
Nonnegative Matrix Factorization, Wasserstein metric, source separation

Andersen Ang

ECS, Uni. Southampton, UK
andersen.ang@soton.ac.uk

Homepage angms.science

Version: June 28, 2023
First draft: June 21, 2023

Distance-based methods in Machine Learning
University College London
27-28 June 2023

Content

Blind Source separation
Power spectrum
Nonnegative Matrix Factorization
Separable NMF
Random kernel estimation
Spectrum misalignment
Wasserstein distance

Joint work with

Xinwen Ding @ U.Waterloo, CA

Giang Tran @ U.Waterloo, CA

Steve Vavasis @ U.Waterloo, CA

andersen.ang@soton.ac.uk
https://www.linkedin.com/in/xinwen-ding-502304179/
https://uwaterloo.ca/scholar/g6tran/home
https://uwaterloo.ca/scholar/vavasis/home


Overview: Single-channel blind source separation (BSS) of audio
▶ Typical BSS pipeline

https://angms.science/doc/NMF/20201202iTWIST_12_page_slide.pdf

▶ Single-channel: one measurement

▶ blind: no prior knowledge

▶ source separation: de-mixing

▶ audio: time series

▶ This talk: modify this pipeline

▶ Content
▶ Power spectrum representation of audio
▶ Time-frequency transform
▶ Random estimation of kernel
▶ Nonnegative Matrix Factorization (NMF)
▶ Separable NMF and SPA
▶ Spectrum misalignment
▶ Wasserstien distance
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Single-channel blind source separation

▶ Given: x(τ) =
K∑
k=1

sk(τ) single observation in RT

τ ∈ [0,T ] time domain

▶ sk(τ), k = 1, 2, ...,K K︸︷︷︸
unknown

sources︸ ︷︷ ︸
unknown

▶ Goal: recover all K sources sk(τ) from single measurement x(τ) under-determined problem

▶ Blind = no prior knowledge on s,K

▶ What is known

▶ T : the duration of the time series
▶ x(τ): the observed time series
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Representation of time series
▶ x(τ) ∈ RT discretize−→

sampling
x ∈ RL ψ−→ X[f, t] ∈ CF×T

▶ x ∈ RL : vector of L elements

▶ X[f, t] : time-frequency content of x at (f -Hz, t-second)

▶ f ∈ [0, F ], there are F frequency bins (y-coordinate)

▶ t ∈ [0, T ], there are T time frame (x-coordinate)

▶ x(τ) with (·) is continuous, x[t] with [·] is discrete

▶ ψ DSTFT (Discrete Short-time Fourier Transform) RL → CF×(T+1)

X[f, t] :=

N−1∑
n=0

w[n]x[n+ tH] exp
[
− i

2π

N
fn

]
. (ψ)

▶ N number of short-time intervals

▶ n ∈ [0, N − 1] is interval index

▶
[
x[0 + tH],x[1 + tH], ...,x[N − 1 + tH]

]
is a segment of x ∈ RL

▶ H ∈ [0, L] hop size, a shift parameter

▶ w ∈ RN :
[
w[0], w[1], ..., w[N − 1]

]
a window function

▶ t ∈ [0, T ] time frame and T = ⌊L−N
H ⌋ is the max frame

▶ f ∈ [0, F ] frequency bin, F = N − 1 and f = ⌊N
2 ⌋ is Shannon-Nyqusit frequency
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Picture of DSTFT

Hankelization of x
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https://angms.science/doc/SP/SP_STFT.pdf
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Power spectrogram and decomposition
▶ Suppose we have a complex spectrogram X[f, t] ∈ CF×T

▶ Convert the complex X to real power spectrogram / amplitude spectrogram / magnitude spectrogram

z = reiθ =⇒ X[f, t] =
∣∣∣X[f, t]

∣∣∣︸ ︷︷ ︸
V

e∠iΘ[f,t].

V
NMF
= WH
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Nonnegative Matrix Factorization

▶ Given V ∈ Rm×n
+ , find W ∈ Rm×r

+ and H ∈ Rr×n+ such that V = WH

▶ A linear algebra problem, earliest apperance in chemistry in 1960s See Sect1.4 in Gillis 20201

▶ A NP-hard problem Vavasis 072

▶ A nonsmooth nonconvex biconvex optimization problem many works

▶ Conic geometry

https://angms.science/doc/NMF/20181003WhatNMF_kul.pdf

1Nicolas Gillis, Nonnegative Matrix Factorization, SIAM, 2020
2Steve Vavasis, On the complexity of nonnegative matrix factorization, SIAM J OPT, 2007
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Separable NMF

▶ Separable NMF: W are certain columns of V

V = WH = V:J [Ir H ′]Πn.

▶ W comes from r columns of V , labelled by an r-set J .
▶ Πn is column permutation
▶ Ir is r-order identity matrix
▶ H ′ ∈ Rr×(n−r)

▶ SPA (Successive Projection Algorithm)

▶ find column with largest norm
▶ projects out such column from the residual data matrix
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NMF works quite well on (simple) audio ...

▶ Fast algorithm

▶ Identifiability / solution of is unique, even the problem is nonconvex

▶ Rank selection power?

