A piece-wise linear function

\[f(x) = \sum_{i=1}^{n} c_i \max\{0, a_i x + b_i\} - d, \]

where \(a_i, b_i, c_i \) and \(d \) are given real numbers.

Using \([\cdot]_+ \) to denote \(\max\{0, \cdot\} \). A piece-wise linear equation is defined as

\[\sum_{i=1}^{n} c_i [a_i x + b_i]_+ = d. \]

This document: discuss how to solve this equation, i.e., solve for the root \(x \).
Where do you find piece-wise linear function

- Discrete optimization.
 Piece-wise linear function appears naturally in many discrete optimization problems.

- Projection onto simplex.
 Projecting a vector in \mathbb{R}^n onto the convex set

$$\{ x \mid x \geq 0, \langle x, b \rangle = 1 \}$$

involves solving a piece-wise linear equation.
Intuition ... (1/2)

▶ For simplicity, consider the special case with \(c_i = 1 \) and \(n = 2 \):

\[
[0, a_1 x + b_1] + [0, a_2 x + b_2] = d.
\]

Say \(a_1 > 0, a_2 > 0, b_1 > 0 \) and \(b_2 = 0 \)

For \(d = 0 \), we see the solution set is \(\{ x \mid x \leq -1 \} \).
Intuition ... (2/2)

For $d = 1$, solving $[0, a_1 x + b_1] + [0, a_2 x + b_2] = 1$ means to find the red point.

From both $d = 0$ and $d = 1$, we see that

- The piece-wise linear function f is divided into 3 line segments by 2 break points.
- Finding the root corresponds to finding the point that intersects f and the line $y = d$. The x-coordinate of the point will be the solution.
- This gives us a solution approach: find the line segment that intersects with $y = d$.

![Graph showing piece-wise linear function and y = 1 line](image)
Nature of the solution

- In general \(f(x) \) can have
 - unique root.
 - multiple roots.
 - infinitely many roots.
 - no solution.

- For examples: \([a_1x + b_1]_+ + [a_2x + b_2]_+ = 1 \),
Solution approach

- We now consider the solution approach of a particular problem.
- First we simplify the problem.
- There are in general two cases: if $d = 0$, we have

$$\sum_{i=1}^{n} c_i [a_i x + b_i]_+ = 0.$$

If $d \neq 0$, we divide the equation by d. Absorbing d into c_i gives

$$\sum_{i=1}^{n} c_i [a_i x + b_i]_+ = 1.$$

- We focus on the second problem as it is harder.
Solution approach ... (1/2)

For understanding, we focus on solving an example:

\[
3.8 \left[-3.8x + 5 \right]_+ + 2 \left[-2x + 3 \right]_+ = 1.
\]

The break point (the point that changes the behavior of the function) of \(f_1, f_2 \) are:

\[
BP_1 = \frac{5}{3.8} = 1.3158, \quad BP_2 = \frac{3}{2} = 1.5.
\]

The break points divide the \(f \) into three line segments: \(L_0, L_1 \) and \(L_2 \).
Solution approach ... (2/2)

- First we test L_0: does $y = 1$?
 No since $y = 0$ for all $x \in \text{dom} L_0 = \{w \mid w \geq 1.5\}$.

- Then we move to L_1: does $y = 1$?
 No since $y = f_2 < 1$ for $x \in \text{dom} L_1 = \{w \mid 1.3158 \leq w \leq 1.5\}$

- Then we move to L_2: does $y = 1$?
 Yes since $y = f_1 + f_2$ contains 1 for $x \in \text{dom} L_2 = \{w \mid w \leq 1.3158\}$.
 And the root x can be computed as

\[
\begin{align*}
 f(x) & = 1 \\
 \iff \quad f_1(x) + f_2(x) & = 1 \\
 \iff \quad 3.8[-3.8x + 5]_+ + 2[-2x + 3]_+ & = 1 \\
 \iff \quad 3.8(-3.8x + 5) + 2(-2x + 3) & = 1 \\
 \iff \quad -18.4x + 25 & = 1 \\
 \iff \quad x & = 1.304.
\end{align*}
\]

The 3rd \iff is the most important one: since f_1 and f_2 are nonnegative in $\text{dom} L_2$, we can remove $[\cdot]_+$.
Systemic solution approach

From the previous example, we arrive at a systemic approach to solve piece-wise linear equation

- Sort the break points: this gives us the interval for each of the line segments L_i.

- Starting from the right most line segment L_0 (correspond to the largest break point):
 - Compute the equation of the line segment L_i in the form of $y = mx + c$.
 - Check whether L_i intersect the line $y = 1$.
 - If L_i does not contains the solution, move to L_{i+1}.

- Note that for the problem with $d = 0$, the line segment L_0 is the solution.

- For the problem with $d \neq 0$, the line segment L_0 definitely does not contains the solution and hence can be ignored.
The complexity

- For the general problem

\[f(x) = \sum_{i=1}^{n} c_i [a_i x + b_i]_+ = d, \]

we are given \(n \) sets of points \((a_i, b_i, c_i)\), hence the sorting on \(\frac{-a_i}{b_i} \) takes in general \(O(n \log n) \) computational cost.

- As the sorting is the most expensive step in the algorithm, the whole algorithm to solve the piece-wise linear equation thus has the general complexity of \(O(n \log n) \).
The complexity: practical remark

▶ Note that only the terms with $c_i \neq 0$ contributes to the sum in

$$f(x) = \sum_{i=1}^{n} c_i [a_i x + b_i]_+ = d.$$

Hence, we can actually ignore the terms with $c_i = 0$.

▶ Assuming there are $K \leq n$ nonzero c_i, the sorting thus has $\mathcal{O}(n + K \log n)$ cost.

▶ Therefore, in general, the cost of solving the piece-wise linear equation is in between $\mathcal{O}(n + K \log n)$ and $\mathcal{O}(n \log n)$, depending on K.

▶ For K that is much smaller than n, then $n + K \log n \approx n$ and hence we can say that the cost of solving the piece-wise linear equation is in between $\mathcal{O}(n)$ and $\mathcal{O}(n \log n)$.

End of document