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Standard setup in convex optimization
(P) - argmin {Fo(x) = fo(z) +go(x)}.

> fy:R™ — R convex, L-smooth? echt
L

» go: R™ — R convex, possibly nonsmooth? g cvX
> R:=RU {400} extended real

» To make (my) life easier:

» Everything in finite dimensional Euclidean space R™ o0l
» fo is strongly convex = P has an unique global sol argmin Fp is a singleton
» go is “proximable” = prox operator prox has closed-form / efficiently computable
» Fy has “multigrid-able” structure = restriction, prolongation are given R, P known
» Assume all other necessary rigour things®

Topic today: solve P by proximal gradient method @ multigrid.

L fo differentiable & V fo is L-Lipschitz

2not everywhere differentiable

3f0 lower bounded, go proper, lower-semicontinuous, lower level-bounded, prox-bounded with finite threshold,
prox,, nonempty compact, fo, go both subdifferentiable 2/28



1 page review on solving (P) : min {Fy(z) == fo(z) + go(z)}

Proximal gradient iteration

T

= ProXg g, (:E - anU(x))
= argénin ago(§) + %Hf - (‘E - O‘VfO(I)) Hz

> o € (0, ] gradient stepsize. We fix o = L.

» prox operator of aggp at C:

1
Prox.ay (¢) 1= argmin ago(€) + 5 J¢ — ¢[3

. fixes nonsmoothness
{ model regularization go

model constraint (indicator function) go

Usefulness: prox

has closed-form sol.

Many ProXgg

P Literature history
Moreau 1962
Rockafellar 1976
Pasty 1979
Fukushima & Mine 1981
Combettes & Wajs 2005

Moreau envelope
Proximal point method
Forward-Backward splitting
Earliest proximal gradient
Proximal FB splitting

Now everywhere in Opt. & ML
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>

v

v

Multigrid: coarse correction iteration

zt = z4aP@’ - 7).
Use coarse to improve fine
» 2 € R"1 restricted version of x € R™0
» i1 obtained by solving an auxiliary coarse optimization
problem, a “smaller” P (talk later)
» P: prolongation

History
» For go = 0 (smooth convex optimization)
P Linear system from the discretization of PDEs
P Later generalized to system of nonlinear eqs
» 3 nonsmooth multigird in literature, but all different from
this talk (see paper for detail)

Usefulness: fast, convergence independent of problem size

Literature history
» Earliest(?) work on Poisson problem
P Multi-level adaptive technique
»  Multigrid Methods
P Now everywhere in scientific computing

Fedorenko 1962
Brandt 1973
Hackbusch 1985
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This work

Proximal gradient Multigrid
> Wide applications (due to go) > Fastest known method (at least for PDEs)
> @ Slow > @ Narrow applications: only for PDEs

Million dollar question: can we have both ©7?

MGProx: for some Fj, yes. 2022
MGPD: for more Fy, yes 2023

4/28



see arXiv 2302.04077 Section 1.4.2 for literature review

» Brandt & Cryer, Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems 1983

» Hackbusch & Mittelmann, On multi-grid methods for variational inequalities 1983
» Mandel, A multilevel iterative method for symmetric, positive definite linear complementarity problems 1984
» Vogel & Oman, Iterative methods for total variation denoising 1996
» Chan, Chan & Wana, Multigrid for differential-convolution problems arising from image processing 1998
» Nash, A multigrid approach to discretized optimization problems 2000
P Graser, Sack and Sander, Truncated nonsmooth Newton multigrid methods for convex minimization problems 2009
P Parpas, A multilevel proximal gradient algorithm for a class of composite optimization problems 2017
P Graser & Sander, Truncated nonsmooth Newton multigrid methods for block-separable minimization problems 2019
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https://arxiv.org/abs/2302.04077

