
Nonnegative unimodal Matrix Factorization

I Andersen Ang (Dept. Combinatorics and Optimization, UWaterloo, Canada)
Homepage: angms.science

I Paper: A, Gillis, Vandaele and De Sterck, “Nonnegative Unimodal
Matrix Factorization”

I Content: Nu
I What is it? Introduction

I Why? Motivation

I How to solve? Algorithm

I What is known about Nu? Theory
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Setting

min
x
‖Ax− b‖ s.t. x ∈ C OR min

x
‖Ax− b‖+ λc(x).

Common C and c

I `2 norm

I `1 norm, `0 norm, sparsity

I `p norm

I TV-norm, smoothness

I Nonnegativity

I Cone

I . . .

This talk: unimodal structure.
(Not the unimodular structure in combinatorial optimization.)
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Structural factorization
I Factorize data it into (low-rank) factors with structural constraints.

I Nonnegative unimodal structure

0 ≤ a1 ≤ · · · ≤ ap−1 ≤︸ ︷︷ ︸
increasing head

ap ≥ ap+1 ≥ · · · ≥ am ≥ 0︸ ︷︷ ︸
decreasing tail

. (Nu)

Example of Nu vectors

Figure: Four Nu vectors. Black curve: the plot of the sequence. Red dots:
the locations of p.
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Characterizing the Nu set

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. 0 ≤ x1 ≤ · · · ≤ xp ≥ · · · ≥ xm ≥ 0︸ ︷︷ ︸
x∈Um,p

+

.

I Notations: x ∈ Um+ means x ∈ Rm is Nu but p unknown.

I Facts
I Um,p

+ is cvx

I Um
+ =

⋃
k U

m,k
+ is noncvx

I The set Um,p
+ ∪ Um,p+1

+ is cvx.

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. x ∈ Um,p
+ ∪ Um,p+1

+
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Characterizing Nu membership by a system of inequalities

x ∈ Rm is Nu ⇐⇒ ∃p ∈ [m] s.t. x ∈ Um,p
+ ∪ Um,p+1

+︸ ︷︷ ︸
convex

⇐⇒



0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0

⇐⇒ Upx ≥ 0, Up =




1
−1 1

. . .
. . .

−1 1


p×p︸ ︷︷ ︸

Dp×p

0p×(m−p)

0(m−p)×p D>(m−p)×(m−p)


.
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NuMF

I GIVEN M ∈ Rm×n+ and r ∈ N,
FIND W ∈ Rm×r and H ∈ Rr×n by solving

min 1
2‖M−WH‖2F s.t. H ≥ 0,

wj ∈ Um+ for all j ∈ [r],

w>j 1m = 1 for all j ∈ [r],

I Apply the Nu characterization:

wj ∈ Um+ → Upjwj ≥ 0,

where integers p1, p2, . . . , pr are unknown.

I How to solve: BCD.
I Subproblem on H is simple.
I Main difficulty: subproblem on W.
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HALS: Column-wise block coordinate descent

1

2
‖M−WH‖2F =

1

2

∥∥∥M− r∑
j=1

wjh
j
∥∥∥2
F

=
1

2

∥∥∥M− r∑
j 6=i

wjh
j

︸ ︷︷ ︸
:=Mi

−wih
i
∥∥∥2
F

=
1

2
‖Mi −wih

i‖2F

= a quadratic function on wi
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The wj-subproblem

I A linearly-constrained quadratic program, convex:

min
wi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0︸ ︷︷ ︸
wi∈U

m,pi
+

, w>i 1 = 1, (*)

I Involves integer variables, nonconvex:

min
wi,pi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. wi ∈ Um+ , w>i 1 = 1, (**)

I Brute-force: solve (*) on all p, pick the best one as pi to solve (**).

I Directly solving (**) by proximal gradient is not scalable ($$$).
I Proximal gradient = a 2-branch isotonic projection.
I Isotonic projection: x ≤ y =⇒ PKx ≤ PKy.
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Speed up the brute-force algorithm for large m

min
wi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0, w>i 1 = 1, (*)

min
wi,pi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0, w>i 1 = 1, (**)

I Brute-force on p in [m] ok if m small.

I Speed up 1: solve (*) by accelerated projected gradient.

I Speed up 2: reduce the search space for pi in (**)
I By guessing the location of pi’s

I By dimension reduction: multi-grid method
I Multi-grid preserves Nu: a theorem with proof in 3 sentences!

