
MGProx: A nonsmooth MultiGrid Proximal gradient method, and +

Andersen Ang
ECS, Uni. Southampton, UK
andersen.ang@soton.ac.uk

Homepage angms.science

Version: June 16, 2023
First draft: Dec 2, 2022

Mathematical Optimization for Machine Learning
Humboldt-Universitat zu Berlin
June 14-16 2023

arXiv 2302.04077 joint work with

Hans De Sterck Steve Vavasis

andersen.ang@soton.ac.uk
https://arxiv.org/abs/2302.04077

Standard setup in convex optimization

(P) : argmin
x

{
F0(x) := f0(x) + g0(x)

}
.

▶ f0 : Rn → R convex, L-smooth1 f ∈ C1,1
L

▶ g0 : Rn → R̄ convex, possibly nonsmooth2 g cvx
▶ R̄ := R ∪ {+∞} extended real

▶ To make (my) life easier:

▶ Everything in finite dimensional Euclidean space Rn, ⟨·, ·⟩, ∥ · ∥
▶ f0 is strongly convex =⇒ P has an unique global sol argmin F0 is a singleton
▶ g0 is “proximable” =⇒ prox operator prox has closed-form / efficiently computable
▶ F0 has “multigrid-able” structure =⇒ restriction, prolongation are given R,P known
▶ Assume all other necessary rigour things3

Topic today: solve P by proximal gradient method ⊕ multigrid.

1f0 differentiable & ∇f0 is L-Lipschitz
2not everywhere differentiable
3f0 lower bounded, g0 proper, lower-semicontinuous, lower level-bounded, prox-bounded with finite threshold,

proxg0 nonempty compact, f0, g0 both subdifferentiable 2 / 28

1 page review on solving (P) : min
{
F0(x) := f0(x) + g0(x)

}

Proximal gradient iteration

x+ := proxαg0

(
x − α∇f0(x)

)
= argmin

ξ
αg0(ξ) +

1

2

∥∥∥ξ −
(
x − α∇f0(x)

)∥∥∥2

2
.

▶ α ∈ (0, 2
L] gradient stepsize. We fix α ≡ 1

L .

▶ prox operator of αg0 at ζ:

proxαg0
(ζ) := argmin

ξ
αg0(ξ) +

1

2

∥∥ξ − ζ
∥∥2

2
.

Usefulness: proxαg0
fixes nonsmoothness{

model regularization g0
model constraint (indicator function) g0

Many proxαg0
has closed-form sol.

▶ Literature history
▶ Moreau envelope Moreau 1962
▶ Proximal point method Rockafellar 1976
▶ Forward-Backward splitting Pasty 1979
▶ Earliest proximal gradient Fukushima & Mine 1981
▶ Proximal FB splitting Combettes & Wajs 2005
▶ Now everywhere in Opt. & ML

Multigrid: coarse correction iteration

x
+ := x + αP (x̂

+ − x̂).
▶ Use coarse to improve fine

▶ x̂ ∈ Rn1 restricted version of x ∈ Rn0

▶ x̂+: obtained by solving an auxiliary coarse optimization
problem, a “smaller” P (talk later)

▶ P : prolongation

▶ History
▶ For g0 ≡ 0 (smooth convex optimization)
▶ Linear system from the discretization of PDEs
▶ Later generalized to system of nonlinear eqs
▶ ∃ nonsmooth multigird in literature, but all different from

this talk (see paper for detail)

▶ Usefulness: fast, convergence independent of problem size

▶ Literature history
▶ Earliest(?) work on Poisson problem Fedorenko 1962
▶ Multi-level adaptive technique Brandt 1973
▶ Multigrid Methods Hackbusch 1985
▶ Now everywhere in scientific computing

3 / 28

This work

Proximal gradient

▶ © Wide applications (due to g0)

▶ § Slow

Multigrid

▶ © Fastest known method (at least for PDEs)

▶ § Narrow applications: only for PDEs

Million dollar question: can we have both ©?

MGProx: for some F0, yes. 2022

MGPD: for more F0, yes 2023

4 / 28

see arXiv 2302.04077 Section 1.4.2 for literature review

▶ Brandt & Cryer, Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems 1983

▶ Hackbusch & Mittelmann, On multi-grid methods for variational inequalities 1983

▶ Mandel, A multilevel iterative method for symmetric, positive definite linear complementarity problems 1984

▶ Vogel & Oman, Iterative methods for total variation denoising 1996

▶ Chan, Chan & Wana, Multigrid for differential-convolution problems arising from image processing 1998

▶ Nash, A multigrid approach to discretized optimization problems 2000

▶ Graser, Sack and Sander, Truncated nonsmooth Newton multigrid methods for convex minimization problems 2009

▶ Parpas, A multilevel proximal gradient algorithm for a class of composite optimization problems 2017

▶ Graser & Sander, Truncated nonsmooth Newton multigrid methods for block-separable minimization problems 2019

5 / 28

https://arxiv.org/abs/2302.04077

A remark on the popular MGOPT by Nash

6 / 28

Man Shun Ang

Man Shun Ang

A first look at 2-level MGProx algorithm for (P) : minx

{
F0(x) := f0(x) + g0(x)

}

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

▶ Variable sequence
{
xk
0 , y

k
0 , z

k
0

}
k∈N

▶ superscript k: iteration number
▶ subscript 0: level
▶ x: main sequence
▶ y, z intermediate variables

▶ When converge: x0 = y0 = z0 (fixed-point)

i prox-grad update at level-0
▶ 1

L0
stepsize, L0 is the Lipschitz const. of ∇f0

▶ this step is called “pre-smoothing” in multigrid
▶ we use x to get y

ii Adaptive restriction of the updated yk+1
0

▶ R: (adaptive) restriction operator adapted to yk+1
0

iii τ carries the level-0 info to level-1
▶ ∂F1: cvx subdifferential of F1 at level 1
▶ ∂F0: cvx subdifferential of F1 at level 0
▶ τ can be any element of the set

iv Solve the coarse problem
▶ a “smaller” P with a linear perturbation τ

v Coarse correction step
▶ P : prolongate level-1 variable to level-0
▶ we use x, y to get z

vi prox-grad update at level-0
▶ 1

L0
stepsize, L0 is the Lipschitz const. of ∇f0

▶ this step is called “post-smoothing” in multigrid
▶ we use z to get x 7 / 28

Subdifferential, Minkowski sum and adaptive restriction

(ii) yk+1
1 = R(yk+1

0)yk+1
0

(iii) τk+1
0→1 ∈ τk+1

0→1 := ∂F1(y
k+1
1)⊕ (−R)∂F0(y

k+1
0)

▶ (Fenchel) Convex subdifferential of a function ϕ : Rn → R at a point x0 is the set
{
q ∈ Rn : ϕ(x) ≥ ϕ(x0) + ⟨q, x − x0⟩

}
.

▶ Underline means set, no underline means singleton.

▶ Subdifferentials ∂F1(y
k+1
1) & ∂F0(y

k+1
0) are sets −→ τk+1

0→1 := ∂F1(y
k+1
1) ⊕ (−R)∂F0(y

k+1
0) is a Minkowski sum.

▶ To make life easier, use R to turn R∂F0(y
k+1
0) into a singleton vector.

▶ R reduces R∂F0(y
k+1
0) from a set-valued vector to a singleton vector. All sets map to the singleton {0}.

