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Structural factorization

I Factorize data into (low-rank) factors with structural constraints.

I Examples: NMF, NTF, Tucker decomposition

I This talk: unimodal structure.
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Unimodality

I A vector a = [a1 a2 . . . am] is unimodal if

a1 ≤ a2 ≤ · · · ≤︸ ︷︷ ︸
increasing head

ap ≥ ap+1 ≥ · · · ≥ am︸ ︷︷ ︸
decreasing tail

.

I Nonnegative Unimodality (Nu) = Def. of u + nonnegativity

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≥ ap+1 ≥ · · · ≥ am ≥ 0. (Nu)

I A vector x is Nu:

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. 0 ≤ x1 ≤ · · · ≤ xp ≥ · · · ≥ xn ≥ 0.

4 / 33



Unimodality

I A vector a = [a1 a2 . . . am] is unimodal if

a1 ≤ a2 ≤ · · · ≤︸ ︷︷ ︸
increasing head

ap ≥ ap+1 ≥ · · · ≥ am︸ ︷︷ ︸
decreasing tail

.

I Nonnegative Unimodality (Nu) = Def. of u + nonnegativity

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≥ ap+1 ≥ · · · ≥ am ≥ 0. (Nu)

I A vector x is Nu:

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. 0 ≤ x1 ≤ · · · ≤ xp ≥ · · · ≥ xn ≥ 0.

4 / 33



Some Nu vectors

0 ≤ a1 ≤ a2 ≤ · · · ≤ ap ≥ ap+1 ≥ · · · ≥ am ≥ 0. (Nu)

Figure: Four Nu vectors. Black: the plot of the sequence. Red: the locations of p.

I p can be unique or non-unique

I p can be any integer in {1, 2, . . . ,m}.
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Nonnegative unimodal factorization

I Factorize data into (low-rank) factors with Nu constraints.

I Examples
I Factorize a matrix M into product WH such that the columns of W

are Nu + (other constraints).

I Factorize a tensor T into product G ×1 A×2 B×3 C such that the
columns of A are Nu + (other constraints).

I Questions
I Why consider Nu? Application motivation

I How to formulate Nu and how to solve it? Algorithm / Optimization

I What is known about this model? Theory / Linear Algebra
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Motivation: some data are Nu

Figure: Chromatography.
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Characterization of Nu set
I A vector x ∈ Rm is Nu:

x is Nu ⇐⇒ ∃p ∈ [m] s.t. 0 ≤ x1 ≤ · · · ≤ xp ≥ · · · ≥ xm ≥ 0.

I Notations
I x ∈ Um

+ means x ∈ Rm is Nu

I x ∈ Um,p
+ means x ∈ Rm is Nu with known p

I Facts
I Um,p

+ is a convex set.

I Um
+ =

⋃
k U

m,k
+

I Um
+ is nonconvex.

Example: ei and ej are Nu but λei + (1− λ)ej is not Nu if |i− j| ≥ 2.
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ei and ej are Nu but 0.5ei + 0.5ej is not Nu if |i− j| ≥ 2.
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The set Um,p+ ∪ Um,p+1
+ is convex

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. x ∈ Um,p+ ∪ Um,p+1
+

⇐⇒



0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp

xp+1 ≥ xp+2
...

xm−1 ≥ xm
xm ≥ 0

“Nu membership characterized by a system of monic inequalities”.

10 / 33



x ∈ Um,p+ ∪ Um,p+1
+ ⇐⇒



0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0

⇐⇒ Upx ≥ 0

Up =




1
−1 1

. . .
. . .

−1 1


p×p︸ ︷︷ ︸

Dp×p

0p×(m−p)

0(m−p)×p D>(m−p)×(m−p)


.
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NuMF
I GIVEN M ∈ Rm×n+ and r ∈ N,

FIND W ∈ Rm×r and H ∈ Rr×n by solving

minimize 1
2‖M−WH‖2F subject to H ≥ 0,

wj ∈ Um+ for all j ∈ [r],

w>j 1m = 1 for all j ∈ [r],

I Apply the characterization:

minimize 1
2‖M−WH‖2F subject to H ≥ 0,

Upjwj ≥ 0 for all j ∈ [r],

w>j 1m = 1 for all j ∈ [r],

where integers p1, p2, . . . , pr are unknown!
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How to solve: BCD

min
W,H
p1,...,pj

1

2
‖M−WH‖2F s.t. H ≥ 0, Upjwj ≥ 0, w>j 1m = 1, ∀j ∈ [r].

I Subproblem on H is simple.

min
H

1

2
‖M−WH‖2F s.t. H ≥ 0.

I Main difficulty comes from subproblem on W.
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Subproblem on W

min
W,p1,...,pj

1

2
‖M−WH‖2F s.t. Upjwj ≥ 0, w>j 1m = 1, ∀j ∈ [r].

I Problem involves integer variables and is nonconvex.

