m(−α∇f(x);x) ≥



δ∥∇f(x)∥2 ∥∇f(x)∥2
B ≤ 0

δ

2
∥∇f(x)∥2 ∥∇f(x)∥2

B > 0,
∥∇f(x)∥2

2

∥∇f(x)∥2
B

>
δ

∥∇f(x)∥2

∥∇f(x)∥2
2

2∥B∥
∥∇f(x)∥2

B > 0,
∥∇f(x)∥2

2

∥∇f(x)∥2
B

≤
δ

∥∇f(x)∥2

=


δ∥∇f(x)∥2 ∥∇f(x)∥2

B ≤ 0

∥∇f(x)∥2

2
min

{∥∇f(x)∥2

∥B∥
, δ

}
∥∇f(x)∥2

B > 0

▶ If we use positive definite B, the first case is impossible

∆m
(
− α∇f(x)

)
≥

∥∇f(x)∥2

2
min

{∥∇f(x)∥2

∥B∥
, δ

}
. (†)

▶ The meaning

m(0;x)︸ ︷︷ ︸
x not moving

− m(−α∇f(x);x)︸ ︷︷ ︸
x move along −α∇f(x)

−α∇f(x) is the steepest descent direction
moving along this direction makes m smaller

≥
∥∇f(x)∥2

2
min

{∥∇f(x)∥2

∥B∥
, δ

}
︸ ︷︷ ︸

how much is the gap

.
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Algorithm 1: Trust-region algorithm

1 Initialize x0 % initial starting point
2 Initialize δ0 % initial trust-region radius
3 Pick a norm ∥ · ∥ % trust-region geometry
4 Pick 0 < γd < 1 < γi, 0 < ηs ≤ ηvs < 1. % TR parameters
5 Compute f(x0)

6 for k = 1, 2, . . . do

7 Build m(s;xk) = f(xk) + ⟨∇f(x), s⟩+ 1
2
∥s∥2B

8 Find s that satisfies ∥s∥ ≤ δk and m(s;xk) ≤ m(−α∗∇f(xk);xk)

9 Let ρk =
f(xk)− f(xk + s)

m(0;xk)−m(s;xk)

10 xk+1 =


xk + s ρk ≥ ηvs (very successful)

xk + s ρk ∈ [ηs, ηvs[ (successful)

xk ρk < ηs (failed)

δk+1 =


γiδk ρk ≥ ηvs (very successful)

δk ρk ∈ [ηs, ηvs[ (successful)

γdδk ρk < ηs (failed)

Typical value: γi = 2, γi = 0.5.

Compared with gradient descent, TR has a higher cost per-iteration.
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Set of iteration counter k

set of very successful iteration V :=
{
k | ρk ≥ ηvs

}
set of successful iteration S :=

{
k | ρk ≥ ηs

}
set of failed iteration F :=

{
k | ρk < ηv

}
set of iteration K := N = {1, 2, 3, . . . }

▶ K is an infinite set

▶ V ⊆ S

▶ S ∩ F = ∅, K = S ∪ F , F = K \ S and |F| = |K| − |S|

▶ Fact: if there are finitely many successful & very successful iteration , then there exists a sufficiently large
k0 such that all iterations k after k0 are failed:
▶ finitely many successful and very successful iteration =⇒ |S| ≤ ∞
▶ F = K \ S
▶ so there exists k0 s.t. k > k0 are all in F
▶ |F| = |K| − |S| = |N| − |S| = ℵ0 − |S| =∞− |S| =∞ details of ℵ0

This fact is useful later for proving convergence.
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Table of Contents

Quadratic model m(s;x) := f(x) +
〈
∇f(x), s

〉
+ 1

2
∥s∥2B

Sufficient descent: s = −α∇f(x) then ∆m(s) ≥ ∥∇f(x)∥2
2

min

{
∥∇f(x)∥2

∥B∥ , δ

}

Theory of TR convergence
1. f −m gap:

