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Not following paper’s notation

ℓ level
k iteration counter
xℓ variable at level ℓ before ProxGrad
yℓ variable at level ℓ after ProxGrad
fℓ smooth part at level ℓ
gℓ nonsmooth part at level ℓ
Lℓ Lipschitz constant of ∇fℓ at level ℓ
L number of levels

▶ Too many subscripts, hard to read

▶ idea is important, not the maths detail

▶ Notation: Big and small
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Setup

argmin
x

f(x) + g(x)

▶ everything in finite dimensional
Euclidean space

▶ not about
▶ E
▶ ∇2f
▶ linear

▶ big N in finite sum
1

N

N∑
i=1

fi(x)

▶ application

▶ f : Rn → R is
▶ µ-strongly convex
▶ L-smooth

▶ g : Rn → R is
▶ convex
▶ proper
▶ possibly nonsmooth

▶ further assume a single point of non-differentiability

▶ separable: g(x) = g1(x1) + g2(x2) + · · ·
▶ e.g. max{·}, ∥ · ∥1

▶ proximable
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What is the idea

▶ goal: solve
argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

▶ n big, expensive

e.g. galaxy image (Lauga et. al., IML-FISTA.)

▶ natural idea: make use of subspace

argmin
xsmall

fsmall(xsmall) + gsmall(xsmall)

▶ how to define small problem?
▶ how to create small problem?
▶ how to solve small problem?
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Idea is old
▶ Caratheodory in 1910s

▶ Low rank by Eckart-Young in 1936

▶ PDEs: multigrid in 1962a

▶ CFD: model order reduction in 1967

▶ Linear programming: aggregation in 1977

▶ Computer vision: Pyramids in 1980s

▶ Natural language processing: Topic modelling in 1980s

▶ Wavelet in 1989

▶ Sparse linear statistic model in 1996

▶ Image segmentation: SuperPixel in 2000s

▶ Graph: compressing network by SuperNode in 2000s

▶ Core-set in 2010s

▶ Knowledge distillation

aR. P. Fedorenko, “A relaxation method for solving
elliptic difference equations”, USSR Computational
Mathematics and Mathematical Physics, 1962 5 / 18



What’s there
▶ Multigrid for PDEs, a whole field

▶ mostly smooth problems

▶ two types
▶ Full approximation scheme (FAS) /

τ -approximation scheme
(1st-order method)

▶ Newton-multigrid method
(2nd-order method)

▶ works for nonsmooth problem exist, but
▶ use smoothing, e.g. |x| →

√
x2 + ϵ

▶ only simple constraint

What’s new

▶ Extend the FAS to nonsmooth

▶ No smoothing, face subdifferential directly

▶ Main output: proving it works
▶ (new) adaptive restriction
▶ consistent optimality between two worlds
▶ descents

▶ other fancy stuffs
▶ convergence rate 1/k
▶ acceleration rate 1/k2

▶ good-looking curves
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How to go from fBig to fsmall: Subspace

fsmall := fBig ◦R
fsmall(xsmall) := fBig(RxBig)

xsmall := RxBig

▶ R is called restriction in PDEs
▶ R is a short-wide matrix that maps from RN to Rn

▶ if n < N short-wide: not one-to-one but many-to-one

▶ R is a class of matrices
▶ If R is the ith row of I =⇒ coordinate descent
▶ If R is random =⇒ random subspace method
▶ If R comes from PDE =⇒ multigrid method

▶ No-free-lunch
▶ How to choose / design R =⇒ by experience, open problem
▶ I am “cheating” by using a “known” R
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FAS multigrid (red are new) for argmin
x∈Rn

f(x) + g(x)

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

ProxGD in Big world

2. x
k+1/2
small = R x

k+1/2
Big Restriction: Big-to-small

fsmall =fBig ◦R, gsmall =gBig ◦R

adaptive R is new

3. τ ∈ ∂
(
fsmall( x

k+1/2
small ) + gsmall( x

k+1/2
small )

)
⊖R∂

(
fBig( x

k+1/2
Big ) + gBig( x

k+1/2
Big )

)
WTF

inclusion & Minkowski sum

4. xk+1
small = proxαg

(
x
k+1/2
small − α

(
∇f( xk+1/2

small )− τ
))

ProxGD in small world

5. xk+1
Big = x

k+1/2
Big + αP ( xk+1

small − x
k+1/2
small ) use small to correct Big

no prox
existence of α is new
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Where are the fun things

▶ Subdifferential can be ∅, crazy things will happen
We fixed this: empty-set will not appear

▶ How to choose τ?
We fixed this: the algo always works regardless of choice of τ

▶ P ( xk+1
small − x

k+1/2
small ) works?