I The subproblem on a column of W (in the HALS framework) is

min
wi,pi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉+ c s.t. Upiwi ≥ 0, w>i 1 = 1,

which is a linearly-constrained quadratic program.
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What is HALS= column-wise block coordinate descent

1

2
‖M−WH‖2F =

1

2

∥∥∥M− r∑
j=1

wjh
j
∥∥∥2
F

=
1

2

∥∥∥M−∑
j 6=i

wjh
j

︸ ︷︷ ︸
:=Mi

−wih
i
∥∥∥2
F

=
1

2
‖Mi −wih

i‖2F

= a quadratic function on wi
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Subproblem on a column of W

min
wi,pi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0, w>i 1 = 1,

I A linearly-constrained quadratic program.

I Brute-force approach: solve this problem on all (even) p, pick the
best one as pi.

I Brute-force is slow if m is large, only OK if m sufficiently small.
We need acceleration!
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Speed up the brute-force algorithm for large m

I Speed up 1: solve the subproblem using Nesterov’s accelerated
projected gradient.

I Speed up 2: reduce the search space for pi’s.
I By guessing the location of pi’s

I By dimension reduction: multi-level / multi-grid method
I Multi-grid preserves Nu: a theorem with proof in 3 sentences!

I Other dimension reduction techniques such as PCA or Gaussian
sampling do not work here as they destroy the Nu.
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APG: Accelerated Projected Gradient
The subproblem on a column of W (with pi fix)

min
wi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0, w>i 1 = 1.

I The constraint
{
Upiwi ≥ 0, w>i 1 = 1

}
is hard to project.

I Transform the problem via y = Uw:

min
y

1

2

〈
‖hi‖22U−>pi y, y

〉
−
〈
U−>pi Mih

i>, y
〉

s.t. y ≥ 0, y>U−>pi 1 = 1

or equivalently

min
y

1

2
〈Qy,y〉 − 〈p,y〉 s.t. y ≥ 0, y>b = 1.

I Once we get y∗, we get w∗i by y = Uw.
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APG on solving y
I The key is the projection onto the irregular simplex: given a point z

P (z) = argmin
y

1

2
‖y − z‖22 s.t. y ≥ 0,y>b = 1.

I Optimal sol.: solving the partial Lagrangian

y∗
(∗)
= min

y≥0
max
ν

1

2
‖y − z‖22 + ν(y>b− 1)︸ ︷︷ ︸

L(y,ν)

= [z− ν∗b]+,

with closed-form solution given by soft-thresholding, where the
Lagrangian multiplier ν∗ is the root of a piece-wise linear equation

m∑
i=1

max
{

0, zi − νbi
}
bi = 1,

which takes O(m) to O(m logm) to solve by sorting the break points
zi
bi

. After sorting, the magical-one-line-code is

nu = max((cumsum(z.*b)-1)./(cumsum(b.*b)));

(*): The problem satisfies the Slater’s condition, i.e., the feasible set has a non-empty relative
interior, which guarantees strong duality. 19 / 33



Multi-grid

I Idea: instead of working on w, work on RN . . .R1w with smaller
search space of p.

I Restriction R ∈ Rm1×m
+ changes x ∈ Rm+ to Rx ∈ Rm1

+ with
m1 < m.

R(a, b) =



a b

b a b
. . .

. . .
. . .

b a b

b a


,
a > 0, b > 0,

a+ 2b = 1.

I Key fact: if x is NU, then Rx is Nu.
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Theorem: if x is Nu, then Rx is Nu.
I The 3-sentence-proof:

1. R can be expressed as a sum

a b
b a b

b a


︸ ︷︷ ︸

R

=
a 0

0 a 0
0 a


︸ ︷︷ ︸

A

+
0 b

0 b
0


︸ ︷︷ ︸

B

+
0

b 0
b 0


︸ ︷︷ ︸

C

so Rx = Ax + Bx + Cx.

2. A,B,C are sampling operators picking the odd or even indices of x, so
Ax, Bx and Cx are all Nu.

3. The sum Ax + Bx + Cx is Nu because their p values differ at most 1.

I Theorem (formally): let x ∈ Um,p+ with p is even1 and R ∈ Rm1×m

defined as in page 16. Then y = Rx ∈ Nm1,py
+ with

Nm,p
+ = Um,p+ ∪ Um,p+1

+ and py ∈ {bp2 + 1c, bp2c}.
1If p is odd, by considering the vector [0,x] does not change the unimodality and

increases p by one.

22 / 33



The whole algorithm (in words) for NuMF(M, r)

Steps:

1. Restriction M[N ] = RN . . .R1M and W
[N ]
0 = RN . . .R1W0

2. Solve NuMF on coarse grid:

[W
[N ]
∗ ,H∗,p

[N ]
∗ ]← NuMF(M[N ],W

[N ]
0 ,H0)

by brute-forcing the pi and using APG on subproblem on W.

3. Interpolate: [W0,p0]← Interpolate(W
[N ]
∗ ,p

[N ]
∗ ).