▶ No more complicated Minkowski sum, now we have

∂F1(y
k+1
1) ⊕ (−R)∂F0(y

k+1
0) = ∂F1(y

k+1
1) − R∂F0(y

k+1
0).

▶ Not just “make life easier”, the adaptive R plays critical role in proving convergence.

▶ Open problem: non-adaptive R, general multi-member Minkowski sum of subdifferentials

▶ Example for separable g such as ∥x∥1, max{x, c}, etc.

▶ Definition Let I =
{
i ∈ [n] : [∂F0(y

k+1
0)]i is a set

}
.

▶ Adaptive restriction R is defined as the (full) restriction matrix Rfull with column i ∈ I set to zero.

8 / 28

Restriction and coarse level object

(ii) yk+1
1 = R(yk+1

0)yk+1
0

(iii) τk+1
0→1 ∈ ∂F1(y

k+1
1)−R∂F0(y

k+1
0)

(iv) xk+1
1 ∈ argmin

ξ

{
F τ
1 (ξ) := F1(ξ)− ⟨τk+1

0→1, ξ⟩
}

▶ Level-0 variable x0 = Px1

▶ Level-1 variable x1 = Rx0

▶ Level-1 function F1(x1) := F0(Px1)

▶ F τ
1 := F1(ξ)− ⟨τk+1

0→1, ξ⟩

▶ R,P preserve convexity

Example: 1-dimensional full weighting

R =

1
2

1
4

1
4

1
2

1
4

. . .
. . .

. . .

maps vectors in Rn0 to Rn1 with n1 = ⌈n0−1

2
⌉.

=⇒ 50% reduction in problem size

P = 2R⊤

For 2-dimensional case, reduce size to
1

4

9 / 28

Theoretical results

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

1. At convergence, xk
ℓ has a fixed-pt. property ∀ℓ

2. Nonsmooth angle condition
〈
P (x

k+1
1 − y

k+1
1) , ∂F0(y

k+1
0)

〉
< 0.

3. Descent property: stepsize α > 0 exists and P (xk+1
1 − yk+1

1) is a

descent direction at yk+1
0

i.e., F0

(
y
k+1
0 + αP (x

k+1
1 − y

k+1
1)

)
< F0

(
y
k+1
0

)
.

4.
{
F0(x

k
0)

}
k∈N converges to F∗

0 := inf F0, with

▶ a sublinear rate

F0(x
k
0) − F

∗
0 ≤

max
{
8δ2L0, F0(x

1
0) − F∗

0

}
k

▶ L0: Lipschitz constant of ∇f0
▶ δ: diameter of sublevel set {ξ ∈ Rn0 | F0(ξ) ≤ F0(x

1
0)}

▶ a linear rate

F0(x
k
0) − F

∗ ≤
(
1 −

µ

L0

)k(
F0(x

k
1) − F

∗)
.

Both holds so

F0(x
k
0) − F

∗ ≤ min
{ const.

k
,
(
1 −

µ

L0

)k }
.

5. {xk
0}k∈N

k
⇀ x∗

0

10 / 28

How we prove them
1. At convergence, xk

ℓ has a fixed-pt. property ∀ℓ

2. Nonsmooth angle condition〈
P (x

k+1
1 − y

k+1
1) , ∂F0(y

k+1
0)

〉
< 0.

3. Descent property: stepsize α > 0 exists and P (xk+1
1 − yk+1

1) is

a descent direction at yk+1
0

i.e., F0

(
y
k+1
0 + αP (x

k+1
1 − y

k+1
1)

)
< F0

(
y
k+1
0

)
.

4.
{
F0(x

k
0)

}
k∈N converges to F∗

0 := inf F0, with

▶ a sublinear rate

F0(x
k
0) − F

∗
0 ≤

max
{
8δ2L0, F0(x

1
0) − F∗

0

}
k▶ a linear rate

F0(x
k
0) − F

∗ ≤
(
1 −

µ

L0

)k(
F0(x

k
1) − F

∗)
.

Both holds so

F0(x
k
0) − F

∗ ≤ min
{ const.

k
,
(
1 −

µ

L0

)k }
.

5. {xk
0}k∈N

k
⇀ x∗

0

1. ▶ Fixed-pt. property of proximal gradient step
▶ Adaptive R reduces set to singleton
▶ Subgradient 1st-order optimality

2. ▶ Adaptive R reduces set to singleton
▶ Definition of τ and xk+1

1
▶ Convexity of F1
▶ Restriction preserves convexity

3. ▶ Result 2 (angle condition)
▶ Subdifferential ∂F is a compact convex set
▶ Strict hyperplane separation
▶ Support of ∂F = directional derivative of F

4. ▶ Result 3 (descent property) & 4 lemmas
▶ a sufficient “descent” inequality
▶ a quadratic overestimator of F0
▶ diameter of sublevel set of F0
▶ an inequality of scalar sequence

& a bunch of convex analysis techniques

▶ Result 3 (descent property) & the proximal
Polyak- Lojasiewics inequality

Both convergences results are global (regardless of starting pt.)

5. Result 4 and F0 is strictly convex by assumption

11 / 28

Fixed-point property

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strongMGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD 9

convexity of F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
, the point yk+1

1 is the unique minimizer of the coarse problem,

so xk+1
1 = yk+1

1 by step (iv) of the algorithm and xk+1
0 = yk+1

0
(2.6)
= xk

0 by steps (v) and (vi).

Theorem 2.5 shows that at convergence, we have fixed-point xk+1
0 = yk+1

0 at fine level and
also xk+1

1 = yk+1
1 at the coarse level. Next we show that when xk+1

1 , yk+1
1 , the functional value

sequence is converging.

2.4.2. Coarse correction descent: angle condition. In nonsmooth optimization, de-
scent direction properties are drastically di↵erent from smooth optimization [31]. For ex-
ample for the subgradient method, the classical angle condition no longer describes a use-
ful set of search directions for the subgradient. In MGProx the coarse correction direction
P(xk+1

1 � yk+1
1) is a nonsmooth descent direction, and we will show that P(xk+1

1 � yk+1
1) de-

creases the objective function value, based on the theorem below and Lemma 2.8.

Theorem 2.6 (Angle condition of coarse correction). For P(xk+1
1 � yk+1

1) , 0, the follow-
ing directional derivative is strictly negative

(2.10)
D
@F0(yk+1

0), P(xk+1
1 � yk+1

1)
E
< 0.

Before we prove the theorem we emphasize that (2.10) applies for any subgradient in the
set @F0(yk+1

0). Furthermore,

(2.10) ()
D
P>@F0(yk+1

0), xk+1
1 � yk+1

1

E
< 0

P>=cR, c>0() c
D
R@F0(yk+1

0), xk+1
1 � yk+1

1

E
< 0.

As c,R, P are all element-wise nonnegative, showing (2.10) is equivalent to showing

(2.11)
D
R@F0(yk+1

0), xk+1
1 � yk+1

1

E
< 0,

where R@F0(yk+1
0) is a singleton vector for all subgradients in @F0(yk+1

0) due to the adaptive R.