∣∣f(x+ s)−m(s;x)
∣∣ ≤ κH+κB

2
δ2

2. Progress (small radius =⇒ success): ∇f(xk) ̸= 0, δk ≤ ∥∇f(xk)∥2
κH+κB

min
(
1, 1 − ηvs

)
=⇒ k ∈ V, δk+1 ≥ δk

3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence
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Assumptions for TR convergence

▶ To derive some theories of TR, we assume

1. f ∈ C2.
2. ∥H(x)∥2 ≤ κH , ∀x.
3. ∥B(x)∥2 ≤ κB , ∀x.
4. κH ≥ 1 and κB ≥ 0.

▶ Meaning

1. f is twice differentiable (so Hessian exsits and we can have assumption 2).

2. For the Hessian of f , its matrix 2-norm is globally bounded above.
a strong assumption, can be relaxed by the sequence {f(xk)}k∈N is monotonically decreasing

3. For B in the model m, its matrix 2-norm of is globally bounded above.

4. Condition on κH (larger than 1) and κB (larger than 0).

2 & 4 also mean ∥H(x)∥2 is bounded above by at-least-1
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Summary of TR convergence results under assumptions

1. f ∈ C2.

2. ∥H(x)∥2 ≤ κH , ∀x.
3. ∥B(x)∥2 ≤ κB , ∀x.
4. κH ≥ 1 and κB ≥ 0.

1.
∣∣∣f(x + s) − m(s;x)

∣∣∣ ≤
κH + κB

2
δ2. (gap between f and m)

2.
∇f(xk) ̸= 0

δk ≤ ∥∇f(xk)∥2
κH+κB

min
(
1, 1 − ηvs

) =⇒ update is V & δk+1 ≥ δk. (progress at non-sol / small δ guarantee successful)

3. If there exist ϵ and k0 ∈ N s.t. ∥∇f(xk)∥ ≥ ϵ ≥ 0 ∀k ≥ k0,

then δk ≥ δmin :=
∥ϵγd∥2
κH+κB

min
(
1, 1 − ηvs

)
∀k ≥ k1 for some k1 ∈ N. (TR radius will not shrink to 0)

4. If there are finitely many very successful & successful iterations,
then xk = x∗ for sufficiently large k where ∇f(x∗) = 0. (possible finite termination)

5. Either


∃k < ∞ s.t.∇f(xk) = 0

lim
k→∞

f(xk) = −∞

lim inf
k→∞

∥∇f(xk)∥ = 0

(Global convergence)
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Gap between objective function f and model m = f(x) + ⟨∇f(x), s⟩+ 1

2
∥s∥2B

▶ IF

1. f ∈ C2.

2. ∥H(x)∥2 ≤ κH , ∀x.
3. ∥B(x)∥2 ≤ κB , ∀x.
4. κH ≥ 1 and κB ≥ 0.

THEN

∣∣∣f(x + s) − m(s;x)
∣∣∣ ≤

κH + κB

2
δ
2
. (Gap)

▶ Proof. f ∈ C2, apply mean value theorem on f at s for some ξ ∈ [x,x + s] gives

f(x + s) = f(x) +
〈
∇f(x), s

〉
+

1

2

〈
H(ξ)s, s

〉
assumption 1 (f twice differentiable) & mean value theorem∣∣f(x + s) − m(s;x)

∣∣ = 1
2

∣∣∣〈H(ξ)s, s
〉
−

〈
Bs, s

〉∣∣∣
≤ 1

2

∣∣∣〈H(ξ)s, s
〉∣∣∣ + 1

2

∣∣∣〈Bs, s
〉∣∣∣ triangle inequality

= 1
2∥H(ξ)∥2∥s∥2

2 + 1
2∥B∥2∥s∥2

2 Cauchy-Schwartz inequality

= 1
2

(
∥H(ξ)∥2 + ∥B∥2

)
∥s∥2

2

≤ 1
2 (κH + κB)δ2 assumption 2 3 & ∥s∥ ≤ δ

* You don’t need assumption 4 here.
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Progress at non-sol / small TR radius guarantee successful ... 1/2

▶ If

1. f ∈ C2.

