Convergence of trust-region method for unconstrained smooth optimization

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk

Homepage angms.science

Version: May 19, 2023
First draft: Nov 30, 2022

Content

Quadratic model $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$
Sufficient descent: $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$ then $\Delta m(\boldsymbol{s}) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}, \delta\right\}$ Theory of TR convergence

1. $f-m$ gap: $|f(\boldsymbol{x}+\boldsymbol{s})-m(\boldsymbol{s} ; \boldsymbol{x})| \leq \frac{\kappa^{\kappa}+\kappa}{2} B \delta^{2}$
2. Progress (small radius \Longrightarrow success): $\nabla f\left(\boldsymbol{x}_{k}\right) \neq \mathbf{0}, \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \Longrightarrow k \in \mathcal{V}, \delta_{k+1} \geq \delta_{k}$
3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

These notes assume you have seen trust-region method (TRM)
You should be familiar with terms: model, radius, success, model decrease, actual decrease

Table of Contents

Quadratic model $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$

Sufficient descent: $s=-\alpha \nabla f(\boldsymbol{x})$ then $\Delta m(\boldsymbol{s}) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|_{2}}, \delta\right\}$

Theory of TR convergence

1. $f-m$ gap: $|f(\boldsymbol{x}+\boldsymbol{s})-m(s ; x)| \leq \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2}$
2. Progress (small radius \Longrightarrow success): $\nabla f\left(x_{k}\right) \neq 0, \delta_{k} \leq \frac{\left\|\nabla f\left(x_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \Longrightarrow k \in \mathcal{V}, \delta_{k+1} \geq \delta_{k}$
3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

Problem setup: smooth unconstrained optimization

$$
(\mathcal{P}): \min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

- $\mathcal{C}^{2} \ni f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- $\operatorname{dom} f=\mathbb{R}^{n}$ and the target of f is \mathbb{R}.
standard Euclidean space and inner product

$$
f \in \mathcal{C}^{2}
$$

- For all point $\boldsymbol{\xi}$, we have gradient $\nabla_{\boldsymbol{x}} f(\boldsymbol{\xi})$ and Hessian $\boldsymbol{H}(\boldsymbol{\xi}):=\nabla_{\boldsymbol{x} \boldsymbol{x}} f(\boldsymbol{\xi})$ and they are continuous
- f is possibly nonconvex
- $\boldsymbol{x} \in \mathbb{R}^{n}$ is the optimization variable.

No constraint: all $\boldsymbol{x} \in \mathbb{R}^{n}$ feasible.

- Solve \mathcal{P} by iterative method: starting from \boldsymbol{x}_{0}, generate a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$. Two ways:
- Gradient descent / line-search method
- Trust-region method \leftarrow our focus here

Review of gradient descent (GD)

- Line search: generate $\left\{\boldsymbol{x}_{k}\right\}_{k \in \mathbb{N}}$ as $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}=\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)$.
- $\alpha_{k} \in \mathbb{R}_{++}$stepsize
- $\boldsymbol{d}_{k} \in \mathbb{R}^{n}$ update direction
- GD set $\boldsymbol{d}_{k}=-\nabla f\left(\boldsymbol{x}_{k}\right)$
- Understanding GD: $\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)$ comes from a local quadratic model $m(\boldsymbol{\xi} ; \boldsymbol{x}, \alpha)$, and GD is doing is $\boldsymbol{x}_{k+1}=\operatorname{argmin} m\left(\boldsymbol{\xi} ; \boldsymbol{x}_{k}, \alpha_{k}\right)$

$$
\boldsymbol{x}-\alpha \nabla f(\boldsymbol{x})=\underset{\boldsymbol{\xi}}{\operatorname{argmin}} m(\boldsymbol{\xi} ; \boldsymbol{x}, \alpha):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{\xi}-\boldsymbol{x}\rangle+\frac{1}{2 \alpha}\|\boldsymbol{\xi}-\boldsymbol{x}\|_{2}^{2}
$$

How to see it: take $\nabla_{\boldsymbol{\xi}} m(\boldsymbol{\xi} ; \boldsymbol{x}, \alpha)=\mathbf{0}$, see here for details.

- See angms.science for more on GD
- introduction
- descent lemma
- convergence on convex smooth function
- convergence on strongly convex smooth function
- projected gradient descent
- proximal gradient descent

Trust-region (TR) method: a "dual" of GD

- Notation: $\delta>0$ denotes the TR radius.
- Given a fixed δ, TR finds an update direction s via solving a model m

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle,
$$

and then perform the update

$$
\boldsymbol{x}^{+}= \begin{cases}\boldsymbol{x}+\boldsymbol{s} & \text { if } f(\boldsymbol{x}+\boldsymbol{s}) "<" f(\boldsymbol{x}) \\ \boldsymbol{x} & \text { otherwise }\end{cases}
$$

- We minimize m instead of f to get s
- $m(\boldsymbol{s} ; \boldsymbol{x})$ is a simple local approximation of f at \boldsymbol{x}
- $m(\boldsymbol{s} ; \boldsymbol{x})$ may not resemble $f(\boldsymbol{x}+\boldsymbol{s})$ for big $\boldsymbol{s} \Longrightarrow$ limit $\|\boldsymbol{s}\| \leq \delta$
- we have to choose a norm $\|\cdot\|$ (Euclidean may not be the best)
- easier to find s via $\min m$ than $\min f$

TR subproblem can be hard to solve.

About $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle$

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=\underbrace{f(\boldsymbol{x})}_{\text {constant }}+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle .
$$

(TR subproblem)

- argmin ignores constant:

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle .
$$

- The constant term $f(\boldsymbol{x})$ is actually m with $\boldsymbol{s}=\mathbf{0}$

$$
m(\mathbf{0} ; \boldsymbol{x})=f(\boldsymbol{x})
$$

Equivalence between f and $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle$