A remark on the popular MGOPT by Nash

Remark 1.1 (MGOPT has no theoretical convergence guarantee). The proof of [27, The-
orem 1] on the convergence of MGOPT requires additional assumptions. In short the proof
states the following: on solving (1.3) with an iterative algorithm x**! := o-(x*) where the up-
date map o : R* — R” is assumed to be converging from any starting point x!, now suppose
p : R" = R" is some other operator with the descending property that fy(o(x)) < fo(x). Then
[27, Theorem 1] claimed that an algorithm consisting of interlacing o~ with p repeatedly is also
convergent. This is generally not true without further assumptions. E.g., consider a function
f(x1, x2) that is equal to ﬁ on the set U := {(x1, x2) : |x1] > 1} and on the complementary

set R? \ U that f(x;, x2) has a unique minimizer at (0,0). Then o : (x1, xp) %(xl,xz) and
plu : (x1,x2) — (%Oxl, 2x,) satisfies the hypothesis but diverges from any stationary point in
{(x1,x2) : x| > 42},

6/28


Man Shun Ang

Man Shun Ang


A first look at 2-level MGProx algorithm for (P) : min, {Fo(x) = fo(x) + gg(x)}
i prox-grad update at level-0
> % stepsize, Lo is the Lipschitz const. of V fo

L
Algorithm 2.1 2-level MGProx for an approximate solu P this step is called “pre-smoothing” in multigrid

P> we use x to get y

Initialize x;, R and P
fork=1,2,... do

i, kt1
0 y"“ = prox. i Adaptive restriction of the updated

o (36 - 2 S0)
(ii) yli+1 R(yk+1)yk+1
(111) k+1]e aFl(ka) R(y’(;“)(')F (yk+l

» R: (adaptive) restriction operator adapted to yk+1

ii 7 carries the level-0 info to level-1

(v) k+1 — aroemin Fi(&) = F|(¢) - (k&) » JF: cvx subdifferential of F at level 1
g [ ¢ & 0=1 § } > OFpy: cvx subdifferential of F; at level 0
) ZSH _ yL+1 + a,P(ka k+1) P 7 can be any element of the set
3 k — k+1 k- l .
(vi) xgt! = prox . go( - LVFEET) iv Solve the coarse problem

end for P> a “smaller” P with a linear perturbation 7

> Variable sequence {$07y0720}k€N v Coarse correction step
P superscript k: iteration number
P subscript O: level

» z: main sequence

» y, z intermediate variables

P P: prolongate level-1 variable to level-0
P> we use z,y to get 2

vi prox-grad update at level-0

» When converge: 2o = yo = 20 (fixed-point) > Tlo stepsize, Lo is the Lipschitz const. of V fo

P this step is called “post-smoothing” in multigrid
P> we use z to get x
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Subdifferential, Minkowski sum and adaptive restriction

(i) T =RygTHyh

(i) % €ty = 0R ) @ (~R)Fu(ys )

» (Fenchel) Convex subdifferential of a function ¢ : R™ — R at a point zg is the set {q ER" : ¢(x) > ¢p(x0) + (q,x — Ig)}.

» Underline means set, no underline means singleton.

> Subdifferentials 9 F1 (y¥ ") & OF, (yET) are sets — 7581 == OF (yF ) @ (—=R)OF, (yiT) is a Minkowski sum.

P To make life easier, use R to turn R@Fg(ngrl) into a singleton vector.
» R reduces RaFo(yg+1) from a set-valued vector to a singleton vector. All sets map to the singleton {0}.
» No more complicated Minkowski sum, now we have

AR @ (~R)OF(yh ™) = aF () — ROF(yg ™).

P Not just “make life easier”, the adaptive R plays critical role in proving convergence.