2. ∥H(x)∥2 ≤ κH , ∀x

3. ∥B(x)∥2 ≤ κB , ∀x

4. κH ≥ 1 , κB ≥ 0

&

▶ ∇f(x) ̸= 0

▶ δk ≤
∥∇f(xk)∥2

κH + κB

min
(
1, 1 − ηvs

)
Then

▶ the update is very successful

▶ δk+1 ≥ δk

▶ Proof. implies δk ≤
∥∇f(xk)∥2

κH + κB

and δk ≤
∥∇f(xk)∥2

κH + κB

(
1 − ηvs

)

∥B(xk)∥
,

≤ κB + κH =⇒
1

κB + κH

≤
1

∥B(xk)∥
=⇒

∥∇f(xk)∥2

κB + κH

≤
∥∇f(xk)∥2

∥B(xk)∥

Recall

∆m
(
− α∇f(x)

) (†)
≥

∥∇f(x)∥2

2
min

{∥∇f(x)∥2

∥B∥
, δ

}
,

=
∥∇f(x)∥2

2
δ ≥ 0.

(Because by , , we have δ ≤
∥∇f(x)∥2

∥B∥
so the min gives δ)

▶ Now we have ∆m
(
− α∇f(x)

)
≥

∥∇f(x)∥2

2
δ ≥ 0 .
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Progress at non-sol / small TR radius guarantee successful ... 2/2 ∆m
(
− α∇f(x)

)
≥

∥∇f(x)∥2

2
δ ≥ 0

▶ Now consider |ρ − 1| with ρk =
f(xk) − f(xk + s)

m(0;xk) − m(s;xk)
, where s = −α∇f(x), then

∣∣ρk − 1
∣∣ =

∣∣∣ f(xk) − f(xk + s)

m(0;xk) − m(s;xk)
−

m(0;xk) − m(s;xk)

m(0;xk) − m(s;xk)

∣∣∣
=

∣∣∣m(s;xk) − f(xk + s)

m(0;xk) − m(s;xk)

∣∣∣ m(0;xk) = f(xk)

=
1

|∆m(s)|

∣∣∣f(xk + s) − m(s;xk)
∣∣∣ m(0;xk) − m(s;xk) = ∆m(s)

≤
2

∥∇f(xk)∥2δ

∣∣∣f(xk − α∇f(x)) − m(−α∇f(x);xk)
∣∣∣ by and s = −α∇f(x)

≤
2

∥∇f(xk)∥2δ

κH + κB

2
δ2 By (Gap), see 2 slides before

=
κH + κB

∥∇f(xk)∥2

δ

≤ 1 − ηvs.

▶ Now we have |ρk − 1| ≤ 1 − ηvs, which gives

−(1 − ηvs) ≤ ρ − 1︸ ︷︷ ︸
ηvs≤ρ

≤ 1 − ηvs =⇒ ρ ≥ ηvs meaning the iteration is very successful, i.e., k ∈ V ⊂ S

For very successful iteration, δk+1 = γiδk. Since γi > 1, thus δk+1 > δk.
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TR radius will not shrink to 0 at non-sol.

▶ IF

1. f ∈ C2.

2. ∥H(x)∥2 ≤ κH , ∀x
3. ∥B(x)∥2 ≤ κB , ∀x
4. κH ≥ 1 and κB ≥ 0

& there exists constant ϵ and k0 ∈ N such that ∥∇f(xk)∥ ≥ ϵ ≥ 0 for all k ≥ k0 .

THEN δk ≥ δmin :=
ϵγd

κH + κB

min
(
1, 1 − ηvs

)
> 0 for all k ≥ k1 for some k1 ∈ N.