- "Tangential properties" / "Taylor-equivalence" / coincident property
- $0^{\text {th }}$-order equivalence: $m(\mathbf{0} ; \boldsymbol{x})=f(\boldsymbol{x})$.
f and m coincide at current iterate
- $1^{\text {st }}$-order equivalence: $\left.\nabla_{s} m(\boldsymbol{s} ; \boldsymbol{x})\right|_{\boldsymbol{s}=\mathbf{0}}=\nabla f(\boldsymbol{x})$.
$\operatorname{grad} f$ and $\operatorname{grad} m$ coincide at current iterate
- $2^{\text {nd }}$-order equivalence: If $\boldsymbol{B}=\underbrace{\text { Hessian } \boldsymbol{H}(\boldsymbol{\xi}) \text { of } f \text { at } \boldsymbol{\xi} \in[\boldsymbol{x}, \boldsymbol{x}+\boldsymbol{s}]}$
(this assumes $f \in \mathcal{C}^{2}$)
Then $\left.\nabla_{s}^{2} m(\boldsymbol{s} ; \boldsymbol{x})\right|_{s=0}=\boldsymbol{H}(\boldsymbol{\xi})$.
- Predicted decrease / model decrease

$$
\begin{aligned}
\Delta m(\boldsymbol{s}) & :=m(\mathbf{0} ; \boldsymbol{x})-m(\boldsymbol{s} ; \boldsymbol{x}) \\
& =f(\boldsymbol{x})-\left(f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle\right) \\
& =-\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle-\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle
\end{aligned}
$$

About B

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle
$$

- $\boldsymbol{B} \in \mathbb{S}: \boldsymbol{B}$ is symmetric
- Indefinite \boldsymbol{B} : TR subproblem is unbounded below
- Positive semi-definite \boldsymbol{B} : TR subproblem is possibly unbounded below
- This includes the case $\boldsymbol{B}=\mathbf{0}_{n \times n}$
- recall $\mathbf{0}_{n \times n}$ is both positive semi-definite and negative semi-definite
- $\boldsymbol{B}=\mathbf{0}_{n \times n}$: we have linear model m
- Positive definite \boldsymbol{B} : TR subproblem is bounded below.
- If $\boldsymbol{B}=\boldsymbol{H}(\boldsymbol{x})$ (Hessian of f at \boldsymbol{x}) then we have a Newton-type quadratic model \boldsymbol{m}.
- Quasi-Newton approach use \boldsymbol{B} to approximate \boldsymbol{H}.
- Importance of : in this case s^{*} is simply the extreme value in the constraint set $\|s\| \leq \delta$.

If $s=-\alpha \nabla f(\boldsymbol{x})$ (GD direction)

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle
$$

$$
\begin{aligned}
\alpha^{*} & =\underset{0 \leq \alpha\|\nabla f(\boldsymbol{x})\| \leq \delta}{\operatorname{argmin}} f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}),-\alpha \nabla f(\boldsymbol{x})\rangle+\frac{1}{2}\langle\boldsymbol{B} \alpha \nabla f(\boldsymbol{x}), \alpha \nabla f(\boldsymbol{x})\rangle \\
& =\underset{0 \leq \alpha \leq \frac{\delta}{\| \nabla f(\boldsymbol{x}) \pi}}{\operatorname{argmin}} \frac{\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle}{2} \alpha^{2}-\|\nabla f(\boldsymbol{x})\|_{2}^{2} \alpha
\end{aligned}
$$

- A simple quadratic scalar optimization problem

$$
x=\underset{0 \leq x \leq u}{\operatorname{argmin}} a x^{2}-b x \quad b, u \geq 0
$$

! a can be negative if \boldsymbol{B} is indefinite / semi-positive definite.

- $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$ is called Cauchy point in some books.

On $x=\underset{0 \leq x \leq u}{\operatorname{argmin}} a x^{2}-b x$ with $b \geq 0, u \geq 0$

- Case $a \leq 0$

Problem is unbounded below: $\underbrace{a}_{\leq 0} \underbrace{x^{2}}_{\geq 0}-\underbrace{b}_{\geq 0} \underbrace{x}_{\geq 0}$. Optimal x is at the boundary $x^{*}=u$.

- Case $a>0$

Completing the squares $a x^{2}-b x=a\left(x^{2}-\frac{b}{a}\right)$ gives

$$
a x^{2}-b x=a\left(x^{2}-\frac{b}{a}+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)=a\left(\left(x-\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}\right)=a\left(x-\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a} .
$$

The minimum of the quadratic occurs at $x=\frac{b}{2 a}$. Depends on where is $\frac{b}{2 a}$, we have

$$
x^{*}=\operatorname{median}\left(0, \frac{b}{2 a}, u\right)=\left\{\begin{array}{lr}
0 & \frac{b}{2 a} \leq 0 \\
\frac{b}{2 a} & 0<\frac{b}{2 a} \leq u \\
u & \frac{b}{2 a}>u
\end{array}\right.
$$

Summary of TR-subproblem

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=\underbrace{f(\boldsymbol{x})}_{=: m(\mathbf{0} ; \boldsymbol{x})}+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle .
$$

- Predicted decrease $\Delta m(\boldsymbol{s}):=m(\mathbf{0} ; \boldsymbol{x})-m(\boldsymbol{s} ; \boldsymbol{x})=-\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle-\frac{1}{2}\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle$
- If $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$,

$$
\Delta m(-\alpha \nabla f(\boldsymbol{x}))=-\frac{\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle}{2} \alpha^{2}+\|\nabla f(\boldsymbol{x})\|_{2}^{2} \alpha
$$

Two cases

1. $\alpha^{*}=\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}$
$\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle \leq 0$
2. $\alpha^{*}=\left\{\begin{array}{l}0 \\ \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle} \\ \frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\end{array}\right.$

$$
\begin{aligned}
& \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle} \leq 0 \\
& \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle} \leq \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} \\
& \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle}>\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}
\end{aligned}
$$

$$
\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle>0
$$

Usually we use positive definite \boldsymbol{B} so $\alpha^{*}=0$ is impossible.

