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Nonnegative Matrix Factorization (NMF)
Given :

I A matrix X ∈ Rm×n+ .
I A positive integer r ∈ N.

Find :

I Matrices W ∈ Rm×r+ ,H ∈ Rr×n+ s.t. X = WH.
I Constraint Satisfaction Problem
I Important: everything is nonnegative.

Other notations:WH>,UV,UV>.
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Examples

Given: M(i, j) = (i− j)2, Euclidean Distance Matrix.

I Trivial solution that is not interesting

M =


0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0



I Non-trivial solution that is more interesting
0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0

 =


5 0 4 1 0
3 0 1 0 1
1 0 0 1 4
0 1 0 1 4
0 3 1 0 1
0 5 4 1 0


0 0 0 1 3 5

5 3 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1


I Even more non-trivial fact: rank (M) = 3 < 5 = rank +(M).
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A bunch of problemsssssss

Given M ∈ Rm×n+ , r ∈ N
Find W ∈ Rm×r+ , H ∈ Rr×n+ s.t. WH = M

I Is such problem even solvable?

I How to tell if a pair (M, r) has a NMF?

I If the problem is solvable
I Is the sol. unique?
I When will the sol. be unique?

I How to solve NMF?

I What if r is unknown? Given a M ∈ Rm×n+ , how to find r such that
(M, r) has a NMF?

I How difficult it is to find r?

I If (M, r) has no NMF, what’s the “smallest perturbation” ∆ such
that (M + ∆, r) has a NMF?

I What’s the “smallest perturbation” ∆ such that (M + ∆, r) with
M + ∆ ≥ 0 has a NMF?
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Exact NMF and Approximate NMF

Given (M ∈ Rm×n+ , r ∈ N), find W ∈ Rm×r+ , H ∈ Rr×n+ such that

I Exact NMF: WH = M.

I Vavasis1 (From UWaterloo!):
I it is equivalent to a problem in polyhedral combinatorics
I it is NP-hard
I a polynomial-time local search heuristic exists.

I Approximate NMF: Dξ
(
WH,M

)
≤ ε under some “distance” ξ

I i.e. M u WH
I Example of D

I Frobenius norm ‖M−WH‖2F
I Kullback – Leibler divergence [M ]ij log

[M ]ij
[WH]ij

− [M ]ij + [WH]ij

I Itakura – Saito divergence
[M ]ij
[WH]ij

− log
[M ]ij
[WH]ij

− 1

1Vavasis,“On the complexity of nonnegative matrix factorization”, SIAM J. Optim. 2010
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Low-rank approximate NMF

M ≈WH, 1 ≤ r ≤ min{m,n}.

I Usually seen in applications.

I r: rank of factorization.
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What is r?

M = WH =

r∑
i=1

wih
i.

I rank (M) = r: M is sum of r rank-1 matrices
I rank +(M) = r: M is sum of r rank-1 nonnegative matrices
I rank cp(M) = r: M admits a rank-r NMF with W = H>

I Technique of lower bounding rank + has had a tremendous impact on
the study of extended formulations.
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The “fun”: is NMF related to
I Linear Algebra

I Nonnegative rank rank +, cp-rank rank cp

I Multilinear algebra (tensors)

I Discrete Optimization
I Combinatorics: Extended formulations
I Graph theory

I Continuous Optimization
I Semidefinite Optimization
I Structural nonsmooth nonconvex optimization

I Convex analysis

I Computational geometry

I Probability

I Communication complexity, Information Theory
11 / 51

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen



The “Usefulness” of NMF
I Spectral unmixing in analytical chemistry (one of the earliest work)

I Representation learning on human face (the work that popularizes NMF)