P Open problem: non-adaptive R, general multi-member Minkowski sum of subdifferentials

» Example for separable g such as ||z||1, max{x, c}, etc.
» Definition Let Z = {i €[n] : [OFo(yEth)]; is a set }
P Adaptive restriction R is defined as the (full) restriction matrix Rg,11 with column i € T set to zero.
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Restriction and coarse level object

Example: 1-dimensional full weighting
i) ™ =R ™

(iii) ot € OFR(yy ) — ROFy (y5™) 2

(v) it eargmin {F{(©) = Fi(0) - (13,9}

=y
Il
PN
=
=

» Level-0 variable 2o = Px;

> Level-1 variable z; = Rz maps vectors in R™ to R™ with n; = [20-1].
! 0 = 50% reduction in problem size

» Level-1 function Fy(z1) := Fo(Px1)

P=2R"
> F7 = F1(§) — (1§11, €)

. . . 1
. For 2-dimensional case, reduce size to —
R, P preserve convexity 4

v
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Theoretical results

Algorithm 2.1 2-level MGProx for an approximate solu

Initialize x}, R and P
fork=1,2,... do
(i) yﬁ“ = prox L (x()
(ii) Y] (yk+1)yk+l
(111) k+1 € aFl(}kH) R(yk+1)(.)F0(ylé+l)
(iv) xk“ = argmin {Fr© = Fi©) - @0}
(V) k+l _ )k+l + ozP(xk“ _yk+l)
(vi) x“' = prox . gn(z’(‘)“ 10 v f(zﬂ“))
end for

EVIGE))

. Nonsmooth angle condition <P(ZL’)1€+1

. At convergence, :vif has a fixed-pt. property V¢

—uith, oRwEth ) < o

k+1 k+1) isa

Descent property: stepsize o > 0 exists and P(xy -y

descent direction at yk+1

ie., Fo(yk+1 +aP(.’l?k+1 _ y;e+1)) < FU( k+1)

{Fo (:z:g)}keN converges to Fjj := inf Fp, with

P a sublinear rate
max {852L0, Fo(zy) — FO*}

Fo(wg) = Fy < -

» Lo Lipschitz constant of V fo
> §: diameter of sublevel set {& € R™0 | F(€) < Fo(z})}

P a linear rate
k
Fo(zg) — F

< (1 - L%)’“(Fo(x’f) —F").

Both holds so

Fg(xg) - F* < min{

co;st. 7 (1 _ Lio)k }

k
5 {@ftren — xp
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How we prove them
1. At convergence, xf has a fixed-pt. property V¢

2. Nonsmooth angle condition
(P =yt oR st ) < o

. . . k41
3. Descent property: stepsize o > 0 exists and P(z7 —

a descent direction at yg+1

Y

ie., Fo(ygJrl + aP(;c’erl — y’f+1)) < Fo(ngrl).

4. {Fo(zg)}keN converges to Fj := inf Fy, with

P a sublinear rate

’f*l) is

I
v

X . max {862L0, Fo((L‘[l)) — FD*}
Fo(zg) — Fy <

P a linear rate . k
&@ﬁfF%gﬁffj(%waFw
0
Both holds so

Fo(ah) = F* <min { 5 (1 20

Lo

k,
5 {@ftren — x

1. Fixed-pt. property of proximal gradient step
Adaptive R reduces set to singleton
Subgradient 1st-order optimality

vvyy

Adaptive R reduces set to singleton
Definition of 7 and x]erl
Convexity of F}

Restriction preserves convexity

vvyvyy

Result 2 (angle condition)

Subdifferential OF is a compact convex set
Strict hyperplane separation

Support of OF = directional derivative of F'

\AAA/

Result 3 (descent property) & 4 lemmas
P a sufficient “descent” inequality
P a quadratic overestimator of Fy
P diameter of sublevel set of Fj
P an inequality of scalar sequence

& a bunch of convex analysis techniques
P Result 3 (descent property) & the proximal

Polyak-tojasiewics inequality
Both convergences results are global (regardless of starting pt.)

5. Result 4 and F} is strictly convex by assumption

11/28



Fixed-point property Tueorem 2.5 (Fixed-point). In Algorithm 2.1, if SSONESCN), then we have the fixed-
i i +1 k+1 +1 k+1 9
point properties xg' = y& = xf and ¥+ = YheL.