Weighted norm

- We will see the term $\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle$ many times.
- Shorthand notation: $\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{\boldsymbol{A}}:=\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{y}\rangle$ is called weighted inner product under the weight \boldsymbol{A}

Weighted norm: $\|\boldsymbol{x}\|_{\boldsymbol{A}}:=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{\boldsymbol{A}}}=\sqrt{\langle\boldsymbol{A x}, \boldsymbol{x}\rangle}$

- Weighted norm-squared: $\|\boldsymbol{x}\|_{\boldsymbol{A}}^{2}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{\boldsymbol{A}}=\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle$
- Easy careless-mistake: $\|\boldsymbol{x}\|_{\boldsymbol{A}}^{2} \neq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$

$$
\|\boldsymbol{x}\|_{\boldsymbol{A}}^{2}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{\boldsymbol{A}}=\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle \quad \neq\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{A} \boldsymbol{x}\rangle=\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

- Using weighted norm, $\langle\boldsymbol{B} \nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle=\langle\nabla f(\boldsymbol{x}), \nabla f(\boldsymbol{x})\rangle_{\boldsymbol{B}}=\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}$

Summary of TR-subproblem, in weighted norm

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=\underbrace{f(\boldsymbol{x})}_{=: m(\mathbf{0} ; \boldsymbol{x})}+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2} .
$$

- Predicted decrease $\Delta m(\boldsymbol{s}):=m(\mathbf{0} ; \boldsymbol{x})-m(\boldsymbol{s} ; \boldsymbol{x})=-\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle-\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$
- If $s=-\alpha \nabla f(\boldsymbol{x})$,

$$
\Delta m(-\alpha \nabla f(\boldsymbol{x}))=-\frac{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}{2} \alpha^{2}+\|\nabla f(\boldsymbol{x})\|_{2}^{2} \alpha .
$$

Two cases

1. $\alpha^{*}=\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}$

$$
\|\nabla f(\boldsymbol{x})\|_{B}^{2} \leq 0
$$

2. $\alpha^{*}=\left\{\begin{array}{lr}0 & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq 0 \\ \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} & 0<\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} \\ \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}>\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\end{array}\right.$

$$
\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}>0
$$

Usually we use positive definite \boldsymbol{B} so $\alpha^{*}=0$ is impossible.

Summary of TR-subproblem, in compact form

$$
\boldsymbol{s}=\underset{\|\boldsymbol{s}\| \leq \delta}{\operatorname{argmin}} m(\boldsymbol{s} ; \boldsymbol{x}):=\underbrace{f(\boldsymbol{x})}_{=: m(\mathbf{0} ; \boldsymbol{x})}+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2} .
$$

- Predicted decrease $\Delta m(\boldsymbol{s}):=m(\mathbf{0} ; \boldsymbol{x})-m(\boldsymbol{s} ; \boldsymbol{x})=-\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle-\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$
- If $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$,

$$
\Delta m(-\alpha \nabla f(\boldsymbol{x}))=-\frac{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}}{2} \alpha^{2}+\|\nabla f(\boldsymbol{x})\|_{2}^{2} \alpha .
$$

Two cases

1. $\alpha^{*}=\frac{\delta}{\|\nabla f(x)\|}$
$\|\nabla f(\boldsymbol{x})\|_{B}^{2} \leq 0$
2. $\alpha^{*}=\operatorname{median}\left(0, \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}, \frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\right)$ $\|\nabla f(\boldsymbol{x})\|_{B}^{2}>0$

Usually we use positive definite \boldsymbol{B} so $\alpha^{*}=0$ is impossible.

Table of Contents

Quadratic model $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$

Sufficient descent: $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$ then $\Delta m(\boldsymbol{s}) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}, \delta\right\}$

Theory of TR convergence

1. $f-m$ gap: $|f(\boldsymbol{x}+\boldsymbol{s})-m(s ; x)| \leq \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2}$
2. Progress (small radius \Longrightarrow success): $\nabla f\left(x_{k}\right) \neq 0, \delta_{k} \leq \frac{\left\|\nabla f\left(x_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \Longrightarrow k \in \mathcal{V}, \delta_{k+1} \geq \delta_{k}$
3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

If $\|\nabla f(\boldsymbol{x})\|_{B}^{2} \leq 0$

$$
m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}
$$

- Form previous slide, $\alpha^{*}=\frac{\delta}{\|\nabla f(\boldsymbol{x})\|_{2}}$ if .
- Put $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$ in $m(\boldsymbol{s} ; \boldsymbol{x})$

$$
\begin{array}{rlll}
m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) & = & f(\boldsymbol{x})-\alpha\|\nabla f(\boldsymbol{x})\|_{2}^{2}+\frac{\alpha^{2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} & (i) \tag{i}\\
\frac{\alpha^{2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} & \leq & 0 & (i i) \\
m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) & \leq & f(\boldsymbol{x})-\alpha\|\nabla f(\boldsymbol{x})\|_{2}^{2} & (i)+(i i) \\
& = & f(\boldsymbol{x})-\delta\|\nabla f(\boldsymbol{x})\|_{2} & \alpha^{*}=\frac{\delta}{\|\nabla f(\boldsymbol{x})\|_{2}} \text { if } \\
m(\mathbf{0} ; \boldsymbol{x})=f(\boldsymbol{x}) & m(\mathbf{0} ; \boldsymbol{x})-\delta\|\nabla f(\boldsymbol{x})\|_{2} &
\end{array}
$$

Hence

$$
\Delta m(-\alpha \nabla f(\boldsymbol{x})):=m(\mathbf{0} ; \boldsymbol{x})-m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) \geq \delta\|\nabla f(\boldsymbol{x})\|_{2}
$$

- We have:

IF $\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \leq 0 \quad$ THEN $\underbrace{\Delta m(-\alpha \nabla f(\boldsymbol{x}))}_{=: m(\mathbf{0} ; \boldsymbol{x})-m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x})} \geq \delta\|\nabla f(\boldsymbol{x})\|_{2}$.

If $\|\nabla f(\boldsymbol{x})\|_{B}^{2}>0$, case 1

$$
\begin{aligned}
m(\boldsymbol{s} ; \boldsymbol{x}) & :=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}} \\
m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) & =f(\boldsymbol{x})-\alpha\|\nabla f(\boldsymbol{x})\|_{2}^{2}+\frac{\alpha^{2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}
\end{aligned}
$$

$$
\alpha^{*}=\operatorname{median}\left(0, \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}, \frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\right)= \begin{cases}0 & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq 0 \\ \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} & 0<\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} \\ \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}>\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\end{cases}
$$

- What we want: to derive bound for

$$
\Delta m\left(-\alpha^{*} \nabla f(\boldsymbol{x})\right):=m(\mathbf{0} ; \boldsymbol{x})-m\left(-\alpha^{*} \nabla f(\boldsymbol{x}) ; \boldsymbol{x}\right)=\alpha^{*}\|\nabla f(\boldsymbol{x})\|_{2}^{2}-\frac{\alpha^{* 2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}
$$

- Consider case $1 \alpha^{*}=0$: we have no update: $\Delta m\left(-\alpha^{*} \nabla f(\boldsymbol{x})\right)=0$.
- Note that this case is impossible if we use positive definite \boldsymbol{B}