▶ Proof. If there is some k′ ≥ k0 such that δk′ ≥ ϵmin
(
1,1−ηvs

)
κH+κB

, then by definition of TR algorithm, in the worse case we have

δk ≥ δmin :=
ϵγd

κH+κB
min

(
1, 1 − ηvs

)
(in other cases we have larger δk).

Now for contradiction, suppose otherwise that k ≥ k′ is the first iteration such that

δk ≥ δmin > δk+1 = γdδk. (∗)

Thus δk =
δk+1

γd

≤
δmin

γd

=
ϵ

κH + κB

min
(
1, 1 − ηvs

)
≤

∥∇f(xk)∥
κH + κB

min
(
1, 1 − ηvs

)
.

Then by the lemma of progress at non-sol., δk+1 ≥ δk, which contradicts with (∗).

Now we have to show that ∃k′ ≥ k0 such that δk′ ≥ ϵ
κH+κB

min
(
1, 1 − ηvs

)
.

By the lemma of progress at non-sol., whenever δk′ < ϵ
κH+κB

min
(
1, 1 − ηvs

)
, we have a very successful iteration, and therefore

we strictly increase the radius by the factor γi > 1, i.e., δk+1 = γiδk.
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Possible finite termination

▶ IF

1. f ∈ C2.

2. ∥H(x)∥2 ≤ κH , ∀x
3. ∥B(x)∥2 ≤ κB , ∀x
4. κH ≥ 1 and κB ≥ 0

& there are finitely many very successful & successful iterations.

THEN xk = x∗ for all sufficiently large k and ∇f(x∗) = 0.

▶ Proof By assumption , it follows that there exists some x∗ such that xk0+j = xk0+1 = x∗ for all j ≥ 1, where k0 is the index of

the last successful iterate (see page 23).

Hence, all the remaining infinitely many unsuccessful iterations will eventually shrink the TR radius to zero, i.e.,

lim
k→∞

δk = 0. (∗)

For the purpose of contradiction, assume ∇f(xk0+1) ̸= 0, let ϵ = ∥∇f(xk0+1)∥ > 0. By the lemma in the previous page, we have

δk ≥ δmin :=
ϵγd

κH + κB

min
(
1, 1 − ηvs

)
> 0,

contradicting (∗). Therefore the assumption is false and we have ∇f(x∗) = ∇f(xk0+1) = 0.
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Global convergence1 of some subsequence ... 1/3

▶ If

1. f ∈ C2.

2. ∥H(x)∥2 ≤ κH , ∀x
3. ∥B(x)∥2 ≤ κB , ∀x
4. κH ≥ 1 and κB ≥ 0

then
either

1. finite termination: ∃k < ∞ s.t.∇f(xk) = 0.

2. unbounded objective function: min
k→∞

f(xk) = −∞.

3. convergence of a subsequence of the gradients: lim inf
k→∞

∥∇f(xk)∥ = 0.

▶ Idea of the proof. We show that under the assumption we will get exactly one of the result.
▶ To do so we introduce an object: let S be the index set of successful and very successful iterations.
▶ By definition of the TR (Algorithm 1 in page 22), if at an iteration k ∈ S, we have

ρk ≥ ηs. (∗)

▶ Recall the definition of TR (Algorithm 1) on ρk, we have

ρk
definition

=
f(xk) − f(xk − sk)

mk(0) − mk(sk)
⇐⇒ f(xk) − f(xk − sk) = ρk

(
mk(0) − mk(sk)

)︸ ︷︷ ︸
=:∆mk(sk)

(∗)
≥ ηs∆mk(sk). (∗∗)

(∗∗) is the starting point of the proof.

▶ Proof. Let S be the index set of successful and very successful iterations.
▶ Lemma (possible finite termination, previous slide) implies result 1 is true if |S| < ∞. case 1 done
▶ Now consider the remaining case |S| = ∞. If f is unbounded below then we have result 2. case 2 done
▶ So now we show that if |S| = ∞ and f is bounded below then we have case 3.

1Here “global convergence” means convergence to a stationary point regardless of starting point
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Global convergence of some subsequence2 ... 2/3
▶ Goal: show that if |S| = ∞ and f is bounded below then we have case 3.