4. Solve NuMF on the original fine grid:

[W∗,H∗,p∗]← NuMF(M,W0,H0,p0)

without brute-forcing pi.

* step 1-4 can be repeated several times: V-cycle, W-cycle, blablabla.
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Not really a multigrid but multi-level algorithm
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Identifiability: when does solving NuMF give a unique sol?

I Definition: for x ∈ Rm+ , supp(x) := {i ∈ [m] | xi 6= 0}.

I ∀ Nu vectors, supp is a closed-interval [a, b] ∵ no “internal zeros”.

I Interactions between two Nu vectors x,y:
let supp(x) = [ax, bx] and supp(y) = [ay, by],
I Strictly disjoint: ax > by + 1.
I Adjacent: ax = by + 1.
I Disjoint = strictly disjoint ∪ adjacent
I Overlap: not disjoint

I Partial overlap: supports overlap but supp(x)
(
)supp(y)

I Complete overlap: supp(x) ⊆ supp(y)

I Current research status: identifiability for the first two cases.
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Identifiability of the strictly disjoint case

Theorem

Assumes M = W̄H̄. Solving NuMF recovers (W̄, H̄) if

1. W̄ is Nu and all the columns have strictly disjoint support.

2. H̄ ∈ Rr×n+ has n ≥ 1, ‖h̄i‖∞ > 0 for i ∈ [r].

Proof Assume there is another solution (W∗,H∗) that solves the NuMF.
The columns w̄j contribute in M a series of disjoint unimodal components.
For the solution W∗H∗ to fit M, each w∗i has to fit each of these disjoint
component in M, and hence W∗ recovers W̄ up to permutation. There is
no scaling ambiguity here because of the normalization constraints
w>i 1 = 1. Moreover, W∗ and W̄ have rank r, since their columns have
disjoint support, and hence H∗ and H̄ are uniquely determined (namely,
using the left inverses of W∗ and W̄), up to permutation.

Note: this theorem holds for r ≥ n. You can have a r = 1000 factorization
with n = 1.
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Demixing two non-fully overlapping Nu vectors

I Given non-zero vectors x,y in Um+ with partial overlap supports, if
x,y are generated by two non-zero Nu vectors u,v as

x = au + bv and y = cu + dv

with nonnegative coefficients a, b, c, d, then either

u = x,v = y or u = y,v = x.

I Let X = UQ, where X := [x,y], U := [u,v] and Q :=

[
a c
b d

]
≥ 0.

What we show: Q is a permutation matrix.
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Sketch of the proof
I x,y are Nu with partial-overlap supports imply

I u,v are linearly independent: U is rank-2
I x 6= 0, y 6= 0 and x,y are linearly independent: X is rank-2
I non-zero indices

supp(x) * supp(y) =⇒ ∃i∗ ∈ [m] s.t. xi∗ > 0, yi∗ = 0,

supp(y) * supp(x) =⇒ ∃j∗ ∈ [m] s.t. yj∗ > 0, xj∗ = 0.
(1)

I X,U are rank 2 imply Q is rank-2, hence

U = XQ−1 = X

[
d −c
−b a

]
1

ad− bc
, ad− bc 6= 0. (2)

Put i∗, j∗ from (1) into (2), together with the fact that x,y,u,v are
nonnegative give Q−1 ≥ 0.

I Q ≥ 0 and Q−1 ≥ 0 imply Q is the permutation of a diagonal matrix
with positive diagonal, where the diagonal matrix here is I.
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Fancy picture: multi-grid saves 75% time with 2-layer

Figure: Experiment on a toy example. All algorithms run 100 iterations with same
initialization. For algorithms with MG, the computational time taken on the
coarse grid are also taken into account, as reflected by the time gap between time
0 and the first dot in the curves. 29 / 33



Fancy picture: on Belgian beers
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Fancy picture: on r > n

I On a data vector in R947
+ (black) with r = 8 > 1 = n.

I Cyan curves are the components wihi.

I Relative error ‖M−WH‖F /‖M‖F = 10−8.

I The first two peaks in the data satisfy Theorem 1, NuNMF identifies
them perfectly.

I For the other peaks: supports overlap, decomposition not unique.

I Identifiability on overlapping supports: future research.
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Open problems related to multigrid

I How to further improve the time efficiency?

I Uneven grid?

I Adaptive multigrid?
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Last page - summary
I NuMF: motivation, modeling, algorithm, identifiability

I Not discussed
I The log-concavity
I Guessing location of p
I Identifiability of NuMF for Nu vectors with adjacent support.
I The traditional non-NuMF approach used in analytical chemistry
I Minimum-volume NuMF?

I References
I Chapter 5 of my thesis “Nonnegative Matrix and Tensor Factorizations:

Models, Algorithms and Applications”.

I A, Gillis, Vandaele and De Sterck, “Nonnegative Unimodal Matrix
Factorization”, to be presented in ICASSP21.

I Slide, paper, code available at angms.science

The end
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