If $\|\nabla f(\boldsymbol{x})\|_{B}^{2}>0$, case 2

$$
\begin{aligned}
m(\boldsymbol{s} ; \boldsymbol{x}) & :=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}} \\
m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) & =f(\boldsymbol{x})-\alpha\|\nabla f(\boldsymbol{x})\|_{2}^{2}+\frac{\alpha^{2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}
\end{aligned}
$$

$$
\alpha^{*}=\operatorname{median}\left(0, \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}}, \frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\right)= \begin{cases}0 & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}} \leq 0 \\ \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} & 0<\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} \\ \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}}>\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\end{cases}
$$

- Consider case $2 \alpha^{*}=\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}$

$$
\begin{array}{rll}
\Delta m\left(-\alpha^{*} \nabla f(\boldsymbol{x})\right) & = & \alpha^{*}\|\nabla f(\boldsymbol{x})\|_{2}^{2}-\frac{\alpha^{* 2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \\
& \stackrel{\alpha^{*}}{=} & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{4}}{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}}-\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{4}}{2\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}} \\
& = & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{4}}{2\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}} \\
\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \leq\|\nabla f(\boldsymbol{x})\|_{2}^{2}\|\boldsymbol{B}\|_{2} & & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{2\|\boldsymbol{B}\|_{2}} .
\end{array}
$$

Where $\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \leq\|\boldsymbol{B} \nabla f(\boldsymbol{x})\|_{2}\|\nabla f(\boldsymbol{x})\|_{2} \leq\|\boldsymbol{B}\|_{2}\|\nabla f(\boldsymbol{x})\|_{2}\|\nabla f(\boldsymbol{x})\|_{2}=\|\boldsymbol{B}\|_{2}\|\nabla f(\boldsymbol{x})\|_{2}^{2}$

If $\|\nabla f(\boldsymbol{x})\|_{B}^{2}>0$, case 3

$$
\begin{aligned}
m(\boldsymbol{s} ; \boldsymbol{x}) & :=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}} \\
m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) & =f(\boldsymbol{x})-\alpha\|\nabla f(\boldsymbol{x})\|_{2}^{2}+\frac{\alpha^{2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}
\end{aligned}
$$

$$
\alpha^{*}=\operatorname{median}\left(0, \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}, \frac{\delta}{\|\nabla f(\boldsymbol{x})\|}\right)=\left\{\begin{array}{lc}
0 & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq 0 \\
\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} & 0<\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}} \leq \frac{\delta}{\|\nabla f(\boldsymbol{x})\|} \\
\frac{\delta}{\|\nabla f(\boldsymbol{x})\|} & \frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}>\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}
\end{array}\right.
$$

- For case $3 \alpha^{*}=\frac{\delta}{\|\nabla f(\boldsymbol{x})\|}$:

$$
\begin{equation*}
\Delta m\left(-\alpha^{*} \nabla f(\boldsymbol{x})\right)=\alpha^{*}\|\nabla f(\boldsymbol{x})\|_{2}^{2}-\frac{\alpha^{* 2}}{2}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \stackrel{\alpha^{*}}{=} \delta\|\nabla f(\boldsymbol{x})\|-\frac{\delta^{2}}{2\|\nabla f(\boldsymbol{x})\|_{2}^{2}}\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \tag{*}
\end{equation*}
$$

- Because we are in case 3,

$$
\begin{equation*}
\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}}>\frac{\delta}{\|\nabla f(\boldsymbol{x})\|} \Longleftrightarrow \frac{\|\nabla f(\boldsymbol{x})\|}{\delta}>\frac{\|\nabla f(\boldsymbol{x})\|_{B}^{2}}{\|\nabla f(\boldsymbol{x})\|_{2}^{2}} \Longrightarrow-\frac{\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}}{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}>-\frac{\|\nabla f(\boldsymbol{x})\|}{\delta} \tag{**}
\end{equation*}
$$

- Put $(* *)$ into $(*)$ gives

$$
\Delta m\left(-\alpha^{*} \nabla f(\boldsymbol{x})\right) \geq \frac{\delta}{2}\|\nabla f(\boldsymbol{x})\|_{2}
$$

Summary: sufficient descent condition of m if $s=-\alpha \nabla f(\boldsymbol{x})$

- From the last 4 slides: after solving the TR-subproblem with $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$, if $\alpha^{*} \neq 0$,

$$
\begin{aligned}
\Delta m(-\alpha \nabla f(\boldsymbol{x})):=m(\mathbf{0} ; \boldsymbol{x})-m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}) & \geq \begin{cases}\delta\|\nabla f(\boldsymbol{x})\|_{2} \quad\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \leq 0 \\
\frac{\delta}{2}\|\nabla f(\boldsymbol{x})\|_{2} & \|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}>0, \\
\frac{\|\nabla f(\boldsymbol{x})\|_{2}^{2}}{2\|\boldsymbol{B}\|} & \|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}>0, \\
\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} & \|\nabla f(\boldsymbol{x})\|_{2}^{2} \\
\|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} & \|\nabla f(\boldsymbol{x})\|_{2} \\
\|\nabla f(\boldsymbol{x})\|_{2}\end{cases} \\
& = \begin{cases}\delta\|\nabla f(\boldsymbol{x})\|_{2} & \|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2} \leq 0 \\
\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}, \delta\right\} & \|\nabla f(\boldsymbol{x})\|_{\boldsymbol{B}}^{2}>0\end{cases}
\end{aligned}
$$

- If we use positive definite \boldsymbol{B}, the first case is impossible

$$
\Delta m(-\alpha \nabla f(\boldsymbol{x})) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}, \delta\right\}
$$

- The meaning

$$
\underbrace{m(\mathbf{0} ; \boldsymbol{x})}_{\boldsymbol{x} \text { not moving }}-\underbrace{m(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x})}_{\begin{array}{c}
\boldsymbol{x} \text { move along - }-\alpha \nabla f(\boldsymbol{x}) \\
-\alpha \nabla f(\boldsymbol{x}) \text { is the steepest descent direction } \\
\text { moving along this direction makes } m \text { smaller }
\end{array}} \geq \underbrace{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}, \delta\right\}}_{\text {how much is the gap }} .
$$

