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Nonnegative Matrix Factorization (NMF)
Given :
» A matrix X € RT™".
» A positive integer € N.
Find :
» Matrices W € R7*" H € R7*" s.t. X = WH.
» Constraint Satisfaction Problem
» Important: everything is nonnegative.

Always \
BE POS\TIVE!

Other notationsWHT UV, UVT.




Examples

M(i,j) = (i — j)2, Euclidean Distance Matrix.

Given:

» Trivial solution that is not interesting
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Examples

M(i,j) = (i — j)2, Euclidean Distance Matrix.

Given:

» Trivial solution that is not interesting
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» Non-trivial solution that is more interesting
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3 < 5 =rank ; (M).

rank (M)

» Even more non-trivial fact:
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A bunch of problemsssssss

Given M e R?*"™, reN
Find W e RTXT, H e ]R:_Xﬂ st. WH=M

» Is such problem even solvable?

» How to tell if a pair (M, r) has a NMF?
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A bunch of problemsssssss

Given M e R?*"™, reN
Find W e RT”, He R:_xn st. WH=M

v

Is such problem even solvable?

How to tell if a pair (M, r) has a NMF?

If the problem is solvable
» Is the sol. unique?
» When will the sol. be unique?

How to solve NMF?

What if r is unknown? Given a M € R?*", how to find r such that
(M, r) has a NMF?
» How difficult it is to find 77

If (M, r) has no NMF, what's the “smallest perturbation” A such
that (M + A, r) has a NMF?
» What's the “smallest perturbation” A such that (M + A, r) with
M+ A >0 has a NMF?
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Exact NMF and Approximate NMF

Given (M € R, r € N), find W € R"", H € R*" such that

'Vavasis, “On the complexity of nonnegative matrix factorization”, SIAM J. Optim. 2010
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Exact NMF and Approximate NMF

Given (M € R, r € N), find W € R"", H € R*" such that
» Exact NMF: WH = M.

» Vavasis! (From UWaterloo!):

> it is equivalent to a problem in polyhedral combinatorics
» it is NP-hard
» a polynomial-time local search heuristic exists.

» Approximate NMF: D;(WH, M) < € under some “distance” ¢

» ie. M= WH
» Example of D

» Frobenius norm |M — WH]||%,
» Kullback — Leibler divergence [M];; log (M [M]ij + [WH]s;

o0,
> Itakura — Saito divergence i log o9

'Vavasis, “On the complexity of nonnegative matrix factorization”, SIAM J. Optim. 2010



Low-rank approximate NMF

M~ WH, 1 <r < min{m,n}.

o s w N o
© o

» Usually seen in applications.

» r: rank of factorization.

7/51



What is r7?

M=WH = zr:wihlﬁ

=

vV vyyVvyywy

I I I
+ +
rank (M) = 7 M is sum of r rank-1 matrices
rank . (M) = r: M is sum of r rank-1 nonnegative matrices
rank c,(M) = r: M admits a rank-r NMF with W =H"
Technique of lower bounding rank | has had a tremendous impact on

the study of extended formulations. g /51
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@ Introduction
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~ Why NMF ???

Useful ! Fun!
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The “fun”: is NMF related to

» Linear Algebra
» Nonnegative rank rank , cp-rank rank

» Multilinear algebra (tensors)

» Discrete Optimization
» Combinatorics: Extended formulations
» Graph theory

» Continuous Optimization

» Semidefinite Optimization

» Structural nonsmooth nonconvex optimization
» Convex analysis
» Computational geometry

» Probability

» Communication complexity, Information Theory
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The “Usefulness” of NMF

VY VYV VYV VYV VVYVVYVVVVVYVVYVVVYVVYVYVYYYY

Spectral unmixing in analytical chemistry (one of the earliest work)
Representation learning on human face (the work that popularizes NMF)
Topic modeling in text mining

Geoscience and remote sensing: hypersepctral imaging

Probability distribution application on identification of Hidden Markov Model
Bioinformatics, gene expression

Time-frequency matrix decompositions for neuroinformatics

Audio blind source separation

Stochastic sequential machines

Data compression

Data clustering

Sparse coding, dictionary learning

Community detection, social network

Legal document analysis

Identification of low-dimensional features within large-scale neural record ings
Speech denoising, noise reduction

Natural language processing

Recommender system and collaborative filtering

Face recognition

Video summarization

Medical imaging — image processing on small object

Mid-infrared astronomy — image processing on large object

Prediction of epileptic seizures using electroencephalographic
Non-intrusive appliance load monitoring in energy disaggregation
Forensics

Art work conservation (identify true color used in painting)

Computation of the temporal psycho-visual modulation

Discovering of the signatures characterizing geothermal resources
Spatio-temporal atmospheric chemistry

Food processing: tells whether a banana or a fish is healthy

Gas chromatography on Belgian beer 12 / 51
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Analysis of Legal Documents via Non-negative Matrix Factorization
Methods

Ryan Budahazy!, Lu Cheng?, Yihuan Huang?, Andrew Johnson?, Pengyu Li?,
Joshua Vendrow?, Zhoutong Wu?, Denali Molitor?, Elizaveta Rebrova?, Deanna Needell?