Proof. By definition ⌧k+1
0!1

(2.4a)2 @F1(yk+1
1) � R@F0(yk+1

0) hence

(2.12) R@F0(yk+1
0) 2 @F1(yk+1

1) � ⌧k+1
0!1

(2.5)
= @F⌧1(yk+1

1),

showing that R@F0(yk+1
0) is a subgradient of F⌧1 at yk+1

1 . For any subgradient in the subdi↵er-

ential @F⌧1(yk+1
1), we have the following which implies (2.11):

D
@F⌧1(yk+1

1), xk+1
1 � yk+1

1

E
< F⌧1(xk+1

1) � F⌧1(yk+1
1) < 0,

where the first strict inequality is due to F⌧1 being a strongly convex function (which implies
strict convexity) ; the second inequality is by xk+1

1 B argmin
⇠

F⌧1(⇠) and the assumption that

xk+1
1 , yk+1

1 .

Remark 2.7. Theorem 2.6 holds for convex but not strongly convex f0 by replacing <
with .

2.4.3. Existence of coarse correction stepsize ↵k. Based on Theorem 2.6, we now
show that there exists a stepsize ↵k > 0 such that

(2.13) F0(zk+1
0) B F0

⇣
yk+1

0 + ↵kP(xk+1
1 � yk+1

1)
⌘
< F0(yk+1

0).

12 / 28

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Nonsmooth angle condition

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

MGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD 9

convexity of F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
, the point yk+1

1 is the unique minimizer of the coarse problem,

so xk+1
1 = yk+1

1 by step (iv) of the algorithm and xk+1
0 = yk+1

0
(2.6)
= xk

0 by steps (v) and (vi).

Theorem 2.5 shows that at convergence, we have fixed-point xk+1
0 = yk+1

0 at fine level and
also xk+1

1 = yk+1
1 at the coarse level. Next we show that when xk+1

1 , yk+1
1 , the functional value

sequence is converging.

2.4.2. Coarse correction descent: angle condition. In nonsmooth optimization, de-
scent direction properties are drastically di↵erent from smooth optimization [31]. For ex-
ample for the subgradient method, the classical angle condition no longer describes a use-
ful set of search directions for the subgradient. In MGProx the coarse correction direction
P(xk+1

1 � yk+1
1) is a nonsmooth descent direction, and we will show that P(xk+1

1 � yk+1
1) de-

creases the objective function value, based on the theorem below and Lemma 2.8.

Theorem 2.6 (Angle condition of coarse correction). For P(xk+1
1 � yk+1

1) , 0, the follow-
ing directional derivative is strictly negative

(2.10)
D
@F0(yk+1

0), P(xk+1
1 � yk+1

1)
E
< 0.

Before we prove the theorem we emphasize that (2.10) applies for any subgradient in the
set @F0(yk+1

0). Furthermore,

(2.10) ()
D
P>@F0(yk+1

0), xk+1
1 � yk+1

1

E
< 0

P>=cR, c>0() c
D
R@F0(yk+1

0), xk+1
1 � yk+1

1

E
< 0.

As c,R, P are all element-wise nonnegative, showing (2.10) is equivalent to showing

(2.11)
D
R@F0(yk+1

0), xk+1
1 � yk+1

1

E
< 0,

where R@F0(yk+1
0) is a singleton vector for all subgradients in @F0(yk+1

0) due to the adaptive R.

Proof. By definition ⌧k+1
0!1

(2.4a)2 @F1(yk+1
1) � R@F0(yk+1

0) hence

(2.12) R@F0(yk+1
0) 2 @F1(yk+1

1) � ⌧k+1
0!1

(2.5)
= @F⌧1(yk+1

1),

showing that R@F0(yk+1
0) is a subgradient of F⌧1 at yk+1

1 . For any subgradient in the subdi↵er-

ential @F⌧1(yk+1
1), we have the following which implies (2.11):

D
@F⌧1(yk+1

1), xk+1
1 � yk+1

1

E
< F⌧1(xk+1

1) � F⌧1(yk+1
1) < 0,

where the first strict inequality is due to F⌧1 being a strongly convex function (which implies
strict convexity) ; the second inequality is by xk+1

1 B argmin
⇠

F⌧1(⇠) and the assumption that

xk+1
1 , yk+1

1 .

Remark 2.7. Theorem 2.6 holds for convex but not strongly convex f0 by replacing <
with .

2.4.3. Existence of coarse correction stepsize ↵k. Based on Theorem 2.6, we now
show that there exists a stepsize ↵k > 0 such that

(2.13) F0(zk+1
0) B F0

⇣
yk+1

0 + ↵kP(xk+1
1 � yk+1

1)
⌘
< F0(yk+1

0).

13 / 28

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Descent property

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

10 A. ANG, H. DE STERCK AND S. VAVASIS

Lemma 2.8 (Existence of stepsize). There exists ↵k > 0 such that (2.13) is satisfied for
P(xk+1

1 � yk+1
1) , 0.

To prove the lemma, we make use the second definition of subdi↵erential we discussed
in subsection 2.2: @F0(yk+1

0) is a compact convex set whose support function is the directional

derivative of F0 at yk+1
0 . Note that F0 : Rn0 ! R will never reach +1 at zk+1

0 since zk+1
0

is obtained by the proximal gradient step, so we can make use of the result on directional
derivative in [19, Def. 1.1.4, p.165] associated with subdi↵erential.

Proof. We prove the lemma in 3 steps.
1. (Halfspace) The strict inequality in Theorem 2.6 means that @F0(yk+1

0) is strictly

inside a halfspace with normal vector p = P(xk+1
1 � yk+1

1).
2. (Strict separation) Being a compact convex set, @F0(yk+1

0 0) lying strictly on one side
of the hyperplane must be a positive distance (say ↵k > 0) from that hyperplane.

3. (Support and directional derivative) Evaluating the support function of @F0(yk+1
0),

i.e., the directional derivative of F0 at yk+1
0 in the direction p, we have (2.13).

Now we see that Theorem 2.6 implies Lemma 2.8 which then implies the descent condi-
tion (2.13). Now by (2.13) together with the su�cient descent property of proximal gradient
(Lemma 2.9), the sequence

�
F0(xk

0)

k2N produced by Algorithm 2.1 converges, because the

sequence
�
F0(xk

0)

k2N is monotonically decreasing and F0 is bounded below.

Lemma 2.9 (Su�cient descent property of proximal gradient). For step (i) in Algo-
rithm 2.1, we have

(2.14) F0(yk+1
0) F0(xk

0) � 1
2L0

���G0(xk
0)

���2
2, G0(xk

0) = L0

h
xk

0 � prox 1
L g0

⇣
xk

0 �
1
L0
r f0(xk

0)
⌘i
.

Here, L0 is the Lipschitz constant of r f0 and G0(xk
0) is called the proximal gradient map of

F0 at xk
0. The inequality also holds for step (vi). See [3, Lemma 10.4] for more details.

2.4.4. Tuning the coarse correction stepsize ↵k. First, exact line search is impractical:
finding ↵k B argmin

↵�0
F0

⇣
yk+1

0 +↵P(xk+1
1 �yk+1

1)
⌘

is generally expensive. Next, classical inexact

line searches such as the Wolfe conditions, Armijo rule, Goldstein line search (e.g., see [30,
Chapter 3]) cannot be used here as they were developed for smooth functions. While it is
possible to develop nonsmooth version of these methods, such as a nonsmooth Armijio rule
in tandem with backtracking on functions that satisfy the Kurdyka-Łojasiewicz inequality
with other additional conditions in [31], this is out of the scope of this work.