Algorithm 1: Trust-region algorithm

```
Initialize 竹
Initialize }\mp@subsup{\delta}{0}{
Pick a norm || |
Pick 0< \gammad}<1<\mp@subsup{\gamma}{i}{},0<\mp@subsup{\eta}{s}{}\leq\mp@subsup{\eta}{vs}{}<1
Compute f(\mp@subsup{\boldsymbol{x}}{0}{})
```

for $k=1,2, \ldots$ do
Build $m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)=f\left(\boldsymbol{x}_{k}\right)+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$
Find \boldsymbol{s} that satisfies $\|\boldsymbol{s}\| \leq \delta_{k}$ and $m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right) \leq m\left(-\alpha^{*} \nabla f\left(\boldsymbol{x}_{k}\right) ; \boldsymbol{x}_{k}\right)$
Let $\rho_{k}=\frac{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}\right)}{m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)}$
$\boldsymbol{x}_{k+1}=\left\{\begin{array}{lll}\boldsymbol{x}_{k}+\boldsymbol{s} & \rho_{k} \geq \eta_{v s} & \text { (very successful) } \\ \boldsymbol{x}_{k}+\boldsymbol{s} & \rho_{k} \in\left[\eta_{s}, \eta_{v s}[\right. & \text { (successful) } \\ \boldsymbol{x}_{k} & \rho_{k}<\eta_{s} & \text { (failed) }\end{array} \delta_{k+1}=\left\{\begin{array}{lll}\gamma_{i} \delta_{k} & \rho_{k} \geq \eta_{v s} & \text { (very successful) } \\ \delta_{k} & \rho_{k} \in\left[\eta_{s}, \eta_{v s}[\right. & \text { (successful) } \\ \gamma_{d} \delta_{k} & \rho_{k}<\eta_{s} & \text { (failed) }\end{array}\right.\right.$

Typical value: $\gamma_{i}=2, \gamma_{i}=0.5$.
Compared with gradient descent, TR has a higher cost per-iteration.

Set of iteration counter k

$$
\begin{array}{ll}
\text { set of very successful iteration } & \mathcal{V}:=\left\{k \mid \rho_{k} \geq \eta_{v s}\right\} \\
\text { set of successful iteration } & \mathcal{S}:=\left\{k \mid \rho_{k} \geq \eta_{s}\right\} \\
\text { set of failed iteration } & \mathcal{F}:=\left\{k \mid \rho_{k}<\eta_{v}\right\} \\
\text { set of iteration } & \mathcal{K}:=\mathbb{N}=\{1,2,3, \ldots\}
\end{array}
$$

- \mathcal{K} is an infinite set
- $\mathcal{V} \subseteq \mathcal{S}$
- $\mathcal{S} \cap \mathcal{F}=\varnothing, \mathcal{K}=\mathcal{S} \cup \mathcal{F}, \mathcal{F}=\mathcal{K} \backslash \mathcal{S}$ and $|\mathcal{F}|=|\mathcal{K}|-|\mathcal{S}|$
- Fact: if there are finitely many successful \& very successful iteration, then there exists a sufficiently large k_{0} such that all iterations k after k_{0} are failed:
- finitely many successful and very successful iteration $\Longrightarrow|\mathcal{S}| \leq \infty$
- $\mathcal{F}=\mathcal{K} \backslash \mathcal{S}$
- so there exists k_{0} s.t. $k>k_{0}$ are all in \mathcal{F}
- $|\mathcal{F}|=|\mathcal{K}|-|\mathcal{S}|=|\mathbb{N}|-|\mathcal{S}|=\aleph_{0}-|\mathcal{S}|=\infty-|\mathcal{S}|=\infty$

This fact is useful later for proving convergence.

Table of Contents

Quadratic model $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$

Sufficient descent: $s=-\alpha \nabla f(\boldsymbol{x})$ then $\Delta m(\boldsymbol{s}) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|_{2}}, \delta\right\}$

Theory of TR convergence

1. $f-m$ gap: $|f(\boldsymbol{x}+\boldsymbol{s})-m(\boldsymbol{s} ; \boldsymbol{x})| \leq \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2}$
2. Progress (small radius \Longrightarrow success): $\nabla f\left(\boldsymbol{x}_{k}\right) \neq \mathbf{0}, \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \Longrightarrow k \in \mathcal{V}, \delta_{k+1} \geq \delta_{k}$
3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

Assumptions for TR convergence

- To derive some theories of TR, we assume

$$
\begin{aligned}
& \text { 1. } f \in \mathcal{C}^{2} . \\
& \text { 2. }\|\boldsymbol{H}(\boldsymbol{x})\|_{2} \leq \kappa_{H}, \forall \boldsymbol{x} \text {. } \\
& \text { 3. }\|\boldsymbol{B}(\boldsymbol{x})\|_{2} \leq \kappa_{B}, \forall \boldsymbol{x} \text {. } \\
& \text { 4. } \kappa_{H} \geq 1 \text { and } \kappa_{B} \geq 0 .
\end{aligned}
$$

- Meaning

1. f is twice differentiable (so Hessian exsits and we can have assumption 2).
2. For the Hessian of f, its matrix 2-norm is globally bounded above.
a strong assumption, can be relaxed by the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}_{k \in \mathbb{N}}$ is monotonically decreasing
3. For \boldsymbol{B} in the model m, its matrix 2-norm of is globally bounded above.
4. Condition on κ_{H} (larger than 1) and κ_{B} (larger than 0).
$2 \& 4$ also mean $\|\boldsymbol{H}(\boldsymbol{x})\|_{2}$ is bounded above by at-least-1

\section*{Summary of TR convergence results under assumptions
 | 1. | $f \in \mathcal{C}^{2}$. |
| :--- | :--- |
| 2. | $\\|\boldsymbol{H}(\boldsymbol{x})\\|_{2} \leq \kappa_{H}, \forall \boldsymbol{x}$. |
| 3. | $\\|\boldsymbol{B}(\boldsymbol{x})\\|_{2} \leq \kappa_{B}, \forall \boldsymbol{x}$. |
| 4. | $\kappa_{H} \geq 1$ and $\kappa_{B} \geq 0$. |}

1. $|f(\boldsymbol{x}+\boldsymbol{s})-m(\boldsymbol{s} ; \boldsymbol{x})| \leq \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2}$.
(gap between f and m)