April 30, 2021) Not [ong o_ao|_
'_-———7

Abstract

The California Innocence Project (CIP), a clinical law school program aiming to free wrongfully
convicted prisoners, evaluates thousands of mails containing new requests for assistance and corresponding
case files. Processing and interpreting this large amount of information presents a significant challenge
for CIP officials, which can be successfully aided by topic modeling techniques. In this paper, we apply
Non-negative Matrix Factorization (NMF) method and implement various offshoots of it to the important
and previously unstudied data set compiled by CIP. We identify underlying topics of existing case files
and classify request files by crime type and case status (decision type). The results uncover the semantic

better than lawyer ... 7
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For non-NMF people : why NMF?

» Interpretability
NMF beats similar tools (PCA, SVD, ICA) due to the interpretability

on nonnegative data.

» Model correctness
You can find the underlying hidden structure of the data (under some

conditions).

» Mathematical curiosity QOO
You find it fun.

» Your-bess-tell-you-to-doit-

14 /51



The scope of this talk: a gentle tour of NMF

» Applications
» Geometry — Separable NMF — Minimum volume NMF

» Structural nonsmooth nonconvex optimization

|deas only, no crazy maths in this talk.
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Where we are now

@ Applications
o Optics
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High school optics: how you see

yeflectancg = ?i\
(o.\‘f:gtu @, P 1 om Sua
Q
fed j\, ‘,Q(‘\Q k ¢ d
red C*??\l
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Remote sensing : satellite taking pictures of the Earth

Sun
Satellite , N
; Incident
T . Solar Radiation
Reflected P ) e e
Solar Radiation ," ’ '\ LN e
| | - .
/ (l l'l \\-. el
||‘ [ . Atmosphere .
" | \ -~
..-'-I’ .."_..‘. EI
O
" o ([0
X/ o |[o
L/ O
. N
= | ——
Grass

Bare Soil Eg"ed Built-up Area

Figure: Image source: internet.
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Hyperspectral imaging
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Figure: Image source: internet. 20 / 51



Decomposition of Hyperspectral image (1/2)
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Figure: Hyper-spectral image decomposition. Figure shamelessly copied from (Gillis,2014).

N. Gillis, " The why and how of nonnegative matrix factorization”, 2014 21 /// 51
/



Decomposition of Hyperspectral image (2/2)
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What NMF "learns”

Figure: Hyper-spectral imaging. Figure modified from N. Gillis.
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Art work conservation (1/2)

Figure: Amateur restoration ruined a 19th century fresco painting. Image source:

internet. 23 /51



Art work conservation (2/2)
IRR (IR Reflectography)
IRF (IR Fluorescence)

— IRFC (IR false Color)
—— IR (Digital Infrared)

UVR (UV Reflected)
UVF (UV Fluorescence)

VIS (Visible)
Figure: Image source: internet. 24/51
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@ Applications
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Text mining

Demo
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@ Applications

o Music
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Audio source separation

https://www.youtube.com/watch?v=1BrpxvpghKQ

28 /51


https://www.youtube.com/watch?v=1BrpxvpghKQ
https://www.youtube.com/watch?v=1BrpxvpghKQ
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Conic combination
» Linear combination of two vectors
01x1 + 0ox1, 61,05 can be any number
» Conic combination = nonnegative linear combination
01x + 01y, 01,00 >0

Figure 2.4 The pie slice shows all points of the form #1211 + faxa, where
#1, 82 = 0. The apex of the slice (which corresponds to f; = fla = 0) is at
0; its edges (which correspond to 81 = 0 or #2 = 0) pass through the points

1 and ra. i | .
igure: Image source: Internet.
30/51



NMF tells a picture of a cone
» Given M, the NMF M = WH tells a picture of a (nonnegative

polyhedral simplicial® convex) cone.

Data cloud The cone H normalized
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NMF tells a picture of a cone
» Given M, the NMF M = WH tells a picture of a (nonnegative

polyhedral simplicial® convex) cone.

Data cloud The cone H normalized

» If the columns of H are normalized (sum-to-1), the cone becomes
(compressed into) a convex hull.

tAssumes W is full rank.
31/51



How NMF is telling a picture of a cone

.
mp,my,...] = |w; wa ...
mmwe - [0 2] ] -
W A h
H
m; =aw; +bwa+---, a,b,--->0

» m;: a point in the data cloud

v

w;: a vertex / extreme point of the cone

v

h;: how much each columns of W contribute (conically) to m;

» If h;, > 0 = conical combination
» Ifh; >0 AND |h;|][; =1 = convex combination

v

If |[m;]]1 = ||w;|l1 =1 = points on unit simplex



NMF tells a picture of a conical hull and a convex hull

NMF « Columns of M Separable NMF
O Columns of W Y
5/ Columns of Iy

1

Coordinate 3
Coordinate 3

08 08
Coordinate 2 Coordinate 2 ) o8

1 *  Coordinate 1 1 " Coordinate 1

Fig. 1.3. Example of NMF and SNMF. Here r = m = 3, n = 20. The blue rays are data points M,
the red rays are the columns of W and the green rays are the standard basis vectors in

