
MultiGrid Proximal Gradient Descent

Andersen Ang

ECS, USouthampton, UK

Homepage angms.science

Andersen Ang, Hans De Sterck, Steve Vavasis,
“MGProx: A nonsmooth multigrid proximal gradient method
with adaptive restriction for strongly convex optimization”,
SIAM Journal of Optimization, to appear, 2024

arXiv 2302.04077 joint work with

Hans De Sterck Steve Vavasis

25th International Symposium on Mathematical Programming, Montreal, Canada, July 26, 2024

https://arxiv.org/abs/2302.04077

Not following paper’s notation

ℓ level
k iteration counter
xℓ variable at level ℓ before ProxGrad
yℓ variable at level ℓ after ProxGrad
fℓ smooth part at level ℓ
gℓ nonsmooth part at level ℓ
Lℓ Lipschitz constant of ∇fℓ at level ℓ
L number of levels

▶ Too many subscripts, hard to read

▶ idea is important, not the maths detail

▶ Notation: Big and small

2 / 18

Setup

argmin
x

f(x) + g(x)

▶ everything in finite dimensional
Euclidean space

▶ not about
▶ E
▶ ∇2f
▶ linear

▶ big N in finite sum
1

N

N∑
i=1

fi(x)

▶ application

▶ f : Rn → R is
▶ µ-strongly convex
▶ L-smooth

▶ g : Rn → R is
▶ convex
▶ proper
▶ possibly nonsmooth

▶ further assume a single point of non-differentiability

▶ separable: g(x) = g1(x1) + g2(x2) + · · ·
▶ e.g. max{·}, ∥ · ∥1

▶ proximable

3 / 18

What is the idea

▶ goal: solve
argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

▶ n big, expensive

e.g. galaxy image (Lauga et. al., IML-FISTA.)

▶ natural idea: make use of subspace

argmin
xsmall

fsmall(xsmall) + gsmall(xsmall)

▶ how to define small problem?
▶ how to create small problem?
▶ how to solve small problem?

4 / 18

What is the idea

▶ goal: solve
argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

▶ n big, expensive

e.g. galaxy image (Lauga et. al., IML-FISTA.)

▶ natural idea: make use of subspace

argmin
xsmall

fsmall(xsmall) + gsmall(xsmall)

▶ how to define small problem?
▶ how to create small problem?
▶ how to solve small problem?

4 / 18

Idea is old
▶ Caratheodory in 1910s

▶ Low rank by Eckart-Young in 1936

▶ PDEs: multigrid in 1962a

▶ CFD: model order reduction in 1967

▶ Linear programming: aggregation in 1977

▶ Computer vision: Pyramids in 1980s

▶ Natural language processing: Topic modelling in 1980s

▶ Wavelet in 1989

▶ Sparse linear statistic model in 1996

▶ Image segmentation: SuperPixel in 2000s

▶ Graph: compressing network by SuperNode in 2000s

▶ Core-set in 2010s

▶ Knowledge distillation

aR. P. Fedorenko, “A relaxation method for solving
elliptic difference equations”, USSR Computational
Mathematics and Mathematical Physics, 1962 5 / 18

What’s there
▶ Multigrid for PDEs, a whole field

▶ mostly smooth problems

▶ two types
▶ Full approximation scheme (FAS) /

τ -approximation scheme
(1st-order method)

▶ Newton-multigrid method
(2nd-order method)

▶ works for nonsmooth problem exist, but
▶ use smoothing, e.g. |x| →

√
x2 + ϵ

▶ only simple constraint

What’s new

▶ Extend the FAS to nonsmooth

▶ No smoothing, face subdifferential directly

▶ Main output: proving it works
▶ (new) adaptive restriction
▶ consistent optimality between two worlds
▶ descents