$\nabla f\left(\boldsymbol{x}_{k}\right) \neq \mathbf{0}$

2. $\quad \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \quad \Longrightarrow$ update is $\mathcal{V} \& \delta_{k+1} \geq \delta_{k}$.
(progress at non-sol / small δ guarantee successful)
3. If there exist ϵ and $k_{0} \in \mathbb{N}$ s.t. $\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \geq \epsilon \geq 0 \forall k \geq k_{0}$,
then $\delta_{k} \geq \delta_{\min }:=\frac{\left\|\epsilon \gamma_{d}\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \forall k \geq k_{1}$ for some $k_{1} \in \mathbb{N}$.
(TR radius will not shrink to 0)
4. If there are finitely many very successful \& successful iterations, then $\boldsymbol{x}_{k}=\boldsymbol{x}^{*}$ for sufficiently large k where $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.
5. Either $\left\{\begin{array}{l}\exists k<\infty \text { s.t. } \nabla f\left(\boldsymbol{x}_{k}\right)=\mathbf{0} \\ \lim _{k \rightarrow \infty} f\left(\boldsymbol{x}_{k}\right)=-\infty \\ \liminf _{k \rightarrow \infty}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|=0\end{array}\right.$
(Global convergence)

Gap between objective function f and model $m=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$

THEN

$$
|f(\boldsymbol{x}+\boldsymbol{s})-m(\boldsymbol{s} ; \boldsymbol{x})| \leq \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2} . \quad \text { (Gap) }
$$

- Proof. $f \in \mathcal{C}^{2}$, apply mean value theorem on f at \boldsymbol{s} for some $\boldsymbol{\xi} \in[\boldsymbol{x}, \boldsymbol{x}+\boldsymbol{s}]$ gives

$$
\begin{aligned}
f(\boldsymbol{x}+\boldsymbol{s}) & =f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\langle\boldsymbol{H}(\xi) \boldsymbol{s}, \boldsymbol{s}\rangle & & \text { assumption } 1(f \text { twice differentiable) } \text { \& mean value theorem } \\
|f(\boldsymbol{x}+\boldsymbol{s})-m(\boldsymbol{s} ; \boldsymbol{x})| & =\frac{1}{2}|\langle\boldsymbol{H}(\boldsymbol{\xi}) \boldsymbol{s}, \boldsymbol{s}\rangle-\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle| & & \\
& \leq \frac{1}{2}|\langle\boldsymbol{H}(\boldsymbol{\xi}) \boldsymbol{s}, \boldsymbol{s}\rangle|+\frac{1}{2}|\langle\boldsymbol{B} \boldsymbol{s}, \boldsymbol{s}\rangle| & & \text { triangle inequality } \\
& =\frac{1}{2}\|\boldsymbol{H}(\boldsymbol{\xi})\|_{2}\|\boldsymbol{s}\|_{2}^{2}+\frac{1}{2}\|\boldsymbol{B}\|_{2}\|\boldsymbol{s}\|_{2}^{2} & & \text { Cauchy-Schwartz inequality } \\
& =\frac{1}{2}\left(\|\boldsymbol{H}(\boldsymbol{\xi})\|_{2}+\|\boldsymbol{B}\|_{2}\right)\|\boldsymbol{s}\|_{2}^{2} & & \\
& \leq \frac{1}{2}\left(\kappa_{H}+\kappa_{B}\right) \delta^{2} & & \text { assumption 2 3 \& }\|\boldsymbol{s}\| \leq \delta
\end{aligned}
$$

* You don't need assumption 4 here.

Progress at non-sol / small TR radius guarantee successful ... $1 / 2$

$$
\&>\begin{aligned}
& \nabla f(\boldsymbol{x}) \neq \mathbf{0} \\
& \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right)
\end{aligned}
$$

- the update is very successful
- $\delta_{k+1} \geq \delta_{k}$
- Proof. implies $\quad \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \quad$ and $\quad \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}}\left(1-\eta_{v s}\right)$

$$
\left\|\boldsymbol{B}\left(\boldsymbol{x}_{k}\right)\right\| \leq \kappa_{B}+\kappa_{H} \Longrightarrow \frac{1}{\kappa_{B}+\kappa_{H}} \leq \frac{1}{\left\|\boldsymbol{B}\left(\boldsymbol{x}_{k}\right)\right\|} \Longrightarrow \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{B}+\kappa_{H}} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\left\|\boldsymbol{B}\left(\boldsymbol{x}_{k}\right)\right\|}
$$

Recall

$$
\Delta m(-\alpha \nabla f(\boldsymbol{x})) \stackrel{(\dagger)}{\geq} \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}, \delta\right\} \stackrel{,}{=} \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \delta \geq 0
$$

(Because by \square, \square, we have $\delta \leq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|}$ so the min gives δ)

- Now we have $\Delta m(-\alpha \nabla f(\boldsymbol{x})) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \delta \geq 0$.

Progress at non-sol / small TR radius guarantee successful ... 2/2

$\Delta m(-\alpha \nabla f(\boldsymbol{x})) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \delta \geq 0$

- Now consider $|\rho-1|$ with $\rho_{k}=\frac{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}\right)}{m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)}$, where $\boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x})$, then

$$
\begin{array}{rlrl}
\left|\rho_{k}-1\right| & =\left|\frac{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}\right)}{m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)}-\frac{m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)}{m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)}\right| & \\
& =\left|\frac{m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}\right)}{m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)}\right| & m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)=f\left(\boldsymbol{x}_{k}\right) \\
& =\frac{1}{|\Delta m(\boldsymbol{s})|}\left|f\left(\boldsymbol{x}_{k}+\boldsymbol{s}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)\right| & m\left(\mathbf{0} ; \boldsymbol{x}_{k}\right)-m\left(\boldsymbol{s} ; \boldsymbol{x}_{k}\right)=\Delta m(\boldsymbol{s}) \\
& \leq \frac{2}{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2} \delta}\left|f\left(\boldsymbol{x}_{k}-\alpha \nabla f(\boldsymbol{x})\right)-m\left(-\alpha \nabla f(\boldsymbol{x}) ; \boldsymbol{x}_{k}\right)\right| & & \text { by } \square \text { and } \boldsymbol{s}=-\alpha \nabla f(\boldsymbol{x}) \\
& \leq \frac{2}{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2} \delta} \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2} & & \text { By (Gap), see 2 slides before } \\
& =\frac{\kappa_{H}+\kappa_{B}}{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}} \delta & \\
& \leq 1-\eta_{v s} . & &
\end{array}
$$

- Now we have $\left|\rho_{k}-1\right| \leq 1-\eta_{v s}$, which gives

$$
\underbrace{-\left(1-\eta_{v s}\right) \leq \rho-1}_{\eta_{v s} \leq \rho} \leq 1-\eta_{v s} \quad \Longrightarrow \quad \rho \geq \eta_{v s} \text { meaning the iteration is very successful, i.e., } k \in \mathcal{V} \subset \mathcal{S}
$$

For very successful iteration, $\delta_{k+1}=\gamma_{i} \delta_{k}$. Since $\gamma_{i}>1$, thus $\delta_{k+1}>\delta_{k}$.