Proof. The fixed-point propeit'y of the proximal gradient operator [32, page 150] gives

fixed-point assumption
(2.6) yir! 2 P =" argmin Fo(x).
As aresult, the coarse variable satisfies ‘ ,

@7 Y o= Ryl @6 R,

Algorithm 2.1 2-level MGProx for an approximate solu

@
Initialize x}, R and P The subgradient 1st-order optimality to y5*! @ argmin Fo(x) gives 0 € dFo(y&™"). Multi-
fork=1,2,... do
(i) y"+l = prox . (x" -
(11) R(}‘LH) e+ 1
(iii) . _ Then adding 9F (y4*") on both sides of (2.8) gives }

(iv) x**! = argmin {FT(¢) := F (&) — (X1, &)
ol RO 011017 - ") - QR
) +1 = yk+1 + a/P(x"“ — yk+l) (2.9) (24a) .1
i) xk+1 — prox . ( k+l _ _Vf(zkﬂ))
In (2.8), —R&Fo(xﬁ) is the zero vector, so the equality in (2.9a) holds since we are adding zero
to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as OF | (%*") = R(K)AFo(xf) is
the set 75!,

Now rearranging (2.9b) gives 0 € dF,(3}*!) — Tg:], which is exactly the subgradient
Ist-order optimality condition for the coarse problem argmin F(£) — (tk*!,, ). By strong

plying by —R (which reduces the set 6Fo(xU) to a singleton) gives

L)
o ’ ) (2.8) 0 = —ROFo(x}).

end for

k+1
0-1

so X1 = y&*+1 by step (iv) of the algorithm and x&*! = y&+! "= @s x" by steps (v) and (vi). 0O
12/28
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Tueorem 2.6 (Angle condition of coarse correction). For P(xA*! - y&*1) % 0, the follow-

N onsm OOt h an g I € con d |t | on ing directional derivative is strictly negative

(2.10) C(oF(,(yk*') P - k) < 0)

Before we prove the theorem we emphasize that (2.10) applies for any subgradient in the
set OFo(yg+"). Furthermore,

T=cR,c>0

(2.10)) = (PTaFo(y kil ¢+‘)<0 =7 (RIFGE, X -y <0

Algorithm 2.1 2-level MGProx for an approximate solu As ¢, R, P are all element-wise nonnegative, showing (2.10) is equivalent to showing

Initialize x), R and P

2.11 RIF (<! W1 <o,
fork=1,2,... do (2.11) ( OFo(y). [ >< c?0
i K+l — k_ 1 :
@ ¥ = proxigo (XO B EVf(x{‘])) where ROFo(y5*!) is a singleton vector for all subgradients in 9Fo(yt*!) due to the adaptive R.
(ii) +| (yk+l)yk+l —_— " 7o -
(i) 7 k+1 € (')Fl(yk“) - ROE IFo04) Proof. By definition 75!, “€” 9F, (1) = RIFy(4!) hence
i k+1 — T — _ +1
) 57 argmm {F © = Fi@) ~ (7.6} .12) ROFOE) € 9F104M) 7t B aFT0kh),

(V) 0 - yﬁﬂ + (IP(X]](H _y1]c+l)
vi) x(k,” = prox 1 (™ — £ V/G)
end for

showing that R[)Fg(y’l;”) is a subgradient of F7 at y’]‘*\ For any subgradient in the subdiffer-
ential 9FT(y**"), we have the following which implies (2.11):
T (ykHl Y T( k1 Tkt D
(oG, & ) < Fidh - Frokth <o,
where the first strict inequality is due to F7 being a strongly convex function (which implies
strict convexity) ; the second inequality is by le“l = argmin F[(£) and the assumption that
£
‘ I

Xkl+l + yI;'”A o

Remark 2.7. Theorem 2.6 holds for convex but not strongly convex fy by replacing <
with <. 13 / 28
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Descent property