R3. In both cases, blue cone C red cone C green cone. 33 / 51



Problem 2.3 (Nested Polytope Problem - NPP). Let A C B C R¢
be two full-dimensional nested polytopes, that is, the dimension of A and
B is equal to d. The polytope A, referred to as the inner polytope, is given
via the convex hull of n points

A = conv ({vi,v2,...,u.}), v; € RY for j=1,2,...,n,
and the polytope B, referred to as the outer polytope, via m inequalities
B={zeR?|Fz+g>0},

where F € R™*? and g € R™. Given k, find, if possible, a polytope €
with k vertices, referred to as the nested polytope, such that

ACE&CB

Figure: Image source: (Nicolas Gillis 2020)

Theorem (Restricted) NMF = NPP

Proof: 5 pages.
34 /51



If points have unit ¢;-norm

x conv(W)
o conv(X)

0.5+

o ©
N|
|
[
|
/

|

|
[
|
|
/

Figure: Image source: (Nicolas Gillis 2020)

blue convex hull C red convex hull C unit simplex
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Solving the Minimum-volume NMF

https://angms.science/eg_SNPA_ini.gif

36 /51
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Structural Nonconvex Nonsmooth Optimization
» Given (M, r), find (W, H) by solving

1
argmin —||M — WH||% 4 \g(W, H)
WH 2

» 3||M — WH]||%: data fitting term in Frobenius norm
» g: constraint / regularizer



Structural Nonconvex Nonsmooth Optimization
» Given (M, r), find (W, H) by solving

1
argmin —||M — WH||% 4 \g(W, H)
WH 2
» 3||M — WH]||%: data fitting term in Frobenius norm
» g: constraint / regularizer

» Example: Minimum-volume NMF
1
argmin ||M — WH)||% + i (W) + iy (H) + Alog det (W W + 8T)
W, H

» i,: indicator function

() 0 if x>0
iy(z) =
* +o00 else

i1 is not differentiable!
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Algorithms

» How to solve the problem in the following form?

>

>

>

min f(x) +g(y) + H(x,y)

f:R™ = RU {400} is an extended value function, possibly
nonsmooth and nonconvex

g :R™ — RU {400} is an extended value function, possibly
nonsmooth and nonconvex

H:R"™ x R™ — RU {400} is partially smooth, possibly nonconvex

» A bunch of algorithmsssssss

>

>
>
>
>

BCD: Block Coordinate Descent

BSUM: Block Successive Upper-Bound Minimization

PALM: Proximal Alternating Linearized Minimization

IBPG: Inertial Block Proximal Gradient

TITAN: InerTial block majorlzation minimization framework for
non-smooth non-convex opTimizAtioN

» BBPG: Block Bregman Proximal Gradient

HER: Heursitic Extrapolation with Restart



Generic structure of these algorithm

min /() + 9(y) + H(x,)

Algorithm 1: Generic structure of an algorithm

Result: Sol. to the optimization problem
Initialization of xq, yo;
for k=1,2,... do
xk+1 =Update(xx, yx);
yi+1 =Update(Xg41, yi);
end

Update = do something on the variable.

Projected gradient iteration

Extrapolated projected gradient iteration (with Nesterov's
acceleration)

Scaled Newton iteration

Mirror descent or Bregman proximal gradient

Closed-form sol. (under some specific form)

vy

vwvyy



Another bunch of problemsssss

» How to design fast algorithm for solving structural optimization
problems?

» Why some methods is slow on certain problem? Why it is slow?
» Why some methods is fast on certain problem? Why it is fast?
» What's the underlying principle behind acceleration phenomenon?

» What's the convergence guarantee for an algorithm? What's the most
relaxed condition of convergence guarantee?

» What kind of geometry will affect the convergence of an algorithm?
What kind of problems satisfy such geometry?

» What's a good initialization (warm-start) strategy?
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Tensors

7 af) 27 a®
[
b = AL+ af!
a alt

» Tensor of CPD rank-r mode-NN:

46 / 51
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Other NMFs

» NMF in other domain

Columns of W are real polynomial / trigonometric polynomial
Columns of W are complex numbers

Columns of W are unimodal / log-cocave vectors

W, H are 0-1 integers

On doubly stochastic matrix

v

vV vyVvYyy

» NMF in other metric
» Divergence
» Optimal Transport / Wasserstein distance
» Hilbert's projective metric

» NMF in other algebra
» Tropical max-plus semi-ring
» Clifford algebra

» NMF in other form
» Deep NMF
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Where to learn more?

Nonnegative Matrix
Factorization
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Nicolas Gillis

Nicolas Gillis

https://sites.google.com/site/nicolasgillis/book
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