▶ other fancy stuffs
▶ convergence rate 1/k
▶ acceleration rate 1/k2

▶ good-looking curves

6 / 18

How to go from fBig to fsmall: Subspace

fsmall := fBig ◦R
fsmall(xsmall) := fBig(RxBig)

xsmall := RxBig

▶ R is called restriction in PDEs
▶ R is a short-wide matrix that maps from RN to Rn

▶ if n < N short-wide: not one-to-one but many-to-one

▶ R is a class of matrices
▶ If R is the ith row of I =⇒ coordinate descent
▶ If R is random =⇒ random subspace method
▶ If R comes from PDE =⇒ multigrid method

▶ No-free-lunch
▶ How to choose / design R =⇒ by experience, open problem
▶ I am “cheating” by using a “known” R

7 / 18

How to go from fBig to fsmall: Subspace

fsmall := fBig ◦R
fsmall(xsmall) := fBig(RxBig)

xsmall := RxBig

▶ R is called restriction in PDEs
▶ R is a short-wide matrix that maps from RN to Rn

▶ if n < N short-wide: not one-to-one but many-to-one

▶ R is a class of matrices
▶ If R is the ith row of I =⇒ coordinate descent
▶ If R is random =⇒ random subspace method
▶ If R comes from PDE =⇒ multigrid method

▶ No-free-lunch
▶ How to choose / design R =⇒ by experience, open problem
▶ I am “cheating” by using a “known” R

7 / 18

How to go from fBig to fsmall: Subspace

fsmall := fBig ◦R
fsmall(xsmall) := fBig(RxBig)

xsmall := RxBig

▶ R is called restriction in PDEs
▶ R is a short-wide matrix that maps from RN to Rn

▶ if n < N short-wide: not one-to-one but many-to-one

▶ R is a class of matrices
▶ If R is the ith row of I =⇒ coordinate descent
▶ If R is random =⇒ random subspace method
▶ If R comes from PDE =⇒ multigrid method

▶ No-free-lunch
▶ How to choose / design R =⇒ by experience, open problem
▶ I am “cheating” by using a “known” R

7 / 18

FAS multigrid (red are new) for argmin
x∈Rn

f(x) + g(x)

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

ProxGD in Big world

2. x
k+1/2
small = R x

k+1/2
Big Restriction: Big-to-small

fsmall =fBig ◦R, gsmall =gBig ◦R

adaptive R is new

3. τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
WTF

inclusion & Minkowski sum

4. xk+1
small = proxαg

(
x
k+1/2
small − α

(
∇f(xk+1/2

small)− τ
))

ProxGD in small world

5. xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small) use small to correct Big

no prox
existence of α is new

8 / 18

FAS multigrid (red are new) for argmin
x∈Rn

f(x) + g(x)

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

ProxGD in Big world

2. x
k+1/2
small = R x

k+1/2
Big Restriction: Big-to-small

fsmall =fBig ◦R, gsmall =gBig ◦R

adaptive R is new

3. τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
WTF

inclusion & Minkowski sum

4. xk+1
small = proxαg

(
x
k+1/2
small − α

(
∇f(xk+1/2

small)− τ
))

ProxGD in small world

5. xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small) use small to correct Big

no prox
existence of α is new

8 / 18

FAS multigrid (red are new) for argmin
x∈Rn

f(x) + g(x)

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

ProxGD in Big world

2. x
k+1/2
small = R x

k+1/2
Big Restriction: Big-to-small

fsmall =fBig ◦R, gsmall =gBig ◦R

adaptive R is new

3. τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
WTF

inclusion & Minkowski sum

4. xk+1
small = proxαg

(
x
k+1/2
small − α

(
∇f(xk+1/2

small)− τ
))

ProxGD in small world

5. xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small) use small to correct Big

no prox
existence of α is new

8 / 18

FAS multigrid (red are new) for argmin
x∈Rn

f(x) + g(x)