Algorithm 2.1 2-level MGProx for an approximate solu

Initializ
for k =
()
(i)
(iii)
(iv)
v)
(vi)
end for

e x), R and P
1,2,... do
k+1

3 = prox g (6 - £,V 0)
k+1 R0k+1)yk+1

TI(;:lIE aFl(ka) R(y'[;“)ng(yk”)

xhet —argmm{F’(E) Fi(® =<zt

0-1°5

yk+l +aP(x’f+] yI{+l)
xﬁ =prox (57 - £V &)

)

Lemma 2.8 (Existence of stepsize). There exists ay > 0 such that (2.13) is satisfied for

PO — ity 20,

To prove the lemma, we make use the second definition of subdifferential we discussed
in subsection 2.2: 9F o(y{‘)“) is a compact convex set whose support function is the directional

derivative of Fy at y5*!. Note that Fo : R" — R will never reach +co at 21 since 75t

is obtained by the proximal gradient step, so we can make use of the result on directional
derivative in [19, Def. 1.1.4, p.165] associated with subdifferential.

Proof. We prove the lemma in 3 steps.
1. (Halfspace) The strict inequality in Theorem 2.6 means that dFo(yi+") is strictly

inside a halfspace with normal vector p = P(xXA*! — yk+1),

2. (Strict separation) Being a compact convex set, OF o(yk“O) lying strictly on one side
of the hyperplane must be a positive distance (say e > 0) from that hyperplane.
3. (Support and directional derivative) Evaluating the support function of 6F0(y“*'

k+1

i.e., the directional derivative of Fp at y;*" in the direction p, we have (2.13). u}

(Rl ) feg ) <« O

14 /28
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Lemma 2.11 (Sufficient descent of MGProx iteration). For all iterations k, we have

Sublinear rate convergence

Algorithm 2.1 2-level MGProx for an approximate solu

Initialize x}, R and P

fork=1,2,... do
@) ¥ = prox (6 ~ £VSGD)
(i W = ROy
(i) 7€ OF A — ROET OFoGE™)
(iv) A = argmin [F1© = Fi© - (!

0-1°
(V) Zéﬂ :ygﬂ +(1/P()Cl{+l _y/i'+l)
(vi) x= prox#‘,o(zﬁ” - ﬁVf(ZS”))
end for
P Existing proof framework of prox-grad
method cannot be used.

» MGProx is interlacing two update
operations

P>  Prox-grad iteration guarantee descent of
function value

f(e1) < f(ProxGradUpdate(€)) ()

P descent of function value does not imply
variable getting closer to sol.

() == €T —€" I < e— €|

’ L « X
(2.15) F(M*Y) - F < 5(I|xk - X8 = Iy = xIB).

Lemma 2.13 (A quadratic overestimator). For all x, we have

L
(2.19) F) = FOM) 2 Lod =y o= oy + S = .
Lemma 2.14 (Diameter of sublevel set). At initial guess x' € R", define

Lopiy = {x eR" | F(x) < F(x") }, (sublevel set of x")
6 = diam Lo, = sup{ Ik =yl | F0) < F&, FO) < FOY |, (diameter of Lepqn)

Then for x* := argmin F(x), we have ||x* — x|l < 6 and |ly* — x*|l, < 6 for all k.

Proof. We have F(x*) < F(x') by definition. By the descent property of the coarse
correction and proximal gradient updates, we have F(x) < F(x') and F()*) < F(x") for all
k. These results mean that x*, y**! and x* are inside Lz (1), therefore both [|lx* — x*|l, and

[ly**! = x*||, are bounded above by &. Lastly, F is strongly convex so Ly, is bounded and
0 < +o0. O
Lemma 2.15 (Monotone sequence). For a nonnegative sequence {wilren — w* that
is monotonically decreasing with w) — w* < 4u and wy — Wiy > w, it holds that
Wy —w' < 4Tyfor all k.
Proof. By induction. See proof in [22, Lemma 4]. u}
Lemma 2.11 + Lemma 2.13 + Lemma 2.14 + Lemma 2.15 = sublinear rate

