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» Content today
v~ Introduction : What is Nu?
v~ Motivation: Why?
X Algorithm: How to solve? See my
v~ Theory: What is known about Nu?
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https://www.youtube.com/watch?v=PkN5Ex3fWgY

min |[Ax —b|| s.t. xeC min ||Ax — b|| + Ae(x).
X X

l2,41,4o, £, norm, sparsity, TV-norm, smoothness, nonnegativity, cone, ...

This talk: unimodal® structure.

!Not the unimodular structure in combinatorial optimization.
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Figure: Nu vectors. Black: the sequence. Red dots: locations of p.
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Characterizing the Nu set

Xx€R™isNu <= Fpem]st. 0<a <---<x,>--->x, >0.

» Notations: x € U means  x € R™ is Nu but p unknown.

» Facts

m,p
> U is cvx J\

m o __ m,k -
» U =, U is noncvx I
» The set 1" UZ/{IF"’p+1 is cvx.

- : 1
x €R™isNu < Jpe[m]st. xeU P uu™”

4/22


AngMSAndersen

AngMSAndersen


xeR™isNu <= Fpe[m]st. xel"” qu-,p+1
——

convex

0 S X
Z1 < T
s Tp—1 < Xy
Tpy1l =2 Tpgo
Tm—1 Z Tm
Tm 2 0
1
-1 1
OpX(’rnfp)
— UpX >0, Up = o
PXp
DPXP T
O(m*p)Xp D(mip)x(mip)

* U, is full rank.
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NuMF

» GIVEN M € R and r € N,
FIND W € R™*" and H € R"*" such that

Matrix Factorization (M e rRm*"| ~ (W |L|

by solving
min (M- WH|?% st. HZ>0,
wj € U for all j € [r],
ijlm =1 for all j € [r],

> Apply Nu characterization: w; € U}" — U, w; > 0, where integers
P1,P2; - - > Pr are unknown.

» How to solve: BCD.
There are a few clever ideas, but not the focus in this talk. For
details, see my


https://www.youtube.com/watch?v=PkN5Ex3fWgY

|dentifiability
» When does solving

min i[|M— WH|% st. HZ>0,
w; e U for all j € [r],

w;—lm =1 for all j € [r],

gives unique sol.?

» Essentially uniqueness: permutation and scaling

W H; = W1QQ 'H; = WoH,, Q= ATl

» Identifiability of NuMF is closely related to the support of Nu vectors.



Support

» Let x € R™ is Nu. 2 SILPP S

1
» Support of x: supp(x) = {2 ‘ x; 0 }

» Trivial facts
> supp(x) C [n]
» No middle zero: supp(x) = [a, b] is a single interval.
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Different types of support-interaction between Nu vectors

» Strictly disjoint A 4[\
—_

» Adjacent M
» Partial overlap D&

» Complete overlap
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When does conic combination preserves Nu?

» To study the identifiability of NuMF, we have to first understand how
conic combinations of Nu vectors behave

» A feasibility problem: given two linear independent vectors x,y € U"",
find @« € R4y and B € R4 such that the vector z := ax + Sy is Nu

OR

Simplified as

Given linear independent vectors x,y € U7 (5.15)
find  finda e Ry st. z=ax+y U '
» Trivial result: if x,y strictly disjoint, (5.15) has no sol.

» If x,y not strictly disjoint, (5.15) may have sol., depends on the
structure of x,y.



|dentifiability of the strictly disjoint case (trivial result)

Definition 4 (Strictly disjoint) Given two vectors x,y € U"" with
supp(x) = [az,bsz] and supp(y) = [ay,by]. The two vectors are

called strictly disjoint if a; > by + 1.

Pl

=

Ny by O by

Theorem 2 Assumes M = WH. Solving (2) recovers (W, H) if
1. W is Nu and all the columns have strictly disjoint support.
2. He R*™ hasn > 1, h'| e > 0fori € [r].
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Does conic combination preserves Nu on adjacent Nu vectors?

» WLOG, let x,y € UT* with supp(x) = [a, b], supp(y) = [c, d],
a<b<c<dandc=0b+1.

» Observation: if x is monotonically increasing within its support, then
there exists a sufficiently small « > 0 s.t. z=ax+y is Nu,
regardless of the toncity of y.

X y Z=0axXx+Yy
z zoomed

A\
WS
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When does conic combination preserves Nu on adjacent Nu vectors?
Lemma 5.3.2. Let x,y € UT with supp(x) = [a,b], supp(y) = [¢,d], a £b<c<dandc=b+1.

Then if x is monotonically increasing in supp(x), then E—ng +y solves problem (5.15).

Proof. On the first case, we have supp(z) = supp(x) Usupp(y) = [a, d] that z(i) = az(i) if i € [a,b],
and z(i) = y(@) if ¢ € [¢,d]. As x is monotonically increasing for ¢ € [1,0], the sub-vector z(1 : b) is
monotonically increasing. Regardless of the tonicity of y, the vector z is Nu as long as z(b) < z(c),
or equivalently ax(b) < y(c). As z(b) > 0, we have a < %(% The vector %a%x + y solves problem
(5.15). O
Lemma 5.3.3. Let x,y € U with supp(x) = [a,b], supp(y) =[c,d], a <b<c<dandc=5b+1.
Problem (5.15) has no solution

e if X is monotonically decreasing in supp(x), and there exists j € [¢,d — 1] such that y(j) <
y(i +1). * 79

e if'y is monotonically increasing in supp(y), and there exists i € [a+1,b] such that z(i—1) > x(i).

x
e if both x, y are not monotonic in their support. 3

Proof. The three cases means that there exists i € [a+1, ] such that z(i —1) > z(i) and j € [¢,d—1]
such that y(j) < y(j + 1). For all & > 0 we have z(i — 1) > z(4) and 2(j) < z(j + 1) for j > 4. This
violates Definition 5.1.2, so z is not Nu. O
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|dentifiability: the adjacent case

Theorem 5.3.2. (Identifiability of NuMF': adjacent case) Let (W,H) be the matrices
generating the data. Solving (5.3) recovers (W, H) if the followings are satisfied:

1. W is Nu and adjacent.
2. HeRY" hasn > 1, ||hi|jo > 0 fori € [r].

3. Independent sensing: for each index pair (j1,j2), j1,42 € [r], j1 # jo such that the vectors
W, W, satisfy the condition of the vectors X,y in Lemma 5.3.2, the j1, jo rows of H contains

a positive diagonal block D.