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

ProxGD in Big world

2. x
k+1/2
small = R x

k+1/2
Big Restriction: Big-to-small

fsmall =fBig ◦R, gsmall =gBig ◦R

adaptive R is new

3. τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
WTF

inclusion & Minkowski sum

4. xk+1
small = proxαg

(
x
k+1/2
small − α

(
∇f(xk+1/2

small)− τ
))

ProxGD in small world

5. xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small) use small to correct Big

no prox
existence of α is new

8 / 18

FAS multigrid (red are new) for argmin
x∈Rn

f(x) + g(x)

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

ProxGD in Big world

2. x
k+1/2
small = R x

k+1/2
Big Restriction: Big-to-small

fsmall =fBig ◦R, gsmall =gBig ◦R

adaptive R is new

3. τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
WTF

inclusion & Minkowski sum

4. xk+1
small = proxαg

(
x
k+1/2
small − α

(
∇f(xk+1/2

small)− τ
))

ProxGD in small world

5. xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small) use small to correct Big

no prox
existence of α is new

8 / 18

Where are the fun things

▶ Subdifferential can be ∅, crazy things will happen
We fixed this: empty-set will not appear

▶ How to choose τ?
We fixed this: the algo always works regardless of choice of τ

▶ P (xk+1
small − x

k+1/2
small) works?

We fixed this: it always is a descent direction for xBig

▶ α exists?
We fixed this: α > 0 exists

9 / 18

So ... what is new?

τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
Minkowski sum

= ∂fsmall(x
k+1/2
small)⊕ ∂gsmall(x

k+1/2
small)⊖R

(
∂fBig(x

k+1/2
Big)⊕ ∂gBig(x

k+1/2
Big)

)
Moreau-Rockafellar thm. (new1)

= ∇fsmall(x
k+1/2
small) + ∂gsmall(x

k+1/2
small)⊖R

(
∇fBig(x

k+1/2
Big) + ∂gBig(x

k+1/2
Big)

)
diff.able part becomes singleton

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)⊕ (−R)∂gBig(x

k+1/2
Big)︸ ︷︷ ︸

set Minkowski sum, hard part, new thing

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)+(−R)∂gBig(x

k+1/2
Big) adaptive restriction (new2)

1. We made this true

2. To make my life easier: R maps all set-valued entries of ∂gBig(x
k+1/2
Big) to the singleton {0}

Open problem: keep dealing with ⊕(−R) instead of +(−R)

3. the whole scheme is different from existing literature

10 / 18

So ... what is new?

τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
Minkowski sum

= ∂fsmall(x
k+1/2
small)⊕ ∂gsmall(x

k+1/2
small)⊖R

(
∂fBig(x

k+1/2
Big)⊕ ∂gBig(x

k+1/2
Big)

)
Moreau-Rockafellar thm. (new1)

= ∇fsmall(x
k+1/2
small) + ∂gsmall(x

k+1/2
small)⊖R

(
∇fBig(x

k+1/2
Big) + ∂gBig(x

k+1/2
Big)

)
diff.able part becomes singleton

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)⊕ (−R)∂gBig(x

k+1/2
Big)︸ ︷︷ ︸

set Minkowski sum, hard part, new thing

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)+(−R)∂gBig(x

k+1/2
Big) adaptive restriction (new2)

1. We made this true

2. To make my life easier: R maps all set-valued entries of ∂gBig(x
k+1/2
Big) to the singleton {0}

Open problem: keep dealing with ⊕(−R) instead of +(−R)

3. the whole scheme is different from existing literature

10 / 18

So ... what is new?

τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
Minkowski sum

= ∂fsmall(x
k+1/2
small)⊕ ∂gsmall(x

k+1/2
small)⊖R

(
∂fBig(x

k+1/2
Big)⊕ ∂gBig(x

k+1/2
Big)

)
Moreau-Rockafellar thm. (new1)

= ∇fsmall(x
k+1/2
small) + ∂gsmall(x

k+1/2
small)⊖R

(
∇fBig(x

k+1/2
Big) + ∂gBig(x

k+1/2
Big)

)
diff.able part becomes singleton

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)⊕ (−R)∂gBig(x

k+1/2
Big)︸ ︷︷ ︸

set Minkowski sum, hard part, new thing

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)+(−R)∂gBig(x

k+1/2
Big) adaptive restriction (new2)

1. We made this true

2. To make my life easier: R maps all set-valued entries of ∂gBig(x
k+1/2
Big) to the singleton {0}

Open problem: keep dealing with ⊕(−R) instead of +(−R)

3. the whole scheme is different from existing literature

10 / 18

So ... what is new?

τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
Minkowski sum

= ∂fsmall(x
k+1/2
small)⊕ ∂gsmall(x

k+1/2
small)⊖R

(
∂fBig(x

k+1/2
Big)⊕ ∂gBig(x

k+1/2
Big)

)
Moreau-Rockafellar thm. (new1)

= ∇fsmall(x
k+1/2
small) + ∂gsmall(x

k+1/2
small)⊖R

(
∇fBig(x

k+1/2
Big) + ∂gBig(x

k+1/2
Big)

)
diff.able part becomes singleton

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)⊕ (−R)∂gBig(x

k+1/2
Big)︸ ︷︷ ︸

set Minkowski sum, hard part, new thing

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)+(−R)∂gBig(x

k+1/2
Big) adaptive restriction (new2)

1. We made this true

2. To make my life easier: R maps all set-valued entries of ∂gBig(x
k+1/2
Big) to the singleton {0}

Open problem: keep dealing with ⊕(−R) instead of +(−R)

3. the whole scheme is different from existing literature

10 / 18

So ... what is new?

τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
Minkowski sum

= ∂fsmall(x
k+1/2
small)⊕ ∂gsmall(x

k+1/2
small)⊖R

(
∂fBig(x

k+1/2
Big)⊕ ∂gBig(x

k+1/2
Big)

)
Moreau-Rockafellar thm. (new1)

= ∇fsmall(x
k+1/2
small) + ∂gsmall(x

k+1/2
small)⊖R

(
∇fBig(x

k+1/2
Big) + ∂gBig(x

k+1/2
Big)

)
diff.able part becomes singleton

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)⊕ (−R)∂gBig(x

k+1/2
Big)︸ ︷︷ ︸

set Minkowski sum, hard part, new thing

=
{
∇fsmall(x

k+1/2
small)−R∇fBig(x

k+1/2
Big)

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small)+(−R)∂gBig(x

k+1/2
Big) adaptive restriction (new2)

1. We made this true

2. To make my life easier: R maps all set-valued entries of ∂gBig(x
k+1/2
Big) to the singleton {0}

Open problem: keep dealing with ⊕(−R) instead of +(−R)

3. the whole scheme is different from existing literature

10 / 18

What’s the heck is τ?

▶ τ links Big-world and small-world

▶ Theorem IF xBig solves argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

THEN RxBig solves argmin
xsmall∈Rn

fsmall(xsmall) + gsmall(xsmall)− ⟨τ ,xsmall⟩

(In algo) ProxGrad converges in Big-world ⇐⇒ ProxGrad converges in small-world

▶ I am NOT saying: xBig solves Big-problem ⇐⇒ xsmall solves small-problem

▶ I am saying: xBig solves Big-problem ⇐⇒ xsmall solves small-perturbed-problem

▶ τ is Big-perturb-small so that {sol of small-problem} flavours {sol of Big-problem}

▶ How to prove: definition of τ ,R, convexity of obj functions, 1st-order subdiff. optimality

11 / 18

What’s the heck is τ?