For this paper, we use simple naive backtracking as shown in Algorithm 2.2, which
just enforces (2.13) without any su�cient descent condition. While we acknowledge that
the traditional wisdom in optimization tells that naive descent conditions such as (2.13) are
generally not enough to obtain convergence to the optimal point, we note that MGProx is not
solely using the coarse correction to update the variable; instead it is a chain of interlaced
iterations of proximal gradient descent and coarse correction, and we will show next that
the su�cient descent property of proximal gradient descent (2.14) alone provides enough
descending power for the function value F0 to convergence to the optimal value.

2.4.5. Asymptotic O(1/k) convergence rate. Inequality (2.13) implies that in the worst
case the coarse correction P(xk+1

1 � yk+1
1) in the multigrid process is “doing nothing” on yk+1

0 ,
which occurs when P(xk+1

1 � yk+1
1) = 0 or xk+1

1 = yk+1
1 .

We now show that the descent inequality F0(xk+1
0) F0(zk+1

0) F0(yk+1
0) implies that

the convergence rate of the sequence
�
F0(xk

0)

k2N for {xk

0}k2N generated by MGProx (Algo-
rithm 2.1) follows the (asymptotic) convergence rate of the proximal gradient method, which

14 / 28

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Sublinear rate convergence
8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

▶ Existing proof framework of prox-grad
method cannot be used.

▶ MGProx is interlacing two update
operations

▶ Prox-grad iteration guarantee descent of
function value

f(ξ
+
) ≤ f

(
ProxGradUpdate(ξ)

)
(∗)

▶ descent of function value does not imply
variable getting closer to sol.

(∗) ≠⇒ ∥ξ+ − ξ
∗∥ ≤ ∥ξ − ξ

∗∥

MGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD 11

Algorithm 2.2 Naive line search
Set ↵ > 0 and let ✏ > 0 to be a small number (e.g. 10�15)
while true do

if F0

⇣
yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�⌘ F0

⇣
yk+1

0

⌘
then

Return zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
, break.

else if ↵ > O(✏) then
↵ = ↵/2.

else
Return zk+1

0 = yk+1
0 , break.

end if
end while

is O(1
k) [3]. In Theorem 2.10 we show that

�
F0(xk

0)

k2N converges to F⇤0 B inf F0(x) asymp-

totically with such a classical rate.

Theorem 2.10. The sequence {xk
0}k2N generated by MGProx (Algorithm 2.1) for solving

Problem (1.1) satisfies F0(xk+1
0) � F⇤0 max

n
8�2L0, F0(x1

0) � F⇤0
o

1
k , where F⇤0 = F0(x⇤) for

x⇤ = argmin F0, the point x1
0 2 Rn is the initial guess, L0 is the Lipschitz constant of r f0, and

� is the diameter of the sublevel set LF0(x1
0) defined in Lemma 2.14.

Note that we cannot invoke a standard theorem about the convergence of proximal gra-
dient descent such as [3, Theorem 10.21], because we interlace proximal gradient steps with
coarse corrections.

Before the proof, we note that all the functions and variables in this subsubsection are at
level ` = 0 so we omit the subscript. The constant L should be understood as the Lipschitz
constant of r f (x). The proof is based on standard techniques in first-order methods. To make
the proof more accessible, we divide the proof into four lemmas:

• Lemma 2.11: we derive a su�cient descent inequality for the MGProx iteration.
• Lemma 2.13: we derive a quadratic overestimator of F.
• Lemma 2.14: we give an upper bound for kxk � x⇤k2 and kyk+1 � x⇤k2 for all k.
• Lemma 2.15: we recall a convergence rate for a certain a monotonic sequence.

Using these lemmas, we follow the strategy used in [22] to prove Theorem 2.10.

Lemma 2.11 (Su�cient descent of MGProx iteration). For all iterations k, we have

(2.15) F(xk+1) � F⇤ L
2

⇣
kxk � x⇤k22 � kyk+1 � x⇤k22

⌘
.

Proof. By convexity and L-smoothness of f , for all yk+1, xk, ⇠ we have

f (yk+1) f (xk) + hr f (xk), yk+1 � xki + L
2 kyk+1 � xkk22 f is L-smooth . . . (i)

f (xk) f (⇠) � hr f (xk), ⇠ � xki f is convex . . . (ii)
f (yk+1) f (⇠) � hr f (xk), ⇠ � yk+1i + L

2 kyk+1 � xkk22 (i) + (ii)
= f (⇠) � ⌦r f (xk), ⇠ � xk + 1

LG(xk)
↵
+ 1

2L kG(xk)k22 yk+1 = xk � 1
LG(xk)

where G(xk) is the proximal gradient map of F at xk, see (2.14).
Next, adding g(yk+1) = g

�
xk � 1

LG(xk)
�

on the both sides of the last inequality gives

(2.16) F(yk+1) f (⇠) �
D
r f (xk), ⇠ � xk +

1
L

G(xk)
E
+

1
2L
kG(xk)k22 + g

⇣
xk � 1

L
G(xk)

⌘
.

12 A. ANG, H. DE STERCK AND S. VAVASIS

Based on the properties of the coarse correction (Theorem 2.6 and Lemma 2.8) and the su�-
cient descent property of the proximal gradient update (2.14), we have

F(xk+1)
(2.14) F(zk+1)

Theorem 2.6, Lemma 2.8 F(yk+1),

so we can replace F(yk+1) in (2.16) by F(xk+1) and obtain

(2.17) F(xk+1) f (⇠) �
D
r f (xk), ⇠ � xk +

1
L

G(xk)
E
+

1
2L
kG(xk)k22 + g

⇣
xk � 1

L
G(xk)

⌘
.

In the following we deal with the term g
⇣
xk � 1

LG(xk)
⌘

in (2.17). First, by the convexity of g,
for all ⇠ we have

g(⇠) � g
⇣
xk � 1

LG(xk)
⌘
+

D
@g

�
xk � 1

LG(xk)
�
, ⇠ � �

xk � 1
LG(xk)

� E

() g
⇣
xk � 1

LG(xk)
⌘
 g(⇠) �

D
@g

�
xk � 1

LG(xk)
�
, ⇠ � �

xk � 1
LG(xk)

� E
.

By the subgradient optimality of the proximal subproblem associated with g, we can show
that G(xk) � r f (xk) 2 @g�xk � 1

LG(xk)
�
, hence

(2.18) g
⇣
xk � 1

L
G(xk)

⌘
 g(⇠) �

D
G(xk) � r f (xk), ⇠ � �

xk � 1
L

G(xk)
�E
.

Combining (2.17) and (2.18) with ⇠ = x⇤ B argmin F gives

F(xk+1) F⇤ �
D
G(xk), x⇤ � xk + 1

LG(xk)
E
+ 1

2L kG(xk)k22
= F⇤ �

D
G(xk), x⇤ � xk

E
� 1

2L kG(xk)k22
= F⇤ + L

2

⇣
kxk � x⇤k22 � kxk � x⇤ � 1

LG(xk)k22
⌘ xk� 1

L G(xk)C yk+1

() (2.15)

where completing the squares is used in the second equal sign.

