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One sentence summary / take-home

An heuristic extrapolated BCD algorithm with reduced
restart cost, that works fast on X-factorization.
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What problem to solve

» (Nonnegative) Canonical Polyadic Decomposition! (CPD) with known
factorization rank

» Given 7 € N, and 7 € RIv2X%IN find A; € RI*" for
t=1,2..., N by solving

2
: i ST %y Ag X9 Ag x5 Xn A H
(P) AlT}gN HT X1 A1 X2 Ag X3 XN AN -

subject to A; € C; (for example, nonnegativity).

» Statement: try to accelerate (exact and inexact) BCD algorithm for
solving (P).

'The acceleration also works for Tucker model and even in complex numbers.
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N =

What problem to solve — simplified case

» Given r and 7 € RIXVXE find U e R7*", V € R7*", W € REX" by

(P);, mnin (U V, W) = HT U><2V><3WH
>0,V>0,
subject to, says U,V,W nonnegative.

» The BCD that you know very well
Algorithm 1: A typical BCD to solve 3rd-order NCPD
Result: U, V, W that minimize f
Initialize Uy, Vo, Wy;
while not converge do

Uy = argmin f(U, Vi_1, Wg_1);
U>o0

Vi = argmin f(Ug, V,Wy_1);
V>0

W, = argmin f(Uy, Vi, W);
W>0

end

» Can use what ever solver on each sub-problem:
(acc-)gradient descent, active set, ADMM, (acc-)HALS, MU

» Note: exact BCD vs inexact BCD.
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Algorithm 2: Heuristic Extrapolated BCD with Restarts

(HER)

Result: U, V, W that minimize f

N =

10
11
12
13
14
15
16
17 end

Initialize Ug, Vo, Wy, Ug, Vo, Wy, Bo € (0, 1}, n>y2>v2>1;
while not converge do

Uy, = argmin f(U, Vi_1, Wy_1);
. U
Uy = [Ug + Br—1(U — Ug_1)]+:

Vi = argmin f(U, V,W;_1);
. v
Vi = [V +Br-1(Vie — Vi_1)]+;

W), = argmin f(Uy, V, W);
. w
Wi = [Wg + B 1(Wi — Wi_1)]+;

Compute ), := f(IAJk,,Vk,Wk);
if £}, > F,_, then
‘ Uy = Uy, Vi = Vi, Wy, = Wy
B = Bi—1, Bk = Be—1/mi
else
Uy, = U, Vi, = Vi, Wi, = Wy
B = min{By, Be—17}, Br = min{1, Br_17}:

end
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It works well in NMF
min_f(W,H) = || X - WH||>,

W>0H>0
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Figure: Average over 100 run of ANLS, A-HALS and their extrapolated variants applied
on low-rank (left) synthetic data sets, the method of APG-MF? is used for comparisons.

ses ...
2Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and completion.
SIAM J Imaging Sciences 6(3), 2013 6/15



It works well in NTF: CPD form

wmin {(U.V, W) HT U><2V><3WH

U>0,vV>0,
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Figure: On 50° tensor, rank 10. Blue : ordinary BCD. Orange : HER-BCD.

Similar figure for AS, accPGD, GD, MU ...
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It works well in NTF: other cases

Fig. Test description [, 12,13, 7, 0]
Synthetic data

2 Cube size, low rank, noiseless [50, 50, 50, 10, 0]

2 Unbalanced size, low rank, noiseless (150, 103, 50,12, 0]

3 Unbalanced size, larger rank, noiseless [150, 103, 50, 25, 0]

4  Large cube size, low rank, noisy (500, 500, 500, 10, 0.01]

5  Unbalanced size, low rank, noisy, ill-condition [150, 103, 50, 12,0.001]

6 HER-AO-gradients compared with APG and iBPG (150, 103, 50, 10, 0.01]
[50, 50, 50, 10, 0]

7  Comparing {HER,Bro,GR,LS}-AHALS [150, 103, 50,12, 0.01]

[150,10%, 50, 25,0.01]

Real data

[610, 340, 103, 10]
[145,145,200,15]
9  Big data : black-and-white video sequence [153,238,1.4 x 10%,{10,20, 30}]

Table 4: List of experiments on NTF.

Same result for AS, accPGD, GD, MU ...
So many test cases because NO theory.

8  Two HSI images : PaviaU and Indian Pine
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It works well in NTF: with Tucker form data compression

min U V. W) _HgX1A><2B x3 C I><1U><2VX3VVH
U>0,V>0,
T is a Tucker-3 tensor

1012 f(k) — fmin

106 - .--..--...-.-»--u...,.."".
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Figure: On a 153 x 238 x 14000 video tensor that has very high mode-wise condition
numbers, rank 30. 9/15



It works well in CPD

Jun f(UV, W) = [T -Ux; v x5 W7

— ALS
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Figure: On Wine data 44 x 2700 x 200, rank 15.

Note: here the problem has no constraint, block-wise subproblem has
closed-form solution (ALS, which is also Newton's iteration), so this shows
that HER also works with second-order method.
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It works well in complex number
min f(W,H,©) = |X - WH o e®|,
W>0,H>0,0€[—m,x|™*"
or

min f(W,H,D) = |[X - WHo D|[%,
W>0,H>0,DeC"¥" |D,;|=1
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Figure: On fitting a complex matrix (spectrogram of speech data), rank 75.
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Algorithm 2: HER

1: Input: a nonnegative N-way tensor

2: Output: nonnegative factors AW A@ g0

3: Initialization: Choose fy € (0,1), 7 >4 > v > 1 and 2 sets of initial factor matrices
(A((Jl),... ,AgN)) and (Af)l)_’_u’/i(()f\’))_ Set fp =1 and k = 1.

4: repeat
5 fori=1,...,N do _
6: Update step Let Ag) be an exact/inexact solution of

: A1) 1) () 40+1) AN)

A%lgop(/{k s ATD A0 AT AN, (15)

T Extrapolation step

A = max (o,Ag) + B (A — Agg11>) . (16)
8 end for

10: if £}, > Fy_; then

11: Set Ag) = Ag), i=1,...N % abandon the sequence Ag)

12: Set Bk = Br—1, Br = Br_1/n- % Update B, decrease 3

13:  else ) ) ]

14: Set As) = /ig), i=1,...N. % keep the sequence Ag)

15: Set B, = min{1, Br_17}, Br = min{Br_1,Br-17}. % Increase B and
16:  end if

17 Set k=Fk+1.
18: until some criteria is satisfied
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What are the important points

» Why no theory: it is accelerating nonconvex BCD, not Gradient
Descent, not many useful tools to use, so cannot prove convergence

» Why faster: acceleration due to extrapolation with restarts
(safe-guard mechanism) that is cheap to compute.

» Why restart cost is low: the use of F — reuse already computed
component when updating the blocks

The reduction: from O(T[, I;) to O(rN=11Iy)
> Use of F' as a surrogate of F' makes sense: klim |y — Fi| = 0.
—00

» What about other findings
» BCD can be replaced by inexact BCD, even 1 step gradient descent
» Constrained problem can be replaced by unconstrained problem
P Tensor can be replaced by matrix
» Even works for complex number
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An

restart cost, that works

No proof

|Ak + B A=Ay )l
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fast on X-factorization.
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The End.
Papers, code, slide available at angms.science
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