. N const.
Folwo) = Fy < — 15/28
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Linear rate convergence via proximal Polyak-tLojasiewics inequality

Algorithm 2.1 2-level MGProx for an approximate solu

Initializ
for k =
O]
(ii)
(iii)
(iv)
v)
(vi)

end for

e x('), Rand P
1,2,... do

K+l
)0 = prox.L Lo(

) R(}lwl)}kﬂ

Tﬁl‘le OF, (y’f*') = ROEOFo(™)

2" = argmin {Fi@ =

k+1 - yk+1 + a/P(xk”

xj‘ = prox ., (Z“]

EVf(E))
Fi@ = (),
,II<+1)

1 Vf(zgﬂ))

&)

2.4.6. Linear convergence rate by Proximal PL inequality. All the functions and
variables here are at level 0 so we omit the subscripts. Now we show that {F(x)}, . converges
to F* with a linear rate using the Proximal Polyak-Lojasiewics inequality [21, Section 4]. The
function F in Problem (1.1) is called ProxPL if there exists x > 0 such that

1
(ProxPL) EDg(x, L) > u(F(x) — F*) Vx,
where p is called the ProxPE constant and

(2.25) D,(x,@) = -2« mzin {%Ilz - xllg +(z—x, V(%) +g(z) - g(x)}.

Intuitively, D, is defined based on the proximal gradient operator:

prox. | x

(- TE2) P2 argmin Ziie — o + G2~ 5, V100) + 8 - 809,

It has been shown in [21] that if f in (1.1) is u-strongly convex, then F is u-ProxPEL. Now we

THEOREM 2.16. Let x|, be the initial guess of the algorithm, F; = Fo(xj) and x; =
argmin Fy(x). The sequence {xé}kGN generated by MGProx (Algorithm 2.1) for solving Prob-

lem (1.1) satisfies Fo(xk™) - Fy < (1 - 5) (Fo(xh) = F).

16/28



Parameters in the algorithm

» Gradient stepsize in the proximal gradient iteration y§+1 = Prox,, (SUIS - an(w’é))

. . 1
just use constant stepsize o = -
0

» The selection of 7 in 70"} € OF; (y¥) — ROFu(ya ™)

any possible 7 in the set 7 is ok

> Coarse correction stepsize in yo ™! = yi™! 4 aP(zh ™! — yb )

just use any naive line search on « for Fy (yéﬂ'1 + (,\,’P(:C11H—1 — yf“)) < Ky (yéﬁ'l)

» < becomes = when aclerl = nyrl, .i.e., we reached fixed-pt. (convergence).

P> We deal with nonsmooth problem, cannot use classical stuffs like Armijo rule, Wolfe condition, Goldstein line search: they
assume function Fy is differentiable

P We do not need sufficient descent condition for MGProx because the sufficient descent condition from proximal gradient iteration
is sufficient

P Design line search with nonsmooth sufficient descent condition is possible, but out of scope.
In fact, line search for nonsmooth descent is very deep, linked to the Kurdyka-tojasiewicz inequality.

17/28



Algorithm 3.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)

Initialize x(l) and the full version of R;_,¢41, Prr1—¢ for £ € {0,1,..., L — 1}
fork=1,2,... do

Set 771 =0

for(=0,1,...,L—1do

Vfe(xp) - 7t
K+l _ _ ¢ (1 i .
Vs = Prox iy, (x’; I ) pre-smoothing
x’; b = Resen (y’;“) y’{f” restriction to next level
) € OF (X, ) = Rese1 GFY) OF (65 create tau vector
end for
w’£+1 = arg?in { Fi(é) = Fr() - (T’Eﬂ_} Iz f)} solve the level-L coarse problem
for(=L-1,L-2,...,0do
2 =y b aPrg (Wi = X)) coarse correction
Vf((Zk+1) _ Tk+l
k+1 _ k+1 _ (4 (=1 _ .
Wi = prox L, (zt, I ) post-smoothing
end for
xgth = wit! update the fine variable

end for 18/28



1
Elastic Obstacle Problem min/ \/ 1+ |Vul|2.dzdy ~ min [ =||Vul|72dzdy
u>¢ [o u>¢ Jo 2 4

Given obstacle ¢, find a membrane u > ¢ with the min. elastic potential energy.