▶ τ links Big-world and small-world

▶ Theorem IF xBig solves argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

THEN RxBig solves argmin
xsmall∈Rn

fsmall(xsmall) + gsmall(xsmall)− ⟨τ ,xsmall⟩

(In algo) ProxGrad converges in Big-world ⇐⇒ ProxGrad converges in small-world

▶ I am NOT saying: xBig solves Big-problem ⇐⇒ xsmall solves small-problem

▶ I am saying: xBig solves Big-problem ⇐⇒ xsmall solves small-perturbed-problem

▶ τ is Big-perturb-small so that {sol of small-problem} flavours {sol of Big-problem}

▶ How to prove: definition of τ ,R, convexity of obj functions, 1st-order subdiff. optimality

11 / 18

What’s the heck is τ?

▶ τ links Big-world and small-world

▶ Theorem IF xBig solves argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

THEN RxBig solves argmin
xsmall∈Rn

fsmall(xsmall) + gsmall(xsmall)− ⟨τ ,xsmall⟩

(In algo) ProxGrad converges in Big-world ⇐⇒ ProxGrad converges in small-world

▶ I am NOT saying: xBig solves Big-problem ⇐⇒ xsmall solves small-problem

▶ I am saying: xBig solves Big-problem ⇐⇒ xsmall solves small-perturbed-problem

▶ τ is Big-perturb-small so that {sol of small-problem} flavours {sol of Big-problem}

▶ How to prove: definition of τ ,R, convexity of obj functions, 1st-order subdiff. optimality

11 / 18

What’s the heck is τ?

▶ τ links Big-world and small-world

▶ Theorem IF xBig solves argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

THEN RxBig solves argmin
xsmall∈Rn

fsmall(xsmall) + gsmall(xsmall)− ⟨τ ,xsmall⟩

(In algo) ProxGrad converges in Big-world ⇐⇒ ProxGrad converges in small-world

▶ I am NOT saying: xBig solves Big-problem ⇐⇒ xsmall solves small-problem

▶ I am saying: xBig solves Big-problem ⇐⇒ xsmall solves small-perturbed-problem

▶ τ is Big-perturb-small so that {sol of small-problem} flavours {sol of Big-problem}

▶ How to prove: definition of τ ,R, convexity of obj functions, 1st-order subdiff. optimality

11 / 18

What’s the heck is τ?

▶ τ links Big-world and small-world

▶ Theorem IF xBig solves argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

THEN RxBig solves argmin
xsmall∈Rn

fsmall(xsmall) + gsmall(xsmall)− ⟨τ ,xsmall⟩

(In algo) ProxGrad converges in Big-world ⇐⇒ ProxGrad converges in small-world

▶ I am NOT saying: xBig solves Big-problem ⇐⇒ xsmall solves small-problem

▶ I am saying: xBig solves Big-problem ⇐⇒ xsmall solves small-perturbed-problem

▶ τ is Big-perturb-small so that {sol of small-problem} flavours {sol of Big-problem}

▶ How to prove: definition of τ ,R, convexity of obj functions, 1st-order subdiff. optimality

11 / 18

Coarse correction step: inequality

xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small)

▶ Theorem P (xk+1
small − x

k+1/2
small) is a descent direction in Big-world〈

∂
(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
, P (xk+1

small(τ)− x
k+1/2
small)

〉
< 0

the inequality is strict

▶ The inequality holds for
▶ any τ you choose to get xk+1

small(τ)

▶ any subgradient in ∂
(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)

▶ How to prove: definition & convexity

12 / 18

Coarse correction step: inequality

xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small)

▶ Theorem P (xk+1
small − x

k+1/2
small) is a descent direction in Big-world〈

∂
(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
, P (xk+1

small(τ)− x
k+1/2
small)

〉
< 0

the inequality is strict

▶ The inequality holds for
▶ any τ you choose to get xk+1

small(τ)

▶ any subgradient in ∂
(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)

▶ How to prove: definition & convexity

12 / 18

Coarse correction step: inequality

xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small)

▶ Theorem P (xk+1
small − x

k+1/2
small) is a descent direction in Big-world〈

∂
(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
, P (xk+1

small(τ)− x
k+1/2
small)

〉
< 0

the inequality is strict

▶ The inequality holds for
▶ any τ you choose to get xk+1

small(τ)