I Topic modeling in text mining
I Geoscience and remote sensing: hypersepctral imaging
I Probability distribution application on identification of Hidden Markov Model
I Bioinformatics, gene expression
I Time-frequency matrix decompositions for neuroinformatics
I Audio blind source separation
I Stochastic sequential machines
I Data compression
I Data clustering
I Sparse coding, dictionary learning
I Community detection, social network
I Legal document analysis
I Identification of low-dimensional features within large-scale neural record ings
I Speech denoising, noise reduction
I Natural language processing
I Recommender system and collaborative filtering
I Face recognition
I Video summarization
I Medical imaging – image processing on small object
I Mid-infrared astronomy – image processing on large object
I Prediction of epileptic seizures using electroencephalographic
I Non-intrusive appliance load monitoring in energy disaggregation
I Forensics
I Art work conservation (identify true color used in painting)

I Computation of the temporal psycho-visual modulation
I Discovering of the signatures characterizing geothermal resources
I Spatio-temporal atmospheric chemistry
I Food processing: tells whether a banana or a fish is healthy
I Gas chromatography on Belgian beer
I Image annotation

12 / 51

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen

AngMSAndersen



better than lawyer ... ?
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For non-NMF people : why NMF?

I Interpretability
NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on nonnegative data.

I Model correctness
You can find the underlying hidden structure of the data (under some

conditions).

I Mathematical curiosity ♥♥♥
You find it fun.

I Your boss tell you to do it.

14 / 51



The scope of this talk: a gentle tour of NMF

I Applications

I Geometry → Separable NMF → Minimum volume NMF

I Structural nonsmooth nonconvex optimization

Ideas only, no crazy maths in this talk.

15 / 51
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High school optics: how you see
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Remote sensing : satellite taking pictures of the Earth

Figure: Image source: internet.
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Hyperspectral imaging

Figure: Image source: internet. 20 / 51



Decomposition of Hyperspectral image (1/2)

Figure: Hyper-spectral image decomposition. Figure shamelessly copied from (Gillis,2014).

N. Gillis, ”The why and how of nonnegative matrix factorization”, 2014 21 / 51



Decomposition of Hyperspectral image (2/2)

Figure: Hyper-spectral imaging. Figure modified from N. Gillis.

22 / 51



Art work conservation (1/2)

Figure: Amateur restoration ruined a 19th century fresco painting. Image source:
internet. 23 / 51



Art work conservation (2/2)

Figure: Image source: internet. 24 / 51
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Text mining

Demo
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Audio source separation

https://www.youtube.com/watch?v=1BrpxvpghKQ
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Conic combination
I Linear combination of two vectors

θ1x1 + θ2x1, θ1, θ2 can be any number

I Conic combination = nonnegative linear combination

θ1x + θ1y, θ1, θ2 ≥ 0

Figure: Image source: internet.
30 / 51



NMF tells a picture of a cone
I Given M, the NMF M = WH tells a picture of a (nonnegative

polyhedral simplicial† convex) cone.

I If the columns of H are normalized (sum-to-1), the cone becomes
(compressed into) a convex hull.

†Assumes W is full rank.
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How NMF is telling a picture of a cone

[m1,m2, . . . ]︸ ︷︷ ︸
M

=

 | |
w1 w2 . . .
| |


︸ ︷︷ ︸

W


ab

...


︸︷︷︸
h1

,

∗∗
...


︸︷︷︸
h2

, . . .


︸ ︷︷ ︸

H

m1 = aw1 + bw2 + · · · , a, b, · · · ≥ 0

I mi: a point in the data cloud

I wi: a vertex / extreme point of the cone
I hi: how much each columns of W contribute (conically) to mi

I If hi ≥ 0 =⇒ conical combination
I If hi ≥ 0 AND ‖hi‖1 = 1 =⇒ convex combination

I If ‖mi‖1 = ‖wi‖1 = 1 =⇒ points on unit simplex
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NMF tells a picture of a conical hull and a convex hull
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Figure: Image source: (Nicolas Gillis 2020)