TR radius will not shrink to 0 at non-sol.

1.	$f \in \mathcal{C}^{2}$.		
2.	$\\|\boldsymbol{H}(\boldsymbol{x})\\|_{2} \leq \kappa_{H}, \forall \boldsymbol{x}$		
3.	$\\|\boldsymbol{B}(\boldsymbol{x})\\|_{2} \leq \kappa_{B}, \forall \boldsymbol{x}$		
4.	$\kappa_{H} \geq 1$ and $\kappa_{B} \geq 0$		

\& there exists constant ϵ and $k_{0} \in \mathbb{N}$ such that $\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \geq \epsilon \geq 0$ for all $k \geq k_{0}$

THEN $\delta_{k} \geq \delta_{\text {min }}:=\frac{\epsilon \gamma_{d}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right)>0$ for all $k \geq k_{1}$ for some $k_{1} \in \mathbb{N}$.

- Proof. If there is some $k^{\prime} \geq k_{0}$ such that $\delta_{k^{\prime}} \geq \frac{\epsilon \min \left(1,1-\eta_{v s}\right)}{\kappa^{\kappa} H+\kappa_{B}}$, then by definition of TR algorithm, in the worse case we have $\delta_{k} \geq \delta_{\min }:=\frac{\epsilon \gamma_{d}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right)$ (in other cases we have larger δ_{k}).

Now for contradiction, suppose otherwise that $k \geq k^{\prime}$ is the first iteration such that

$$
\begin{equation*}
\delta_{k} \geq \delta_{\min }>\delta_{k+1}=\gamma_{d} \delta_{k} \tag{*}
\end{equation*}
$$

Thus

$$
\delta_{k}=\frac{\delta_{k+1}}{\gamma_{d}} \leq \frac{\delta_{\min }}{\gamma_{d}}=\frac{\epsilon}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) .
$$

Then by the lemma of progress at non-sol., $\delta_{k+1} \geq \delta_{k}$, which contradicts with ($*$)

Now we have to show that $\exists k^{\prime} \geq k_{0}$ such that $\delta_{k^{\prime}} \geq \frac{\epsilon}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right)$.
By the lemma of progress at non-sol., whenever $\delta_{k^{\prime}}<\frac{\epsilon}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right)$, we have a very successful iteration, and therefore we strictly increase the radius by the factor $\gamma_{i}>1$, i.e., $\delta_{k+1}=\gamma_{i} \delta_{k}$.

Possible finite termination

THEN $\boldsymbol{x}_{k}=\boldsymbol{x}^{*}$ for all sufficiently large k and $\nabla f\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.

- Proof By assumption, it follows that there exists some \boldsymbol{x}^{*} such that $\boldsymbol{x}_{k_{0}+j}=\boldsymbol{x}_{k_{0}+1}=\boldsymbol{x}^{*}$ for all $j \geq 1$, where k_{0} is the index of the last successful iterate (see page 23).

Hence, all the remaining infinitely many unsuccessful iterations will eventually shrink the TR radius to zero, i.e.,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \delta_{k}=0 \tag{*}
\end{equation*}
$$

For the purpose of contradiction, assume $\nabla f\left(\boldsymbol{x}_{k_{0}+1}\right) \neq \mathbf{0}$, let $\epsilon=\left\|\nabla f\left(\boldsymbol{x}_{k_{0}+1}\right)\right\|>0$. By the lemma in the previous page, we have

$$
\delta_{k} \geq \delta_{\min }:=\frac{\epsilon \gamma_{d}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right)>0
$$

contradicting $(*)$. Therefore the assumption is false and we have $\nabla f\left(\boldsymbol{x}^{*}\right)=\nabla f\left(\boldsymbol{x}_{k_{0}+1}\right)=\mathbf{0}$.

Global convergence ${ }^{1}$ of some subsequence ... $1 / 3$

1. finite termination: $\exists k<\infty$ s.t. $\nabla f\left(\boldsymbol{x}_{k}\right)=\mathbf{0}$.
2. unbounded objective function: $\min _{k \rightarrow \infty} f\left(\boldsymbol{x}_{k}\right)=-\infty$.
3. convergence of a subsequence of the gradients: $\liminf _{k \rightarrow \infty}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|=0$.

- Idea of the proof. We show that under the assumption we will get exactly one of the result.
- To do so we introduce an object: let \mathcal{S} be the index set of successful and very successful iterations.
- By definition of the TR (Algorithm 1 in page 22), if at an iteration $k \in \mathcal{S}$, we have

$$
\begin{equation*}
\rho_{k} \geq \eta_{s} \tag{*}
\end{equation*}
$$

- Recall the definition of TR (Algorithm 1) on ρ_{k}, we have

$$
\begin{equation*}
\rho_{k} \stackrel{\text { definition }}{=} \frac{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\boldsymbol{s}_{k}\right)}{m_{k}(\mathbf{0})-m_{k}\left(\boldsymbol{s}_{k}\right)} \Longleftrightarrow f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\boldsymbol{s}_{k}\right)=\rho_{k} \underbrace{\left(m_{k}(\mathbf{0})-m_{k}\left(\boldsymbol{s}_{k}\right)\right)}_{=: \Delta m_{k}\left(\boldsymbol{s}_{k}\right)} \stackrel{(*)}{\geq} \eta_{s} \Delta m_{k}\left(\boldsymbol{s}_{k}\right) \tag{**}
\end{equation*}
$$

$(* *)$ is the starting point of the proof.