Remark 2.12. We name the inequality (2.15) su�cient descent because it resembles the
su�cient descent property of the proximal gradient iteration (2.14). Also, by definition,
F(xk+1) � F⇤, hence (2.15) implies kxk � x⇤k22 � kyk+1 � x⇤k22.

The following lemma is similar to [4, Lemma 2.3] and [22, Lemma 3, Eq.(5.9)] .

Lemma 2.13 (A quadratic overestimator). For all x, we have

(2.19) F(x) � F(xk+1) � Lhxk � yk+1, x � xki + L
2
kyk+1 � xkk22.

Proof. By the convexity of f and g,

f (x) � f (xk) + hr f (xk), x � xki f is convex . . . (i)

g(x) � g(yk+1) + h@g(yk+1), x � yk+1i g is convex . . . (ii)

F(x) � f (xk) + hr f (xk), x � xki + g(yk+1) + h@g(yk+1), x � yk+1i (i) + (ii)(2.20)

By definitions (1.5a), (1.5b), the proximal gradient iteration is a majorization-minimization
process that updates xk based on minimizing a local quadratic overestimator Q of xk, i.e.,
yk+1 = prox 1

L g
�
xk � 1

Lr f (xk)
�

is equivalent to

(2.21) yk+1 = argmin
⇠

n
Q(⇠; xk) B f (xk) +

⌦r f (xk), ⇠ � xk↵ + L
2
k⇠ � xkk22 + g(⇠)

o
.

MGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD 13

Being an overestimator, we have F(x) Q(x; xk), which implies for all x

(2.22)

F(x) � F(yk+1)
� F(x) � Q(yk+1; xk)

(2.21)
= F(x) � f (xk) � ⌦r f (xk), yk+1 � xk↵ � L

2
kyk+1 � xkk22 � g(yk+1)

(2.20)� hr f (xk), x � xki + h@g(yk+1), x � yk+1i � ⌦r f (xk), yk+1 � xk↵ � L
2
kyk+1 � xkk22

= hr f (xk) + @g(yk+1), x � yk+1i � L
2
kxk � yk+1k22.

Applying the subgradient optimality condition to (2.21) at yk+1 gives

0 2 r f (xk) + L(yk+1 � xk) + @g(yk+1) () L(xk � yk+1) 2 r f (xk) + @g(yk+1),

so L(xk � yk+1) can be substituted in the first term of the last line of (2.22) and we have

F(x) � F(yk+1) � Lhxk � yk+1, x � yk+1i � L
2
kxk � yk+1k22

= Lhxk � yk+1, x � xk + xk � yk+1i � L
2
kxk � yk+1k22 () (2.19).

Lemma 2.14 (Diameter of sublevel set). At initial guess x1 2 Rn, define

LF(x1) B
n

x 2 Rn | F(x) F(x1)
o
, (sublevel set of x1)

� = diam LF(x1) B sup
n
kx � yk2 | F(x) F(x1), F(y) F(y1)

o
. (diameter of LF(x1))

Then for x⇤ B argmin F(x), we have kxk � x⇤k2 � and kyk � x⇤k2 � for all k.

Proof. We have F(x⇤) F(x1) by definition. By the descent property of the coarse
correction and proximal gradient updates, we have F(xk) F(x1) and F(yk) F(x1) for all
k. These results mean that xk, yk+1 and x⇤ are inside LF(x1), therefore both kxk � x⇤k2 and
kyk+1 � x⇤k2 are bounded above by �. Lastly, F is strongly convex so LF(x1) is bounded and
� < +1.

Lemma 2.15 (Monotone sequence). For a nonnegative sequence {!k}k2N ! !⇤ that
is monotonically decreasing with !1 � !⇤ 4µ and !k � !k+1 � (!k+1�!⇤)2

µ
, it holds that

!k � !⇤ 4µ
k for all k.

Proof. By induction. See proof in [22, Lemma 4].

Now we are ready to prove Theorem 2.10.

Proof. Rearranging the su�cient descent inequality in Lemma 2.11 gives

F⇤ � F(xk+1) � L
2

⇣
kyk+1 � x⇤k22 � kxk � x⇤k22

⌘

=
L
2

⇣
kyk+1 � x⇤k2 � kxk � x⇤k2

⌘ ⇣
kyk+1 � x⇤k2 + kxk � x⇤k2

⌘

� �L
2
kxk � yk+1k2

⇣
kxk � x⇤k2 + kyk+1 � x⇤k2

⌘
,

where the last inequality is by the triangle inequality kyk+1 � x⇤k2 + kxk � yk+1k2 � kx⇤ � xkk2.
Rearranging the inequality gives

(2.23) kxk � yk+1k2 � �2
L

F⇤ � F(xk+1)
kxk � x⇤k2 + kyk+1 � x⇤k2 =

2
L

F(xk+1) � F⇤

kxk � x⇤k2 + kyk+1 � x⇤k2 .

Lemma 2.11 + Lemma 2.13 + Lemma 2.14 + Lemma 2.15 = sublinear rate

F0(x
k
0) − F

∗
0 ≤

const.

k 15 / 28

Man Shun Ang

Man Shun Ang

Man Shun Ang

Man Shun Ang

Linear rate convergence via proximal Polyak- Lojasiewics inequality

8 A. ANG, H. DE STERCK AND S. VAVASIS

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

⇣
xk

0 � 1
L0
r f (xk

0)
⌘

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0)yk+1
0 construct the level-1 coarse variable

(iii) ⌧k+1
0!12 @F1(yk+1

1) � R(yk+1
0) @F0(yk+1

0) construct the tau vector

(iv) xk+1
1 = argmin

⇠

n
F⌧1(⇠) B F1(⇠) � h⌧k+1

0!1, ⇠i
o

solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + ↵P
�
xk+1

1 � yk+1
1

�
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

⇣
zk+1

0 � 1
L0
r f (zk+1

0)
⌘

level-0 proximal gradient step
end for

Here are some remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1
L0

, where L0 is the Lipschitz constant of r f0.
• (iii): we pick a value within the set to define ⌧; as we are now using adaptive R, we

use + instead of � in the expression of ⌧.
• (iv): ↵ > 0 is a stepsize; for its selection see subsection 2.4.3.

2.4.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [32, page 150] gives

(2.6) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).

As a result, the coarse variable satisfies

(2.7) yk+1
1 B Ryk+1

0
(2.6)
= Rxk

0,

The subgradient 1st-order optimality to yk+1
0

(2.6)2 argmin F0(x) gives 0 2 @F0(yk+1
0). Multi-

plying by �R (which reduces the set @F0(xk
0) to a singleton) gives

(2.8) 0 = �R@F0(xk
0).

Then adding @F1(yk+1
1) on both sides of (2.8) gives

@F1(yk+1
1) = @F1(yk+1

1) � R(xk
0)@F0(xk

0)(2.9a)

(2.4a)3 ⌧k+1
0!1(2.9b)

In (2.8), �R@F0(xk
0) is the zero vector, so the equality in (2.9a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as @F1(yk+1
1)�R(xk

0)@F0(xk
0) is

the set ⌧k+1
0!1.

Now rearranging (2.9b) gives 0 2 @F1(yk+1
1) � ⌧k+1

0!1, which is exactly the subgradient

1st-order optimality condition for the coarse problem argmin
⇠

F1(⇠) � ⌦
⌧k+1

0!1, ⇠
↵
. By strong

14 A. ANG, H. DE STERCK AND S. VAVASIS

Applying Lemma 2.14 to (2.23) gives

(2.24) kxk � yk+1k2 � F(xk+1) � F⇤

�L
.