I Other dimension reduction techniques such as PCA or Gaussian
sampling do not work here as they destroy the Nu.
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APG: Accelerated Projected Gradient

min
wi

‖hi‖22
2
‖wi‖22 − 〈Mih

i>,wi〉 s.t. Upiwi ≥ 0, w>i 1 = 1︸ ︷︷ ︸
hard to project

. (*)

I Transform (*) via y = Uw:

min
y

1

2

〈
‖hi‖22U−>pi y, y

〉
−
〈
U−>pi Mih

i>, y
〉
s.t. y ≥ 0, y>U−>pi 1 = 1

or equivalently

min
y

1

2
〈Qy,y〉 − 〈p,y〉 s.t. y ≥ 0, y>b = 1. (*′)

I y∗ solves (*′) gives w∗i that solves (*) by y = Uw.
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APG on solving y

min
y

1

2
〈Qy,y〉 − 〈p,y〉 s.t. y ≥ 0, y>b = 1. (*′)

I Projection: P (z) = argmin
y

1

2
‖y − z‖22 s.t. y ≥ 0, y>b = 1.

I Optimal sol. by partial Lagrangian

y∗
(∗)
= min

y≥0
max
ν

1

2
‖y − z‖22 + ν(y>b− 1)︸ ︷︷ ︸

L(y,ν)

= [z− ν∗b]+︸ ︷︷ ︸
soft-thresholding

,

where Lagrangian multiplier ν∗ is the root of a piece-wise linear eqn.
m∑
i=1

max
{
0, zi − νbi

}
bi − 1 = 0,

which costs O(m) to O(m logm) to solve by sorting the break points
zi
bi

. After sorting, the magical-one-line-code that no one can read is

nu = max((cumsum(z.*b)-1)./(cumsum(b.*b)));

(*): The problem satisfies the Slater’s condition which guarantees strong duality. 11 / 17



Multi-grid
I Idea: instead of working on w, work on RN . . .R1w with smaller

search space of p.

I Restriction R ∈ Rm1×m
+ changes x ∈ Rm+ to Rx ∈ Rm1

+ with
m1 < m.

R(a, b) =



a b

b a b
. . .

. . .
. . .

b a b

b a


,
a > 0, b > 0,

a+ 2b = 1.

I Theorem (if x is NU, then Rx is Nu) Let x ∈ Um,p+ with p is
even1 and R ∈ Rm1×m. Then y = Rx ∈ Nm1,py

+ with

Nm,p
+ = Um,p+ ∪ Um,p+1

+ and py ∈ {bp2 + 1c, bp2c}.
1If p is odd, by considering the vector [0,x] does not change the unimodality and

increases p by one.
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The whole algorithm (in words) for NuMF(M, r)
Steps:

1. Restrict: M[N ] = RN . . .R1M and W
[N ]
0 = RN . . .R1W0.

2. Solve coarse problem: brute-force and APG on

[W
[N ]
∗ ,H∗,p

[N ]
∗ ]← NuMF(M[N ],W

[N ]
0 ,H0).

3. Interpolate: [W0,p0]← Interpolate(W
[N ]
∗ ,p

[N ]
∗ ).

4. Solve the original fine problem:

[W∗,H∗,p∗]← NuMF(M,W0,H0,p0).

no brute-forcing!

Convergence

I Optimization: local convergence.

I Linear Algebra: global convergence.
Identifiability – when does solving NuMF give a unique sol?
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Fancy picture: multi-grid saves 75% time with 2-layer

Figure: Experiment on a toy example. All algo. run 100 iterations with same
initialization. For algo. with MG, the computational time taken on the coarse
grid are also taken into account, as reflected by the time gap between time 0 and
the first dot in the curves. 14 / 17
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Fancy picture: on Belgian beers
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Fancy picture: on r > n

I On a data vector in R947
+ (black curve) with r = 8 > 1 = n.

I Cyan curves are the components wihi.

I Relative error ‖M−WH‖F /‖M‖F = 10−8.

I The first two peaks in the data satisfy an identifiability Theorem,
NuNMF identifies them perfectly.

I For the other peaks: supports overlap, decomposition not unique.
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Last page - summary
I NuMF problem: nonconvex and block-nonconvex.

I Nu characterization and brute-force

I Acceleration by APG and MG

I Not discussed
I The log-concavity
I Guessing location of p
I Identifiability of NuMF.
I The traditional non-NuMF approach used in analytical chemistry

I References
I Chapter 5 of my thesis “Nonnegative Matrix and Tensor Factorizations:

Models, Algorithms and Applications”.

I A, Gillis, Vandaele and De Sterck, “Nonnegative Unimodal Matrix
Factorization”, to be presented in ICASSP21.

I Slide, paper, code at angms.science
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