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One sentence summary / take-home

An heuristic extrapolated BCD algorithm with reduced
restart cost, that works fast on X-factorization.
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What problem to solve

I (Nonnegative) Canonical Polyadic Decomposition1 (CPD) with known
factorization rank

I Given r ∈ N+ and T ∈ RI1×I2×···×IN , find Ai ∈ RIi×r for
i = 1, 2 . . . , N by solving

(P) : min
A1,...,AN

∥∥∥T − I ×1 A1 ×2 A2 ×3 · · · ×N AN

∥∥∥2

F

subject to Ai ∈ Ci (for example, nonnegativity).

I Statement: try to accelerate (exact and inexact) BCD algorithm for
solving (P).

1The acceleration also works for Tucker model and even in complex numbers.
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What problem to solve – simplified case
I Given r and T ∈ RI×J×K , find U ∈ RI×r, V ∈ RJ×r, W ∈ RK×r by

(P) : min
U≥0,V≥0,W≥0

f(U,V,W) :=
∥∥∥T −U×2 V ×3 W

∥∥∥2
F

subject to, says U,V,W nonnegative.
I The BCD that you know very well

Algorithm 1: A typical BCD to solve 3rd-order NCPD

Result: U,V,W that minimize f
1 Initialize U0,V0,W0;
2 while not converge do
3 Uk = argmin

U≥0
f(U,Vk−1,Wk−1);

4 Vk = argmin
V≥0

f(Uk,V,Wk−1);

5 Wk = argmin
W≥0

f(Uk,Vk,W);

6 end

I Can use what ever solver on each sub-problem:
(acc-)gradient descent, active set, ADMM, (acc-)HALS, MU

I Note: exact BCD vs inexact BCD.
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Algorithm 2: Heuristic Extrapolated BCD with Restarts (HER)
Result: U,V,W that minimize f

1 Initialize U0,V0,W0, Û0, V̂0,Ŵ0, β0 ∈ (0, 1], η ≥ γ̄ ≥ γ ≥ 1;
2 while not converge do

3 Uk = argmin
U

f(U, V̂k−1,Ŵk−1);

4 Ûk = [Uk + βk−1(Uk −Uk−1)]+;

5 Vk = argmin
V

f(Ûk,V,Ŵk−1);

6 V̂k = [Vk + βk−1(Vk −Vk−1)]+;

7 Wk = argmin
W

f(Ûk, V̂k,W);

8 Ŵk = [Wk + βk−1(Wk −Wk−1)]+;

9 Compute F̂k := f(Ûk, V̂k,Wk);

10 if F̂k > F̂k−1 then

11 Ûk = Uk, V̂k = Vk,Ŵk = Wk;

12 β̄k = βk−1, βk = βk−1/η;

13 else

14 Uk = Ûk,Vk = V̂k,Wk = Ŵk;

15 βk = min{β̄k, βk−1γ}, β̄k = min{1, β̄k−1γ̄};
16 end

17 end
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It works well in NMF
min

W≥0,H≥0
f(W,H) :=

∥∥X−WH
∥∥2

F

Figure: Average over 100 run of ANLS, A-HALS and their extrapolated variants applied
on low-rank (left) synthetic data sets, the method of APG-MF2 is used for comparisons.

Similar figure for many other cases ...
2Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex

optimization with applications to nonnegative tensor factorization and completion.
SIAM J Imaging Sciences 6(3), 2013 6 / 15



It works well in NTF: CPD form

min
U≥0,V≥0,W≥0

f(U,V,W) :=
∥∥∥T −U×2 V ×3 W

∥∥∥2

F
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Figure: On 503 tensor, rank 10. Blue : ordinary BCD. Orange : HER-BCD.

Similar figure for AS, accPGD, GD, MU ...
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It works well in NTF: other cases

Same result for AS, accPGD, GD, MU ...
So many test cases because NO theory.
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It works well in NTF: with Tucker form data compression

min
U≥0,V≥0,W≥0

f(U,V,W) :=
∥∥∥G ×1 A×2 B×3 C︸ ︷︷ ︸
T is a Tucker-3 tensor

−I ×1 U×2 V ×3 W
∥∥∥2

F
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Figure: On a 153× 238× 14000 video tensor that has very high mode-wise condition
numbers, rank 30. 9 / 15



It works well in CPD

min
U,V,W

f(U,V,W) :=
∥∥T −U×2 V ×3 W

∥∥2

F

Figure: On Wine data 44× 2700× 200, rank 15.

Note: here the problem has no constraint, block-wise subproblem has
closed-form solution (ALS, which is also Newton’s iteration), so this shows
that HER also works with second-order method.

10 / 15



It works well in complex number

min
W≥0,H≥0,Θ∈[−π,π]m×n

f(W,H,Θ) :=
∥∥X−WH� eiΘ

∥∥2

F

or
min

W≥0,H≥0,D∈Cm×n,|Dij |=1
f(W,H,D) :=

∥∥X−WH�D
∥∥2

F

Figure: On fitting a complex matrix (spectrogram of speech data), rank 75.
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𝐹𝑘+1 ≤ 𝐹𝑘

Extrapolation is 
doing good

Extrapolation is 
doing bad

Keep going !

𝐴𝑘
(𝑖)

← መ𝐴𝑘
(𝑖)

Restart !

መ𝐴𝑘
(𝑖)

← 𝐴𝑘
(𝑖)

Parameter update

𝛽𝑘 ← min{ ҧ𝛽, 𝛽𝑘−1𝛾}

ҧ𝛽𝑘 ← min{𝑀, ҧ𝛽𝑘−1 ҧ𝛾}

Parameter update

𝛽𝑘 ← 𝛽𝑘−1/ 𝜂

ҧ𝛽𝑘 ← 𝛽𝑘−1

Next 𝑘

YES

NO

𝜷𝒌 ↑

𝜷𝒌 ↓
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What are the important points
I Why no theory: it is accelerating nonconvex BCD, not Gradient

Descent, not many useful tools to use, so cannot prove convergence

I Why faster: acceleration due to extrapolation with restarts
(safe-guard mechanism) that is cheap to compute.

I Why restart cost is low: the use of F̂ — reuse already computed
component when updating the blocks
The reduction: from O

(∏N
i=1 Ii

)
to O

(
rN−1IN

)
I Use of F̂ as a surrogate of F makes sense: lim

k→∞
|F̂k − Fk| = 0.

I What about other findings
I BCD can be replaced by inexact BCD, even 1 step gradient descent
I Constrained problem can be replaced by unconstrained problem
I Tensor can be replaced by matrix
I Even works for complex number
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The End.
Papers, code, slide available at angms.science

angms.science