v

Q C R? domain
¢(x,y) : R> - R obstacle
w(z,y) : R > R membrane
Vu : R? — R? gradient field of u

1
min / 7||Vu|\igdzdy minimum variation
u Q2

st. u> ¢, inQ obstacle constraint

u =0, on 902 boundary condition
» N-by-N grid discretization:

4 —1
1 , (-1 4 , 0 u>
mljr\}2 §<Q0u,u>+12¢(u), Q::ﬁ ~ V2, 224)(”):{00 u;Z
u€RN = { > - T Y

-1 4

Why this problem: *.* people know what R, P can be used.
Can we use MGProx on other problem: yes if you give me the R, P that will work. cost to pay
19 /28

vy



On mxin {Fg(a:) = %(Qo%@ + Z2¢>(x)}

. —Prox-grad

k= 10 ——Nest 10%
— MGProx-1

g 10710 —=—MGProx-10 1610
< ——MGProx"-10

(Fy
=)

ho1°

ho15

‘3 10° 107 10° @ T
!
= -y
G 1019 ho-10 1010 -
10°18 1 ho15 10°18
2 4 6 8 10 200 400 1 2 0 0.05 0.1

Iteration & x10°

Iteration k&

Time (sec

)

Time (sec)

FiGure 2. Typical convergence plots of Prox, Nest, MGProx-1, MGProx-10 and MGProx*-10 for I-
dimensional (Shifted aEOP). The number of variables in this experiment is 2° — 1 = 511. All MGProx methods

use 7 levels.
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Different Elastic Obstacle Problems

rrgn {Fo(x) = fo(x) —|—go(x)}.
» Previous slide: Constrained approximated EOP
1 .
folz) = 3 (@om,7),  go(a) = iz()
» Now: Unconstrained penalized approximated EOP

folw) = 5(Qoz ), golw) = (6w .

» Unconstrained penalized full EOP

fo(z) = V1+(Qoz,z), go(z) = pll(¢—u)+|1
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On min { Fo(e) == 5(@r. ) + (6= w1}

—Prox-grad

o 105,
} g‘__\_ ——Nest .

MGProx-1
—=—MGProx-10

Run time
* MGProx: < 1sec reach 10715

1 2 3 4 5 6 7 8 50 100 150 200 250 3
Tteration k 108 Time{sec)

Nesterov & Prox-grad:

o e e not yet converge after 300sec

Tteration k 105 Time (see)
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Prox-grad

—»—Nest.
MGProx-10

—o- MGProx-25

10710

On min { o) == v/T+ (Qoz,2) + pill (6 = w)- 1

30 40 50 60
Tiwe sec)
10°
108
10-10
0 20 30 80

Time

40 50

Num iteration

MGProx: 102 reach 10~1°
Nesterov: 106

Prox-grad: 107

Run time

MGProx: < 1sec
Nesterov: 40sec
Prox-grad: 70sec
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Why so fast?

» The coarse correction

ZhF gl QP i
» Reduction in problem size
P N I —
0T N0 T 160 T 640 T 95670 T 102410

» Per-iteration cost by geometric series a,r € (0,1)

a

a+ar+ar®+--— .
1—r

1
For n = 1 gives 1.33ng. V-cycle is then 2.66n¢ for all single proximal gradient update.

» Can you add Nesterov's acceleration to MGProx?
» No. In fact Nesterov's acceleration works very badly with MGProx.
Why: due to Nesterov's ripples in the convergence.
However, you can add Nesterov's acceleration in the pre/post-smoothing iteation.
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Other things / future works