We fixed this: it always is a descent direction for xBig

▶ α exists?
We fixed this: α > 0 exists
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So ... what is new?

τ ∈ ∂
(
fsmall(x

k+1/2
small ) + gsmall(x

k+1/2
small )

)
⊖R∂

(
fBig(x

k+1/2
Big ) + gBig(x

k+1/2
Big )

)
Minkowski sum

= ∂fsmall(x
k+1/2
small )⊕ ∂gsmall(x

k+1/2
small )⊖R

(
∂fBig(x

k+1/2
Big )⊕ ∂gBig(x

k+1/2
Big )

)
Moreau-Rockafellar thm. (new1)

= ∇fsmall(x
k+1/2
small ) + ∂gsmall(x

k+1/2
small )⊖R

(
∇fBig(x

k+1/2
Big ) + ∂gBig(x

k+1/2
Big )

)
diff.able part becomes singleton

=
{
∇fsmall(x

k+1/2
small )−R∇fBig(x

k+1/2
Big )

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small )⊕ (−R)∂gBig(x

k+1/2
Big )︸ ︷︷ ︸

set Minkowski sum, hard part, new thing

=
{
∇fsmall(x

k+1/2
small )−R∇fBig(x

k+1/2
Big )

}
︸ ︷︷ ︸

singleton, simple part, exists in literature

⊕∂gsmall(x
k+1/2
small )+(−R)∂gBig(x

k+1/2
Big ) adaptive restriction (new2)

1. We made this true

2. To make my life easier: R maps all set-valued entries of ∂gBig(x
k+1/2
Big ) to the singleton {0}

Open problem: keep dealing with ⊕(−R) instead of +(−R)

3. the whole scheme is different from existing literature
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What’s the heck is τ?

▶ τ links Big-world and small-world

▶ Theorem IF xBig solves argmin
xBig∈Rn

fBig(xBig) + gBig(xBig)

THEN RxBig solves argmin
xsmall∈Rn

fsmall(xsmall) + gsmall(xsmall)− ⟨τ ,xsmall⟩

(In algo) ProxGrad converges in Big-world ⇐⇒ ProxGrad converges in small-world

▶ I am NOT saying: xBig solves Big-problem ⇐⇒ xsmall solves small-problem

▶ I am saying: xBig solves Big-problem ⇐⇒ xsmall solves small-perturbed-problem

▶ τ is Big-perturb-small so that {sol of small-problem} flavours {sol of Big-problem}

▶ How to prove: definition of τ ,R, convexity of obj functions, 1st-order subdiff. optimality
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Coarse correction step: inequality

xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small )

▶ Theorem P (xk+1
small − x

k+1/2
small ) is a descent direction in Big-world〈

∂
(
fBig(x

k+1/2
Big ) + gBig(x

k+1/2
Big )

)
, P (xk+1

small(τ )− x
k+1/2
small )

〉
< 0

the inequality is strict

▶ The inequality holds for
▶ any τ you choose to get xk+1

small(τ )

▶ any subgradient in ∂
(
fBig(x

k+1/2
Big ) + gBig(x

k+1/2
Big )

)

▶ How to prove: definition & convexity
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Coarse correction step: stepsize exists

xk+1
Big = x

k+1/2
Big + αP (xk+1

small − x
k+1/2
small ) (A)

▶ Theorem α > 0 exists such that FBig(x
k+1
Big ) < FBig(x

k+1/2
Big ) (F := f + g)

▶ 3-sentence proof
1. The strict inequality in 〈

∂FBig(x
k+1/2
Big ), P (xk+1

small(τ )− x
k+1/2
small )

〉
< 0

means ∂FBig(x
k+1/2
Big ) is strictly inside a half-space with normal N := P (xk+1

small(τ )− x
k+1/2
small )

2. Subdifferential is a compact convex set︸ ︷︷ ︸
a fact

1
=⇒ strict separation =⇒ ∂FBig(x

k+1/2
Big ) must be a

positive distance (α > 0) from that hyperplane defined by N .