Theorem (Restricted) NMF = NPP

Proof: 5 pages.
34 / 51



If points have unit `1-norm

Figure: Image source: (Nicolas Gillis 2020)

blue convex hull ⊆ red convex hull ⊆ unit simplex
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Solving the Minimum-volume NMF

https://angms.science/eg_SNPA_ini.gif
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Structural Nonconvex Nonsmooth Optimization
I Given (M, r), find (W,H) by solving

argmin
W,H

1

2
‖M−WH‖2F + λg(W,H)

I 1
2‖M−WH‖2F : data fitting term in Frobenius norm

I g: constraint / regularizer

I Example: Minimum-volume NMF

argmin
W,H

1

2
‖M−WH‖2F + i+(W) + i+(H) + λ log det(W>W + δI)

I i+: indicator function

i+(x) =

{
0 if x ≥ 0

+∞ else

i+ is not differentiable!
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Algorithms
I How to solve the problem in the following form?

min
x,y

f(x) + g(y) +H(x,y)

I f : Rn → R ∪ {+∞} is an extended value function, possibly
nonsmooth and nonconvex

I g : Rm → R ∪ {+∞} is an extended value function, possibly
nonsmooth and nonconvex

I H : Rn × Rm → R ∪ {+∞} is partially smooth, possibly nonconvex

I A bunch of algorithmsssssss
I BCD: Block Coordinate Descent
I BSUM: Block Successive Upper-Bound Minimization
I PALM: Proximal Alternating Linearized Minimization
I IBPG: Inertial Block Proximal Gradient
I TITAN: InerTial block majorIzation minimization framework for

non-smooth non-convex opTimizAtioN
I BBPG: Block Bregman Proximal Gradient
I HER: Heursitic Extrapolation with Restart

40 / 51



Generic structure of these algorithm

min
x,y

f(x) + g(y) +H(x,y)

Algorithm 1: Generic structure of an algorithm

Result: Sol. to the optimization problem
Initialization of x0,y0;
for k = 1, 2, . . . do

xk+1 =Update(xk,yk);
yk+1 =Update(xk+1,yk);

end

Update = do something on the variable.
I Projected gradient iteration
I Extrapolated projected gradient iteration (with Nesterov’s

acceleration)
I Scaled Newton iteration
I Mirror descent or Bregman proximal gradient
I Closed-form sol. (under some specific form)

41 / 51



Another bunch of problemsssss

I How to design fast algorithm for solving structural optimization
problems?

I Why some methods is slow on certain problem? Why it is slow?

I Why some methods is fast on certain problem? Why it is fast?

I What’s the underlying principle behind acceleration phenomenon?

I What’s the convergence guarantee for an algorithm? What’s the most
relaxed condition of convergence guarantee?

I What kind of geometry will affect the convergence of an algorithm?
What kind of problems satisfy such geometry?

I What’s a good initialization (warm-start) strategy?
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Tensors

I Tensor of CPD rank-r mode-N :

X =

r∑
p=1

N⊗
i=1

a(i)p

I Nonnegative Tensor Factorization

min
a
(i)
p

1

2

∥∥∥X − r∑
p=1

N⊗
i=1

a(i)p

∥∥∥2
F

+ i+(a
(1)
1 ) + i+(a

(2)
1 ) + . . .
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Other NMFs
I NMF in other domain

I Columns of W are real polynomial / trigonometric polynomial
I Columns of W are complex numbers
I Columns of W are unimodal / log-cocave vectors
I W,H are 0-1 integers
I On doubly stochastic matrix

I NMF in other metric
I Divergence
I Optimal Transport / Wasserstein distance
I Hilbert’s projective metric

I NMF in other algebra
I Tropical max-plus semi-ring
I Clifford algebra

I NMF in other form
I Deep NMF
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Where to learn more?

Nicolas Gillis

https://sites.google.com/site/nicolasgillis/book

https://sites.google.com/site/nicolasgillis/book
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Last page - summary

NMF

The end, slide avaliable at angms.science
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