Proof. By assumption 3 in the theorem, those w; , W;, satisfying Lemma 5.3.2 will have to appear
separately in the data. So for W* will have to recover them to for fitting the data M. Thereby,
we have H* recovers H. Note that the fitting is subject to permutation and scaling, which does not

change anything. O
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Remark 5. We give a toy example to illustrate the importance of assumption 3 in Theorem 5.3.2.

Let m = 6 and 7 = 3 and we have W as follows with a few additional matrices:

1 | 1] 1 ]
1 1 1
W= ! , E1=15 1, B, = ! ,
1 1 1
1 1 1
| 1] ] ] 1]
(1.5 1.5 1.5 [1.5
Cy= |15, Co= |15 1.5], C3z= 1.5],
1.5 1.5 1.5 1.5

where an emply slot represents zero.

Here the pairs (W1, Ws), (W, W3) satisfy Lemma 5.8.2. If assumption 8 is not satisfied, say H
has the form of Cq or Ca, then M contains copies of the vector [111111]7 (multiplied by 1.5). In
this case, the problem is not identifiable as By is a feasible solution for W*. Note that there does
not exists a full rank matriz Q € R¥*3 such that W = B:1Q.

If assumption 3 is satisfied, say H has the form Cs, then the data M has the form of Ey. In this

case, the problem is identifiable as W* can only have the form of W (subject to permutation and

scaling). 15 / 22



De-mixing two non-fully overlapped Nu vectors

Lemma 1 (On demixing two non-fully overlapping Nu vectors) Given
two non-zero vectors X,y in U with supp(x) ¢ supp(y) and
supp(x) 2 supp(y). If x,y are generated by two non-zero Nu
vectors U, v as X = au + bv and y = cu + dv with nonnegative
coefficients a, b, c, d , then we have eitheru = X, v=yoru=y,

N N
—= o oK

—Ao-‘a—_
Theorem 3 Assumes M = WH. Ifr = 2, solving (2) recovers
(W, H) if the columns of W satisfy the conditions of Lemma I and
H € R*" is full rank.
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Lemma 1 (On demixing two non-fully overlapping Nu vectors) Given
two non-zero vectors x,y in U7 with supp(x) ¢ supp(y) and
supp(x) 2 supp(y). If x,y are generated by two non-zero Nu
vectors u, v as X = au + bv and y = cu + dv with nonnegative
coefficients a, b, c,d , then we have eitheru =X, v=yoru=Y,
V=X

Proof

| 4

>

.»x an y have non-overlapping supports, we cannot have u = av for some a > 0, so u
and v are linearly independent.

Let X = UQ, where X := [x,y], U :=[u,v] and Q := {Z ¢

d

x,y are Nu with supp(x) ¢ supp(y) and supp(x) 2 supp(y) imply x #0, y #0, x £y
and

> 0. The conditions that

supp(x) & supp(y) = 3" € [m] st. @i > 0,y =0,

1
supp(y) € supp(x) = 3j* € [m] s.t. y;= > 0,z = 0. @)
Then x # y and u # av imply X, U, Q are all rank-2, hence
_xo-l_x|% -~ _1 _
U =XQ _X[_b a | ad —be’ ad — be # 0. (2)

Put ¢*,j* from (1) into (2), together with the fact that x,y, u, v are nonnegative give
Q'>o.

Lastly Q > 0 and Q~! > 0 imply Q is the permutation of a diagonal matrix with positive
diagonal, where here the diagonal matrix is the identity. O



What about other cases: open problems

» De-mixing 3/more non-fully overlapped Nu vectors

LA

» Partially overlapped Nu vectors g?erﬂ 'ﬁ'ﬂ.m (?

_ M

» Completely overlapped Nu vectors.

e
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Fancy picture: multi-grid saves 75% time with 2-layer
Wirue Data M : a 100-by-6 matrix
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Figure: Experiment on a toy example. All algo. run 100 iterations with same
initialization. For algo. with MG, the computational time taken on the coarse
grid are also taken into account, as reflected by the time gap between time 0 and
the first dot in the curves. 19 /22



Fancy picture: on

SNMF

NuMF

%107

Signals in M
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Belgian beers
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Fancy picture: on r > n

LT
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» On a data vector in R'7 (black curve) with r =8 > 1 =n.

» Cyan curves are the components w;h;.

> Relative error |M — WH]||/|[M]||r = 1075.

» The first two peaks in the data satisfy an identifiability Theorem,
NuNMF identifies them perfectly.

» For the other peaks: supports overlap, decomposition not unique.



Last page - summary

v

NuMF problem: nonconvex and block-nonconvex.

v

Identifiability of NuMF (Not discussed in-depth)

v

Not discussed: how to actually solve it.

References

v

» A, Gillis, Vandaele and De Sterck, “Nonnegative Unimodal Matrix
Factorization”, ICASSP21, June 6-11, 2021

» Chapter 5 of my thesis “Nonnegative Matrix and Tensor Factorizations:
Models, Algorithms and Applications”.

v

Slide, paper, code at
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