» Theory

» Grid independence: convergence rate is independent of problem size
» Classical Fourier analysis of multigrid

» Algorithms

» MGProx that also corrects the active points

MGProx on proximal averages

Multigrid Proximal (quasi) Newton's method

Nonsmooth multigrid trust-region method

Nonsmooth multigrid ADMM

Nonsmooth multigrid manifold optimization

Block nonconvex but bi-convex problems (matrix factorizations)

vyVvVYyVYY

» Applications
» Image deblurring, dezooming, completion
» Volumetric imaging (e.g. 3D medical imaging)

» PDE-based image processing
» Graphs
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Last page - summary

Algorithm 3.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)

Initialize xo and the full version of Ry_¢41, Pey1e for £ €{0,1,...,L— 1}
» Multigrid proximal gradient method fork =1,2,... do
Set 7! = -0
. .. fq =0,1,...,L—-1
» Adaptive restriction R Vfid) — kit
Y = = prox L (xk - A) pre-smoothing
. . . Ly
» Theoretical characterizations X, = Rhm(}“l)y"” restriction to next level
> Fixed-pt Tl € (9Fm(x§+l) RHM(}"*')BF o5 create tau vector
» Angle and descent condition end for
> Existence of line search stepsize w’i*' = argénin{FZ(f) Fré) - (TL 'HL,f)} solve the level-L coarse problem
» Global sublinear convergence rate for{=L-1,L-2,...,0do
» Global linear convergence rate ot = ‘M + “P[+1—>€(Wf+1 Xp1) coarse correction
Je+ 1 k+1 Vf‘(ZkH 7I€(+11Af H
. . with = prox L (z(,* Li) post-smoothing
» Fast in experiments ¢
end for
xé” = wé*l update the fine variable
end for

Paper arXiv2302.04077 now under review. Slide available
End of document
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https://arxiv.org/abs/2302.04077
angms.science

Primal-dual extension

» A non-diagonal evil A will make proximal gradient method does not work well on
argmin f(x) + g(Ax).
» Convex-concave primal-dual problem

argmin argmax L(z, )
xER™  AeR™

Oz L(x, X)
—8>\L(£I:, )\)
» Subdifferential 1st-order optimality condition

Oz L(x, A\) Tr+1 — Tk
0 w
< ( N ) + (Ak+1—Ak

» Component-wise subgradient D := (

ir A7
» Chambolle-Pock Primal-dual hybrid gradient is W = (174 1I>
7

0 0 0
» ADMMisW= [0 nATA —-AT
0 -A i1
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Algorithm 1: 2-level MGPD

Input: L

Output: z* that approximately solve (1)
1 Initialize 2!, W, R, P
2 for k=1,2,.. do

3 Get z§+‘ via solving the inclusion % pre-smoothing at level-0
1 e+ 1
[UNS D(](Zé+“) + W(z:frJ - z(lj)
4 Block-wise coarsification % coarsification Now repeat the poof of MGProx on
[ast MGPD
S R(ZMg) _ (R xz, ®
1 = 0 = R, )\G%
T e
5 Tau: % tau vecotr mind-blown glf
. kel ket . kel kel
. k+l k+d O Ly (2 3 0] R OzgLo(Ty * A ?
T € Di(z ) -RDo(zy ') = ( bl i+% i+%)>7< ] R.) <‘““° ol 2—% ;Lr%))
0z|Ll(z1 A ) 2 ()zUL[)(zD Ao )
6 Solve the coarse problem % solve the level-1 coarse problem

) END OF PDF

, k41
k+2 . Ly
z, ' € argmin argmax Ly(z1, A1) + (7041, 21) = Li(z, M) + <(2 ”@i) s ()\
L2l A1 T 1

0—1

7 Coarse correction % Coarse correction

2 k+

P - .’1)1 1

; kel

E 3
— A

8 Get zi*! via solving the inclusion % post-smoothing at level-0

2
0€ Dy(zf™) + W(zH - zé“)
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