Leplat et al., Blind Audio Source Separation with Minimum-Volume Beta-Divergence NMF, IEEE TSP, 2020
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Two challenges

1. It is expensive to obtain a spectrogram
▶ STFT is expensive: ∼ O(N3) cost (N = #short intervals)

▶ −→ Treat STFT as a kernel process, approximate it by randomization

2. Spectrum misalignment on more complicated audio
▶ Inharmonicity3, an unavoidable physical phenomenon

▶ −→ use Wasserstien metric to allow spectrum shifting

3Chris Murray, Musical String Inharmonicity,
https://publicwebuploads.uwec.edu/documents/Musical-string-inharmonicity-Chris-Murray.pdf
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Randomization: idea
▶ Observation: STFT is a dot product

X[f, t] =

N−1∑
n=0

w[n]x[n+ tH] exp
[
− i

2π

N
fn

]
−→ X[·, t] =

〈
x[n+ tH], w[n] exp

[
− i

2π

N
fn

]
︸ ︷︷ ︸

“nonlinear kernel”

〉
This is giving a hint on kernel estimation.

▶ We treat STFT as a nonlinear kernel and we approximate the power spectrum V

V [f, t] = |X[f, t]| ≈
∑
ij

Sij sinωitj + Cij cosωitj =
∑
ij

[
sinωitj cosωitj

] [Sij
Cij

]

▶ sine-cosine is because exp
[
− i

2π

N
fn

]
︸ ︷︷ ︸

sin,cos

▶ we work on V instead of X because
▶ we don’t want to deal with complex numbers / phase
▶ standard NMF works on R not C

▶ Why it will work: Rahimi-Recht’s random feature4

4Rahimi and Recht, Random Features for Large-Scale Kernel Machines, NIPS, 2007
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Randomization: procedure
▶ Step 1. Randomization on frequency

▶ Randomly pick N1 frequencies fi such that fi ∼ U [0, F ].

▶ Let ω = 2πf , construct a frequency-basis matrix A =

 sinω1t cosω1t
...

...
sinωN1

t cosωN1
t

 ∈ RN1×2

▶ Step 2. Randomization on time
▶ Divide the time domain [0, T ] into N2 disjoint time windows of the same length.

▶ Uniformly sample M time points in, tj , j ∈ [M ] each time window.

▶ Extract signal xj := x(tj) associated to the time points tj .

▶ For each time window j, solve

y∗
j := argmin

y∈R2×N1

∥y∥1 s.t. ∥Ay − xj∥2 ≤ σ,

where y∗
j =

[
S∗
:j

C∗
:j

]
is the sparse sine-cosine coefficient that makes xj best match A

▶ The jth column (jth time frame) of the estimated power spectrogram V̂ is V̂ [:, j] =
√

S2
:j + C2

:j .

▶ For the whole V̂ across all time point, the whole problem on is nonsmooth non-proximable convex.

▶ Here we are estimating the power spectrogram =⇒ we do not need to deal with phase.

12 / 21



Illustration: 600 time-freq points vs 10000 time-freq points
▶ F = 100Hz, frequency resolution ∆f = 1Hz

▶ T = 100Second with a temporal resolution ∆t of 1second

▶ Random N1 = 20 frequencies: 12, 16, 18, 22, 27, 34, 38, 44, 45, 49, 50, 59, 65, 66, 68, 71, 76, 77, 80, 96

▶ We divide [0, T ] into N2 = 10 time windows (each 10 second).

▶ In each time window we randomly pick M = 3 time points.
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Spectrum misalignment on more complicated audio: inharmonics

µ
∂2y

∂t2
= T

∂2y

∂x2
− ESK2 ∂

4y

∂x4

▶ E: Young’s modulus
(string’s resistance to deform)

▶ Wave equation for ideal string E = 0
(string deforms without effort)
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Wasserstein distance / OT distance
▶ 1-dimensional discrete Wasserstein distance

dC(x,y) := ∥C(x− y)∥1 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥


1
1 1
1 1 1
...

...
...

. . .


︸ ︷︷ ︸
1-dim OT cost matrix

(x− y)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

.

do not confuse the C here with the C:j in the previous slide, they are different things

▶ Ideas
▶ SPA in Wass-distance
▶ Transform the data via the Wasserstein cost matrix C
▶ Why Wass-distance: holistic comparison fitting︸ ︷︷ ︸

allow misalignment

vs element-wise comparison fitting︸ ︷︷ ︸
does not allow misalignment

▶ Wasserstein-NMF is not a new idea e.g., Flammy 20165

Our approach differs in
▶ NMF vs separable NMF
▶ OT divergence solved via linear program vs nonlinear problem
▶ Different transport matrix C: different C and also different dimension for OT
▶ Semi-supervised (pre-define W as a comb) vs unsupervised

5Flamary et al., Optimal spectral transportation with application to music transcription, NIPS2016
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Example: 5 sources
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Columns of spectrogram selected by SPA in Wass-distance
▶ In this example, we let SPA with Wass-distance select 2 features (i.e. two columns of the spectrogram)

▶ SPA with Wass-distance captures the solo periods of both instruments.

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features
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Plots of W and H
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Reconstructed modes (C5 and C3)

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features
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Reconstructed modes (C5 and C3)

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features
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Last page - summary

Blind Source separation
Power spectrum
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Advertisement
I am looking for PhD students on

▶ continuous optimization for machine learning

▶ discrete optimization on graphical learning

▶ statistical approach on nonnegative matrix factorization

Contact me if interested. Contact in first slide.

End of document
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