▶ any subgradient in ∂
(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)

▶ How to prove: definition & convexity

12 / 18

Coarse correction step: stepsize exists

xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small) (A)

▶ Theorem α > 0 exists such that FBig(x
k+1
Big) < FBig(x

k+1/2
Big) (F := f + g)

▶ 3-sentence proof
1. The strict inequality in 〈

∂FBig(x
k+1/2
Big), P (xk+1

small(τ)− x
k+1/2
small)

〉
< 0

means ∂FBig(x
k+1/2
Big) is strictly inside a half-space with normal N := P (xk+1

small(τ)− x
k+1/2
small)

2. Subdifferential is a compact convex set︸ ︷︷ ︸
a fact

1
=⇒ strict separation =⇒ ∂FBig(x

k+1/2
Big) must be a

positive distance (α > 0) from that hyperplane defined by N .

3. Evaluate the support func. of ∂FBig(x
k+1/2
Big), i.e., the directional derivative of FBig at x

k+1/2
Big in

the direction N , we are done

▶ Sad news: we only have descent condition, not sufficient descent condition

▶ Deep thing in the compactness of subdifferential 13 / 18

Theoretical results

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

2. x
k+1/2
small = R x

k+1/2
Big

3. τ ∈ ∂
(
fsmall(x

k+1/2
small) + gsmall(x

k+1/2
small)

)
⊖R∂

(
fBig(x

k+1/2
Big) + gBig(x

k+1/2
Big)

)
4. xk+1

small = proxαg

(
x
k+1/2
small −α

(
∇f(x

k+1/2
small)−τ

))
5. xk+1

Big = x
k+1/2
Big + αP (xk+1

small − x
k+1/2
small)

1. At convergence, xk
ℓ has a fixed-pt. property ∀ level ℓ

2. Nonsmooth angle condition〈
∂FBig(x

k+1/2
Big), P (xk+1

small(τ)− x
k+1/2
small)

〉
< 0

3. Descent property: stepsize α > 0 exists and

P (xk+1
small(τ)− x

k+1/2
small) is a descent direction at x

k+1/2
Big

FBig

(
x
k+1/2
Big + αP (xk+1

small(τ)− x
k+1/2
small)

)
< FBig

(
x
k+1/2
Big

)
.

4.
{
F0(xk

Big)
}
k∈N converges to F ∗

Big
:= inf FBig, with

▶ a sublinear rate

FBig(x
k
Big)− F ∗

Big ≤
c

k
▶ a linear rate

FBig(x
k
Big)− F ∗

Big ≤ c
(
1−

µBig

LBig

)k
.

▶ with acceleration

FBig(x
k
Big)− F ∗

Big ≤
d

ak2 + bk + c

5. {xk
Big}k∈N

k
⇀ x∗

Big

14 / 18

Why stop at 2-level?

ℓ level
k iteration counter
xℓ variable at level ℓ before ProxGrad
yℓ variable at level ℓ after ProxGrad
fℓ smooth part at level ℓ
gℓ nonsmooth part at level ℓ
Lℓ Lipschitz constant of ∇fℓ at level ℓ
L number of levels

▶ Reduction in problem size n0 → 1

4
n0 → 1

16
n0 → 1

64
n0 → 1

256
n0 → 1

1024
n0

▶ Per-iteration cost by geometric series a+ ar + ar2 + · · · → a

1− r
. For r =

1

4
, V-cycle is 2.66n0 for all single

proximal gradient update.