▶ For the purpose of contradiction, assume there exists ϵ > 0 and k0 ∈ N such that

∥∇f(xk)∥ ≥ ϵ > 0 ∀k ≥ k0. (£)

▶ From (∗∗), we have the following for all k ∈ S such that k ≥ k0

f(xk) − f(xk + sk) ≥ ηs∆mk(sk) by (∗∗)

≥ ηs
1

2
∥∇f(xk)∥min

{∥∇f(xk)∥
∥Bk∥

, δk

}
by s = −α∇f(xk) and sufficient descent condition of m

≥
ηs

2
ϵmin

{ ϵ

∥Bk∥
, δk

}
by (£)

≥
ηsϵ

2
min

{ ϵ

κB

, δk

}
∥Bk∥ ≤ κB

≥
ηsϵ

2
min

{ ϵ

κB

, δmin

}
︸ ︷︷ ︸

=:δϵ

δk ≥ δmin(TR radius will not shrink to 0)

> 0 ϵ > 0, κB ≥ 1, ηs ≥ 1, δmin > 0

Now we have for all k ∈ S such that k ≥ k0

fk − fk+1 := f(xk) − f(xk + sk) ≥ δϵ > 0. (⋄)

2Here subsequence is used because we consider sequence {xk}k≥k0
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Global convergence of some subsequence ... 3/3
fk − fk+1 := f(xk) − f(xk + sk) ≥ δϵ > 0. (⋄)

▶ Now we perform telescoping sum: pick j ≥ 1 and then summing over all k ≤ j

j∑
k=0

(
fk − fk+1

) telescope sum
= f0 − fj+1.

▶ Focus on k ∈ S such that k ≤ j gives

f0 − fj+1
telescope sum

=

j∑
k=0

(
fk − fk+1

) (!)

≥
j∑

k=0,k∈S

(
fk − fk+1

) (⋄)
≥

j∑
k=0,k∈S

δϵ > 0. (⋄⋄)

where
(!)

≥ is by definition: if k /∈ S then that iteration is unsuccessful, by definition of TR algorithm xk+1 = xk so fk = fk+1. Since
the set of [0, 1, . . . , k, . . . , j] is larger than [0, 1, . . . , k, . . . , j] ∩ {k ∈ S} so we have ≥ sign.

▶ Now take limit j → ∞ on (⋄⋄)

lim
j→∞

(f0 − fj+1)
(⋄⋄)
≥ lim

j→∞

j∑
k=0,k∈S

δϵ =
∞∑

k=0,k∈S
δϵ

δϵ≥0
= +∞ =⇒ f0 − f∞ ≥ +∞

=⇒ f is unbounded below. This contradicts to the assumption therefore the assumption (£) is false, which means there exists a

subsequence of the gradients that converges to zero, i.e., lim inf
k→∞

∥∇f(xk)∥ = 0.
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Last page - summary

Quadratic model m(s;x) := f(x) +
〈
∇f(x), s

〉
+ 1

2∥s∥
2
B

Sufficient descent: s = −α∇f(x) then ∆m(s) ≥ ∥∇f(x)∥2

2 min

{
∥∇f(x)∥2

∥B∥ , δ

}
Theory of TR convergence

1. f −m gap:
∣∣f(x+ s)−m(s;x)

∣∣ ≤ κH+κB

2 δ2

2. Progress (small radius =⇒ success): ∇f(xk) ̸= 0, δk ≤ ∥∇f(xk)∥2
κH+κB

min
(
1, 1 − ηvs

)
=⇒ k ∈ V, δk+1 ≥ δk

3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

End of document

34 / 34


	Quadratic model  
	Sufficient descent:  then  
	Theory of TR convergence
	1. f-m gap: 
	2. Progress (small radiussuccess):  
	3. TR radius will not shrink to 0 at non-sol.
	4. Possible finite termination
	5. Global convergence of some subsequence