Note that (2.24) implies that if the fine sequence converges (i.e., xk = yk+1), then we have
F(xk+1) = F⇤.

Now applying Lemma 2.13 with x = xk gives

F(xk) � F(xk+1) � L
2
kyk+1 � xkk22

(2.24)� (F(xk+1) � F⇤)2

2�2L
.

This inequality shows that the sequence {!k}k2N with !k B F(xk) satisfies the condition
!k � !k+1 � (!k�!k+1)2

µ
in Lemma 2.15. To complete the proof, applying Lemma 2.15 to the

monotonically decreasing sequence {F(xk)}k2N with µ = 2�2L, we have

F0(xk+1
0) � F⇤0 max

�
8�2L0, F0(x1

0) � F⇤0
 1
k
,

where we put back the subscript 0 for clarity.

Theorem 2.10 shows that {F0(xk
0)}k2N for solving Problem (1.1) satisfies a sublinear as-

ymptotic convergence bound of O(1
k). Below we show that {F0(xk

0)}k2N also satisfies a linear
convergence bound.

2.4.6. Linear convergence rate by Proximal PŁ inequality. All the functions and
variables here are at level 0 so we omit the subscripts. Now we show that

�
F(xk)

k2N converges

to F⇤ with a linear rate using the Proximal Polyak-Łojasiewics inequality [21, Section 4]. The
function F in Problem (1.1) is called ProxPŁ if there exists µ > 0 such that

(ProxPŁ)
1
2
Dg(x, L) � µ�F(x) � F⇤

� 8x,

where µ is called the ProxPŁ constant and

(2.25) Dg(x,↵) B �2↵min
z

⇢
↵

2
kz � xk22 +

⌦
z � x,r f (x)

↵
+ g(z) � g(x)

�
.

Intuitively,Dg is defined based on the proximal gradient operator:

prox 1
L g

✓
x � r f (x)

L

◆
(2.21)
= argmin

z

L
2
kz � xk22 +

⌦
z � x,r f (x)

↵
+ g(z) � g(x).

It has been shown in [21] that if f in (1.1) is µ-strongly convex, then F is µ-ProxPŁ. Now we
prove the linear convergence rate of Algorithm 2.1.

Note that a standard result such as [3, Theorem 10.29] on convergence of proximal gra-
dient for strongly convex functions is not directly applicable because, as mentioned above,
we interleave proximal gradient steps with coarse correction steps.

Theorem 2.16. Let x1
0 be the initial guess of the algorithm, F⇤0 = F0(x⇤0) and x⇤0 =

argmin F0(x). The sequence {xk
0}k2N generated by MGProx (Algorithm 2.1) for solving Prob-

lem (1.1) satisfies F0(xk+1
0) � F⇤0

⇣
1 � µ0

L0

⌘k⇣
F0(x1

0) � F⇤0
⌘
.

16 / 28

Parameters in the algorithm

▶ Gradient stepsize in the proximal gradient iteration yk+1
0 = proxαg

(
xk
0 − α∇f(xk

0)
)

just use constant stepsize α =
1

L0

▶ The selection of τ in τk+1
0→1 ∈ ∂F1(y

k+1
1)−R∂F0(y

k+1
0)

any possible τ in the set τ is ok

▶ Coarse correction stepsize in yk+1
0 = yk+1

0 + αP (xk+1
1 − yk+1

1)

just use any naive line search on α for F0

(
yk+1
0 + αP (xk+1

1 − yk+1
1)

)
< F0

(
yk+1
0

)
▶ < becomes = when xk+1

1 = yk+1
1 , .i.e., we reached fixed-pt. (convergence).

▶ We deal with nonsmooth problem, cannot use classical stuffs like Armijo rule, Wolfe condition, Goldstein line search: they
assume function F0 is differentiable

▶ We do not need sufficient descent condition for MGProx because the sufficient descent condition from proximal gradient iteration
is sufficient

▶ Design line search with nonsmooth sufficient descent condition is possible, but out of scope.
In fact, line search for nonsmooth descent is very deep, linked to the Kurdyka- Lojasiewicz inequality.

17 / 28

16 A. ANG, H. DE STERCK AND S. VAVASIS

However, this problem generally has no closed-form solution and it is intractable to solve
numerically.

In the numerical experiments we will verify that the sequence produced by MGProx con-
verges for di↵erent values of ⌧ confirming the theory. We also find that the convergence speed
does not depend much on the choice of ⌧ in practical computations.

3. A multi-level MGProx. Now we generalize the 2-level MGProx to multiple levels.
The 2-level MGProxmethod constructs a coarse problem at level (` = 1), and uses the solution
of such problem to help solve the original fine-level problem (` = 0). If the fine problem has
a large problem size, solving the coarse problem exactly is generally expensive. Hence it is
natural to consider applying multigrid recursively until the coarse problem on the coarsest
level is no longer expensive to solve. An L-level MGProx cycle with a V-cycle structure is
shown in Algorithm 3.1. We clarify the naming of the variables in the algorithm as follows:
at each iteration k, we have xk

` : variable before pre-smoothing on level `; yk+1
` : variable after

pre-smoothing on level `; zk+1
` : variable after coarse-grid correction on level `; and wk+1

` :
variable after post-smoothing on level `. Note that, to obtain a well-defined recursion in
Algorithm 3.1, we choose the superscript for the x variables equal to k on all levels. In the
2-level algorithm we chose a di↵erent convention, writing the x variable on level 1 as xk+1

1 .

Algorithm 3.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)
Initialize x1

0 and the full version of R`!`+1, P`+1!` for ` 2 {0, 1, . . . , L � 1}
for k = 1, 2, . . . do

Set ⌧k+1
�1!0 = 0

for ` = 0, 1, . . . , L � 1 do

yk+1
` = prox 1

L`
g`

✓
xk
` �
r f`(xk

`) � ⌧k+1
`�1!`

L`

◆
pre-smoothing

xk
`+1 = R`!`+1(yk+1

`) yk+1
` restriction to next level

⌧k+1
`!`+1 2 @F`+1(xk

`+1) � R`!`+1(yk+1
`) @F`(yk+1

`) create tau vector
end for
wk+1

L = argmin
⇠

n
F⌧L(⇠) B FL(⇠) � h⌧k+1

L�1!L, ⇠i
o

solve the level-L coarse problem

for ` = L � 1, L � 2, . . . , 0 do
zk+1
` = yk+1

` + ↵P`+1!`
�
wk+1
`+1 � xk

`+1
�

coarse correction

wk+1
` = prox 1

L`
g`

✓
zk+1
` �

r f`(zk+1
`) � ⌧k+1

`�1!`
L`

◆
post-smoothing

end for
xk+1

0 = wk+1
0 update the fine variable

end for

Here are some further remarks about Algorithm 3.1.
• L` is the Lipschitz constant of r f`.
• At level ` , L, we are essentially performing two proximal gradient iterations (pre-

smoothing + post-smoothing) and a coarse correction. At the coarsest level ` = L,
we perform an exact update by solving the coarse problem exactly.
• From the traditional wisdom of classical multigrid, more than one pre-smoothing

and post-smoothing steps can be beneficial to accelerate the overall convergence.
We implemented such multiple smoothing steps in the numerical tests.