3. Evaluate the support func. of ∂FBig(x
k+1/2
Big ), i.e., the directional derivative of FBig at x

k+1/2
Big in

the direction N , we are done

▶ Sad news: we only have descent condition, not sufficient descent condition

▶ Deep thing in the compactness of subdifferential 13 / 18



Theoretical results

1. x
k+1/2
Big = proxαg

(
xk
Big − α∇f(xk

Big)
)

2. x
k+1/2
small = R x

k+1/2
Big

3. τ ∈ ∂
(
fsmall( x

k+1/2
small ) + gsmall( x

k+1/2
small )

)
⊖R∂

(
fBig( x

k+1/2
Big ) + gBig( x

k+1/2
Big )

)
4. xk+1

small = proxαg

(
x
k+1/2
small −α

(
∇f( x

k+1/2
small )−τ

))
5. xk+1

Big = x
k+1/2
Big + αP ( xk+1

small − x
k+1/2
small )

1. At convergence, xk
ℓ has a fixed-pt. property ∀ level ℓ

2. Nonsmooth angle condition〈
∂FBig(x

k+1/2
Big ), P (xk+1

small(τ )− x
k+1/2
small )

〉
< 0

3. Descent property: stepsize α > 0 exists and

P (xk+1
small(τ )− x

k+1/2
small ) is a descent direction at x

k+1/2
Big

FBig

(
x
k+1/2
Big + αP (xk+1

small(τ )− x
k+1/2
small )

)
< FBig

(
x
k+1/2
Big

)
.

4.
{
F0(xk

Big)
}
k∈N converges to F ∗

Big
:= inf FBig, with

▶ a sublinear rate

FBig(x
k
Big)− F ∗

Big ≤
c

k
▶ a linear rate

FBig(x
k
Big)− F ∗

Big ≤ c
(
1−

µBig

LBig

)k
.

▶ with acceleration

FBig(x
k
Big)− F ∗

Big ≤
d

ak2 + bk + c

5. {xk
Big}k∈N

k
⇀ x∗

Big
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Why stop at 2-level?

ℓ level
k iteration counter
xℓ variable at level ℓ before ProxGrad
yℓ variable at level ℓ after ProxGrad
fℓ smooth part at level ℓ
gℓ nonsmooth part at level ℓ
Lℓ Lipschitz constant of ∇fℓ at level ℓ
L number of levels

▶ Reduction in problem size n0 → 1

4
n0 → 1

16
n0 → 1

64
n0 → 1

256
n0 → 1

1024
n0

▶ Per-iteration cost by geometric series a+ ar + ar2 + · · · → a

1− r
. For r =

1

4
, V-cycle is 2.66n0 for all single

proximal gradient update.
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Experiment

▶ Tons of papers on multigrid methods for applications

▶ Elastic Obstacle Problem:

min
u

∫∫
Ω

√
1 + ∥∇u ∥2

L2dxdy + λ

∫∫
Ω
∥ (ϕ− u)+ ∥L1dxdy s.t. u = 0 on ∂Ω,

argmin
u∈RN2

h2
N∑
i=1

N∑
j=1

√
1 +

(
D(i,j),:u

)2
+

(
E(i,j),:u

)2
+ h2λ∥(ϕ− u)+∥1

argmin
u∈RN2

f0(u) + g0(u) :=
N∑
i=1

N∑
j=1

ψ
(
F(i,j),:u

)
+ λ∥(ϕ− u)+∥1, (EOP)

ψ : R2 → R : (s, t) 7→
√
1 + s2 + t2, F(i,j),: :=

[
D(i,j),:

E(i,j),:

]
.

▶ Theorem EOP problem is µ-strongly convex and smooth part is L-smooth
▶ global tight L is unknown (to us)
▶ µ > 0 is unknown
▶ µ→ 0
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(µ,L) unknown =⇒ cannot do parameter-based restart

For (28 − 1)2 = 65025 number of variable

Method iterations k time (sec.)
(
F0(x

k
0)− Fmin

0

)
/F0(x

ini
0 )

ProxGrad > 105 335.9 8.33× 10−8

FISTA > 105 332.62 6.64× 10−8

FISTA-r > 105 364.89 6.64× 10−8

Kocvara3 Ns = 100 > 103 986.53 8.07× 10−8

MGProx Ns = 100 50 48.37 1.32× 10−10
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Last page - summary

Andersen Ang, Hans De Sterck, Steve Vavasis,
“MGProx: A nonsmooth multigrid proximal gradient method with adaptive restriction for
strongly convex optimization”,
SIAM Journal of Optimization, to appear, 2024
arXiv 2302.04077

▶ discussed some funny things

▶ many open problems / extensions / improvement opportunities

▶ Ads: I actually have PhD positions

End of document
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