15 / 18

Experiment

▶ Tons of papers on multigrid methods for applications

▶ Elastic Obstacle Problem:

min
u

∫∫
Ω

√
1 + ∥∇u ∥2

L2dxdy + λ

∫∫
Ω
∥ (ϕ− u)+ ∥L1dxdy s.t. u = 0 on ∂Ω,

argmin
u∈RN2

h2
N∑
i=1

N∑
j=1

√
1 +

(
D(i,j),:u

)2
+

(
E(i,j),:u

)2
+ h2λ∥(ϕ− u)+∥1

argmin
u∈RN2

f0(u) + g0(u) :=
N∑
i=1

N∑
j=1

ψ
(
F(i,j),:u

)
+ λ∥(ϕ− u)+∥1, (EOP)

ψ : R2 → R : (s, t) 7→
√
1 + s2 + t2, F(i,j),: :=

[
D(i,j),:

E(i,j),:

]
.

▶ Theorem EOP problem is µ-strongly convex and smooth part is L-smooth
▶ global tight L is unknown (to us)
▶ µ > 0 is unknown
▶ µ→ 0

16 / 18

Experiment

▶ Tons of papers on multigrid methods for applications
▶ Elastic Obstacle Problem:

min
u

∫∫
Ω

√
1 + ∥∇u ∥2

L2dxdy + λ

∫∫
Ω
∥ (ϕ− u)+ ∥L1dxdy s.t. u = 0 on ∂Ω,

argmin
u∈RN2

h2
N∑
i=1

N∑
j=1

√
1 +

(
D(i,j),:u

)2
+

(
E(i,j),:u

)2
+ h2λ∥(ϕ− u)+∥1

argmin
u∈RN2

f0(u) + g0(u) :=

N∑
i=1

N∑
j=1

ψ
(
F(i,j),:u

)
+ λ∥(ϕ− u)+∥1, (EOP)

ψ : R2 → R : (s, t) 7→
√

1 + s2 + t2, F(i,j),: :=

[
D(i,j),:

E(i,j),:

]
.

▶ Theorem EOP problem is µ-strongly convex and smooth part is L-smooth
▶ global tight L is unknown (to us)
▶ µ > 0 is unknown
▶ µ→ 0

16 / 18

Experiment

▶ Tons of papers on multigrid methods for applications
▶ Elastic Obstacle Problem:

min
u

∫∫
Ω

√
1 + ∥∇u ∥2

L2dxdy + λ

∫∫
Ω
∥ (ϕ− u)+ ∥L1dxdy s.t. u = 0 on ∂Ω,

argmin
u∈RN2

h2
N∑
i=1

N∑
j=1

√
1 +

(
D(i,j),:u

)2
+

(
E(i,j),:u

)2
+ h2λ∥(ϕ− u)+∥1

argmin
u∈RN2

f0(u) + g0(u) :=

N∑
i=1

N∑
j=1

ψ
(
F(i,j),:u

)
+ λ∥(ϕ− u)+∥1, (EOP)

ψ : R2 → R : (s, t) 7→
√

1 + s2 + t2, F(i,j),: :=

[
D(i,j),:

E(i,j),:

]
.

▶ Theorem EOP problem is µ-strongly convex and smooth part is L-smooth
▶ global tight L is unknown (to us)
▶ µ > 0 is unknown
▶ µ→ 0

16 / 18

(µ,L) unknown =⇒ cannot do parameter-based restart

For (28 − 1)2 = 65025 number of variable

Method iterations k time (sec.)
(
F0(x

k
0)− Fmin

0

)
/F0(x

ini
0)

ProxGrad > 105 335.9 8.33× 10−8

FISTA > 105 332.62 6.64× 10−8

FISTA-r > 105 364.89 6.64× 10−8

Kocvara3 Ns = 100 > 103 986.53 8.07× 10−8

MGProx Ns = 100 50 48.37 1.32× 10−10

17 / 18

Last page - summary

Andersen Ang, Hans De Sterck, Steve Vavasis,
“MGProx: A nonsmooth multigrid proximal gradient method with adaptive restriction for
strongly convex optimization”,
SIAM Journal of Optimization, to appear, 2024
arXiv 2302.04077

▶ discussed some funny things

▶ many open problems / extensions / improvement opportunities

▶ Ads: I actually have PhD positions

End of document

18 / 18

https://arxiv.org/abs/2302.04077