Remark 3.1 (Convergence of Algorithm 3.1). Regarding the finest level function value
{F0(xk

0)}k2N, Theorem 2.10 and Theorems 2.16 and 2.16 all hold for the multilevel Algo-
rithm 3.1, since the angle condition of the coarse correction (Theorem 2.6) also holds for

18 / 28

Elastic Obstacle Problem min
u≥ϕ

∫

Ω

√
1 + ∥∇u∥2L2dxdy ≈ min

u≥ϕ

∫

Ω

1

2
∥∇u∥2L2dxdy

▶ Given obstacle ϕ, find a membrane u ≥ ϕ with the min. elastic potential energy.

min
u

∫
Ω

1

2
∥∇u∥2

L2dxdy minimum variation

s.t. u ≥ ϕ, in Ω obstacle constraint

u = 0, on ∂Ω boundary condition

Ω ⊂ R2 domain

ϕ(x, y) : R2 → R obstacle

u(x, y) : R2 → R membrane

∇u : R2 → R2 gradient field of u
▶ N -by-N grid discretization:

min
u∈RN2

1

2
⟨Q0u, u⟩︸ ︷︷ ︸

f0

+ i≥ϕ(u)︸ ︷︷ ︸
g0

, Q :=
1

h2

4 −1

−1 4
. . .

. . .
. . . −1
−1 4

 ≈ ∇2
, i≥ϕ(u) =

{
0 u ≥ ϕ

∞ u < ϕ

▶ Why this problem: ∵ people know what R,P can be used.
▶ Can we use MGProx on other problem: yes if you give me the R,P that will work. cost to pay

19 / 28

On min
x

{
F0(x) :=

1

2
⟨Q0x, x⟩+ i≥ϕ(x)

}

MGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD 21

Iterations (k)
variables Prox Nest MG-1 MG-10 MG+-10

28 � 1 = 255 3.07 ⇥ 105 1.65 ⇥ 105 2.69 ⇥ 102 4.90 ⇥ 101 4.20 ⇥ 101

210 � 1 = 1023 4.38 ⇥ 106 9.91 ⇥ 105 7.87 ⇥ 102 7.54 ⇥ 102 1.09 ⇥ 102

212 � 1 = 4095 6.18 ⇥ 107 7.73 ⇥ 106 5.37 ⇥ 103 6.13 ⇥ 103 2.66 ⇥ 103

Time (sec.)
variables Prox Nest MG-1 MG-10 MG+-10

28 � 1 = 255 6.30 ⇥ 10�1 3.70 ⇥ 10�1 6.33 ⇥ 10�2 3.57 ⇥ 10�2 3.34 ⇥ 10�2

210 � 1 = 1023 2.05 ⇥ 101 4.96 ⇥ 100 2.62 ⇥ 10�1 4.21 ⇥ 10�1 2.91 ⇥ 10�1

212 � 1 = 4095 1.27 ⇥ 103 1.88 ⇥ 102 4.48 ⇥ 100 8.34 ⇥ 100 3.81 ⇥ 100

Table 1
Convergence results for 1-dimensional (Shifted aEOP). Prox is the proximal gradient method, Nest is the

proximal gradient method with Nesterov’s acceleration, MG-1 is L-level MGProx with 1 pre-smoothing and post-
smoothing step, MG-10 is MGProx with 10 pre-smoothing and post-smoothing steps, and MG+-10 is MG-10 with
Neterov’s acceleration embedded in the pre-smoothing and post-smoothing steps. The MGProx are L-level (with
L = 6, 8, 10 levels for the three rows in the table).

Figure 2. Typical convergence plots of Prox, Nest, MGProx-1, MGProx-10 and MGProx+-10 for 1-
dimensional (Shifted aEOP). The number of variables in this experiment is 29 � 1 = 511. All MGProx methods
use 7 levels.

in subsection 4.2.1. We use the same setting as in test 1. Here we only compare Nest
and MGProx-25. The numerical results are shown in Table 2. In general we have the same
conclusions as in subsection 4.2.1.

4.4. Test problem 3: (Shifted aEOP) in penalty form. We now consider

(aEOP-penalty) min
u

Z

⌦

1
2
k ru k2L2 dx + �

Z

⌦

k (� � u)+ kL1 dx s.t. u = 0 on @⌦,

where k · kL1 is the L1 norm of a function and � > 0 is a pre-defined penalty parameter.
Following a similar procedure as in subsection 4.1 to discretize (aEOP-penalty) yields the

20 / 28

Different Elastic Obstacle Problems

min
x

{
F0(x) := f0(x) + g0(x)

}
.

▶ Previous slide: Constrained approximated EOP

f0(x) =
1

2
⟨Q0x, x⟩, g0(x) = i≥ϕ(x)

▶ Now: Unconstrained penalized approximated EOP

f0(x) =
1

2
⟨Q0x, x⟩, g0(x) = µ∥(ϕ− u)+∥1.

▶ Unconstrained penalized full EOP

f0(x) =
√
1 + ⟨Q0x, x⟩, g0(x) = µ∥(ϕ− u)+∥1.

21 / 28

On min
x

{
F0(x) :=

1

2
⟨Q0x, x⟩+ µ∥(ϕ− u)+∥1

}

Run time
MGProx: < 1sec reach 10−15

Nesterov & Prox-grad:
not yet converge after 300sec

22 / 28

On min
x

{
F0(x) :=

√
1 + ⟨Q0x, x⟩+ µ∥(ϕ− u)+∥1

}

Num iteration
MGProx: 102 reach 10−15

Nesterov: 106

Prox-grad: 107

Run time
MGProx: < 1sec
Nesterov: 40sec
Prox-grad: 70sec

23 / 28

Why so fast?
▶ The coarse correction

xk+1
0 = yk+1

0 + αP (xk+1
1 − yk+1

1)

▶ Reduction in problem size

n0 → 1

4
n0 → 1

16
n0 → 1

64
n0 → 1

256
n0 → 1

1024
n0

▶ Per-iteration cost by geometric series a, r ∈ (0, 1)

a+ ar + ar2 + · · · → a

1− r
.

For n =
1

4
gives 1.33n0. V-cycle is then 2.66n0 for all single proximal gradient update.

▶ Can you add Nesterov’s acceleration to MGProx?
▶ No. In fact Nesterov’s acceleration works very badly with MGProx.

Why: due to Nesterov’s ripples in the convergence.
However, you can add Nesterov’s acceleration in the pre/post-smoothing iteation.

24 / 28

Other things / future works

▶ Theory
▶ Grid independence: convergence rate is independent of problem size
▶ Classical Fourier analysis of multigrid

▶ Algorithms
▶ MGProx that also corrects the active points
▶ MGProx on proximal averages
▶ Multigrid Proximal (quasi) Newton’s method
▶ Nonsmooth multigrid trust-region method
▶ Nonsmooth multigrid ADMM
▶ Nonsmooth multigrid manifold optimization
▶ Block nonconvex but bi-convex problems (matrix factorizations)

▶ Applications
▶ Image deblurring, dezooming, completion
▶ Volumetric imaging (e.g. 3D medical imaging)
▶ PDE-based image processing
▶ Graphs

25 / 28

Last page - summary

▶ Multigrid proximal gradient method

▶ Adaptive restriction

▶ Theoretical characterizations
▶ Fixed-pt
▶ Angle and descent condition
▶ Existence of line search stepsize
▶ Global sublinear convergence rate
▶ Global linear convergence rate

▶ Fast in experiments

16 A. ANG, H. DE STERCK AND S. VAVASIS

However, this problem generally has no closed-form solution and it is intractable to solve
numerically.