- Proof. Let \mathcal{S} be the index set of successful and very successful iterations.
- Lemma (possible finite termination, previous slide) implies result 1 is true if $|\mathcal{S}|<\infty$.
- Now consider the remaining case $|\mathcal{S}|=\infty$. If f is unbounded below then we have result 2 .
- So now we show that if $|\mathcal{S}|=\infty$ and f is bounded below then we have case 3.

[^0]
Global convergence of some subsequence ${ }^{2} \ldots 2 / 3$

- Goal: show that if $|\mathcal{S}|=\infty$ and f is bounded below then we have case 3 .
- For the purpose of contradiction, assume there exists $\epsilon>0$ and $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \geq \epsilon>0 \quad \forall k \geq k_{0} \tag{£}
\end{equation*}
$$

- From $(* *)$, we have the following for all $k \in \mathcal{S}$ such that $k \geq k_{0}$

$$
\begin{array}{rlrl}
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}_{k}\right) & \geq \eta_{s} \Delta m_{k}\left(\boldsymbol{s}_{k}\right) & & \text { by }(* *) \\
& \geq \eta_{s} \frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\| \min \left\{\frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|}{\left\|\boldsymbol{B}_{k}\right\|}, \delta_{k}\right\} & & \text { by } \boldsymbol{s}=-\alpha \nabla f\left(\boldsymbol{x}_{k}\right) \text { and sufficient descent condition of } m \\
& \geq \frac{\eta_{s}}{2} \epsilon \min \left\{\frac{\epsilon}{\left\|\boldsymbol{B}_{k}\right\|}, \delta_{k}\right\} & & \text { by }(£) \\
& \geq \underbrace{\frac{\eta_{s} \epsilon}{2} \min \left\{\frac{\epsilon}{\kappa_{B}}, \delta_{k}\right\}}_{=: \delta_{\epsilon}} & & \left\|\boldsymbol{B}_{k}\right\| \leq \kappa_{B} \\
& \geq \underbrace{\frac{\eta_{s} \epsilon}{2} \min \left\{\frac{\epsilon}{\kappa_{\boldsymbol{B}}}, \delta_{\min }\right\}} & & \delta_{k} \geq \delta_{\min }(\text { TR radius will not shrink to } 0) \\
& >0 & \epsilon>0, \kappa_{\boldsymbol{B}} \geq 1, \eta_{s} \geq 1, \delta_{\min }>0
\end{array}
$$

Now we have for all $k \in \mathcal{S}$ such that $k \geq k_{0}$

$$
f_{k}-f_{k+1}:=f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}_{k}\right) \geq \delta_{\epsilon}>0
$$

[^1]
Global convergence of some subsequence ... $3 / 3$

$$
f_{k}-f_{k+1}:=f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}+\boldsymbol{s}_{k}\right) \geq \delta_{\epsilon}>0
$$

- Now we perform telescoping sum: pick $j \geq 1$ and then summing over all $k \leq j$

$$
\sum_{k=0}^{j}\left(f_{k}-f_{k+1}\right) \stackrel{\text { telescope sum }}{=} f_{0}-f_{j+1}
$$

- Focus on $k \in \mathcal{S}$ such that $k \leq j$ gives

$$
f_{0}-f_{j+1} \stackrel{\text { telescope sum }}{=} \sum_{k=0}^{j}\left(f_{k}-f_{k+1}\right) \stackrel{(!)}{\geq} \sum_{k=0, k \in \mathcal{S}}^{j}\left(f_{k}-f_{k+1}\right) \stackrel{(\diamond)}{\geq} \sum_{k=0, k \in \mathcal{S}}^{j} \delta_{\epsilon}>0
$$

where $\stackrel{(!)}{\geq}$ is by definition: if $k \notin \mathcal{S}$ then that iteration is unsuccessful, by definition of TR algorithm $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}$ so $f_{k}=f_{k+1}$. Since the set of $[0,1, \ldots, k, \ldots, j]$ is larger than $[0,1, \ldots, k, \ldots, j] \cap\{k \in \mathcal{S}\}$ so we have \geq sign.

- Now take limit $j \rightarrow \infty$ on $(\diamond>)$

$$
\lim _{j \rightarrow \infty}\left(f_{0}-f_{j+1}\right) \stackrel{(\infty)}{\geq} \lim _{j \rightarrow \infty} \sum_{k=0, k \in \mathcal{S}}^{j} \delta_{\epsilon}=\sum_{k=0, k \in \mathcal{S}}^{\infty} \delta_{\epsilon} \stackrel{\delta_{\epsilon} \geqq 0}{=}+\infty \Longrightarrow f_{0}-f_{\infty} \geq+\infty
$$

$\Longrightarrow f$ is unbounded below. This contradicts to the assumption therefore the assumption $(£)$ is false, which means there exists a subsequence of the gradients that converges to zero, i.e., $\liminf _{k \rightarrow \infty}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|=0$.

Last page - summary

Quadratic model $m(\boldsymbol{s} ; \boldsymbol{x}):=f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{s}\rangle+\frac{1}{2}\|\boldsymbol{s}\|_{\boldsymbol{B}}^{2}$
Sufficient descent: $s=-\alpha \nabla f(\boldsymbol{x})$ then $\Delta m(s) \geq \frac{\|\nabla f(\boldsymbol{x})\|_{2}}{2} \min \left\{\frac{\|\nabla f(\boldsymbol{x})\|_{2}}{\|\boldsymbol{B}\|^{2}}, \delta\right\}$
Theory of TR convergence

1. $f-m$ gap: $|f(\boldsymbol{x}+\boldsymbol{s})-m(\boldsymbol{s} ; \boldsymbol{x})| \leq \frac{\kappa_{H}+\kappa_{B}}{2} \delta^{2}$
2. Progress (small radius \Longrightarrow success): $\nabla f\left(\boldsymbol{x}_{k}\right) \neq \mathbf{0}, \delta_{k} \leq \frac{\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{2}}{\kappa_{H}+\kappa_{B}} \min \left(1,1-\eta_{v s}\right) \Longrightarrow k \in \mathcal{V}, \delta_{k+1} \geq \delta_{k}$
3. TR radius will not shrink to 0 at non-sol.
4. Possible finite termination
5. Global convergence of some subsequence

End of document

[^0]: ${ }^{1}$ Here "global convergence" means convergence to a stationary point regardless of starting point

[^1]: ${ }^{2}$ Here subsequence is used because we consider sequence $\left\{\boldsymbol{x}_{k}\right\}_{k \geq k_{0}}$