In the numerical experiments we will verify that the sequence produced by MGProx con-
verges for di↵erent values of ⌧ confirming the theory. We also find that the convergence speed
does not depend much on the choice of ⌧ in practical computations.

3. A multi-level MGProx. Now we generalize the 2-level MGProx to multiple levels.
The 2-level MGProxmethod constructs a coarse problem at level (` = 1), and uses the solution
of such problem to help solve the original fine-level problem (` = 0). If the fine problem has
a large problem size, solving the coarse problem exactly is generally expensive. Hence it is
natural to consider applying multigrid recursively until the coarse problem on the coarsest
level is no longer expensive to solve. An L-level MGProx cycle with a V-cycle structure is
shown in Algorithm 3.1. We clarify the naming of the variables in the algorithm as follows:
at each iteration k, we have xk

` : variable before pre-smoothing on level `; yk+1
` : variable after

pre-smoothing on level `; zk+1
` : variable after coarse-grid correction on level `; and wk+1

` :
variable after post-smoothing on level `. Note that, to obtain a well-defined recursion in
Algorithm 3.1, we choose the superscript for the x variables equal to k on all levels. In the
2-level algorithm we chose a di↵erent convention, writing the x variable on level 1 as xk+1

1 .

Algorithm 3.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)
Initialize x1

0 and the full version of R`!`+1, P`+1!` for ` 2 {0, 1, . . . , L � 1}
for k = 1, 2, . . . do

Set ⌧k+1
�1!0 = 0

for ` = 0, 1, . . . , L � 1 do

yk+1
` = prox 1

L`
g`

✓
xk
` �
r f`(xk

`) � ⌧k+1
`�1!`

L`

◆
pre-smoothing

xk
`+1 = R`!`+1(yk+1

`) yk+1
` restriction to next level

⌧k+1
`!`+1 2 @F`+1(xk

`+1) � R`!`+1(yk+1
`) @F`(yk+1

`) create tau vector
end for
wk+1

L = argmin
⇠

n
F⌧L(⇠) B FL(⇠) � h⌧k+1

L�1!L, ⇠i
o

solve the level-L coarse problem

for ` = L � 1, L � 2, . . . , 0 do
zk+1
` = yk+1

` + ↵P`+1!`
�
wk+1
`+1 � xk

`+1
�

coarse correction

wk+1
` = prox 1

L`
g`

✓
zk+1
` �

r f`(zk+1
`) � ⌧k+1

`�1!`
L`

◆
post-smoothing

end for
xk+1

0 = wk+1
0 update the fine variable

end for

Here are some further remarks about Algorithm 3.1.
• L` is the Lipschitz constant of r f`.
• At level ` , L, we are essentially performing two proximal gradient iterations (pre-

smoothing + post-smoothing) and a coarse correction. At the coarsest level ` = L,
we perform an exact update by solving the coarse problem exactly.
• From the traditional wisdom of classical multigrid, more than one pre-smoothing

and post-smoothing steps can be beneficial to accelerate the overall convergence.
We implemented such multiple smoothing steps in the numerical tests.

Remark 3.1 (Convergence of Algorithm 3.1). Regarding the finest level function value
{F0(xk

0)}k2N, Theorem 2.10 and Theorems 2.16 and 2.16 all hold for the multilevel Algo-
rithm 3.1, since the angle condition of the coarse correction (Theorem 2.6) also holds for

Paper arXiv2302.04077 now under review. Slide available angms.science
End of document

26 / 28

https://arxiv.org/abs/2302.04077
angms.science

Primal-dual extension

▶ A non-diagonal evil A will make proximal gradient method does not work well on

argmin f(x) + g(Ax).
▶ Convex-concave primal-dual problem

argmin
x∈Rn

argmax
λ∈Rm

L(x,λ)

▶ Component-wise subgradient D :=

(
∂xL(x,λ)
−∂λL(x,λ)

)
▶ Subdifferential 1st-order optimality condition

0 ∈
(

∂xL(x,λ)
−∂λL(x,λ)

)
+ W

(
xk+1 − xk

λk+1 − λk

)

▶ Chambolle-Pock Primal-dual hybrid gradient is W =

(
1
η
I A⊤

A 1
η
I

)

▶ ADMM is W =

0 0 0

0 ηA⊤A −A⊤

0 −A 1
η
I

27 / 28

MGPD — 6

5 Multigrid primal-dual methods

Now we propose a multigird primal dual method for solving the saddle-point problem (1), i.e.,

argmin
x

argmax
�

L(x;�)

with the minimal assumption that L is l.s.c. strongly convex on the argument x and u.s.c. strongly
concave on the argument �. We name our approach MGPD: MultiGrid Primal-Dual method.

5.1 2-level MGPD

The notation zk
` denotes the variable z at level ` iteration k.

we follow the same notation of underline for set and no bar for singleton

Algorithm 1: 2-level MGPD

Input: L
Output: zk that approximately solve (1)

1 Initialize z1, W , R, P
2 for k = 1, 2, ... do

3 Get z
k+ 1

3
0 via solving the inclusion % pre-smoothing at level-0

0 2 D0(z
k+ 1

3
0) + W

�
z

k+ 1
3

0 � zk
0

�

4 Block-wise coarsification % coarsification

z
k+ 1

3
1 = R(z

k+ 1
3

0) :=

✓
R1

R2

◆
x

k+ 1
3

0

�
k+ 1

3
0

!

5 Tau: % tau vecotr

⌧ k+1
0!1 2 D1(z

k+ 1
3

1)�RD0(z
k+ 1

3
0) =

@x1L1

�
x

k+ 1
3

1 ,�
k+ 1

3
1

�

@z1L1

�
x

k+ 1
3

1 ,�
k+ 1

3
1

�
!
�
✓

R1

R2

◆
@x0L0

�
x

k+ 1
3

0 ,�
k+ 1

3
0

�

@z0L0

�
x

k+ 1
3

0 ,�
k+ 1

3
0

�
!

6 Solve the coarse problem % solve the level-1 coarse problem

z
k+ 2

3
1 2 argmin

x1

argmax
�1

L1(x1,�1) + h⌧ k+1
0!1, z1i = L1(x1,�1) +

⌧✓
1⌧ k+1

0!1
2⌧ k+1

0!1

◆
,

✓
x1

�1

◆�

7 Coarse correction % Coarse correction

z
k+ 2

3
0 = z

k+ 1
3

0 +
�
a �↵

�✓P1

P2

◆
x

k+ 2
3

1 � x
k+ 1

3
1

�
k+ 2

3
1 � �

k+ 1
3

1

!

8 Get zk+1
0 via solving the inclusion % post-smoothing at level-0

0 2 D0(z
k+1
0) + W

�
zk+1

0 � z
k+ 2

3
0

�

1. Block-wise coarsification need to careful about the boundary

Now repeat the poof of MGProx on
MGPD

“mind-blown.gif”

END OF PDF

28 / 28

	Summary

