Nonnegative Matrix Factorization, Wasserstein metric, source separation

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk Homepage angms.science

Version: June 28, 2023 First draft: June 21, 2023

Distance-based methods in Machine Learning University College London 27-28 June 2023 Content Blind Source separation Power spectrum Nonnegative Matrix Factorization Separable NMF Random kernel estimation Spectrum misalignment Wasserstein distance

Joint work with Xinwen Ding @ U.Waterloo, CA Giang Tran @ U.Waterloo, CA Steve Vavasis @ U.Waterloo, CA Overview: Single-channel blind source separation (BSS) of audio

- ► This talk: modify this pipeline
- Content
 - Power spectrum representation of audio
 - Time-frequency transform
 - Random estimation of kernel
 - Nonnegative Matrix Factorization (NMF)
 - Separable NMF and SPA
 - Spectrum misalignment
 - Wasserstien distance

- ► Single-channel: one measurement
- blind: no prior knowledge
- source separation: de-mixing
- ► audio: time series

Single-channel blind source separation

• Given:
$$x(\tau) = \sum_{k=1}^{K} s_k(\tau)$$

 $\tau \in [0, T]$

•
$$s_k(\tau), k = 1, 2, ..., K$$

• Goal: recover all K sources $s_k(\tau)$ from single measurement $x(\tau)$

- Blind = no prior knowledge on s, K
- What is known
 - ► T: the duration of the time series
 - $x(\tau)$: the observed time series

single observation in \mathbb{R}^{T}

time domain

$$\underbrace{K}_{\text{unknown}} \underbrace{\text{sources}}_{\text{unknown}}$$

under-determined problem

Representation of time series

$$\blacktriangleright \quad x(\tau) \in \mathbb{R}^T \quad \stackrel{\text{discretize}}{\longrightarrow} \quad x \in \mathbb{R}^L \quad \stackrel{\psi}{\longrightarrow} \quad X[f,t] \in \mathbb{C}^{F \times T}$$

- $\boldsymbol{x} \in \mathbb{R}^L$: vector of L elements
- X[f,t]: time-frequency content of x at (f-Hz, t-second)
- $f \in [0, F]$, there are F frequency bins (y-coordinate)
- $t \in [0, T]$, there are T time frame (x-coordinate)
- $x(\tau)$ with (\cdot) is continuous, x[t] with $[\cdot]$ is discrete
- - N number of short-time intervals
 - $\blacktriangleright \ n \in [0, N-1] \text{ is interval index}$
 - $\blacktriangleright \ \left[\boldsymbol{x}[0+tH], \boldsymbol{x}[1+tH], ..., \boldsymbol{x}[N-1+tH] \right] \text{ is a segment of } \boldsymbol{x} \in \mathbb{R}^L$
 - ▶ $H \in [0, L]$ hop size, a shift parameter
 - $\blacktriangleright \ \boldsymbol{w} \in \mathbb{R}^N : \ \left[w[0], w[1], ..., w[N-1] \right] \text{ a window function}$
 - $\blacktriangleright \ t \in [0,T]$ time frame and $T = \lfloor \frac{L-N}{H} \rfloor$ is the max frame
 - ▶ $f \in [0, F]$ frequency bin, F = N 1 and $f = \lfloor \frac{N}{2} \rfloor$ is Shannon-Nyqusit frequency

Picture of DSTFT

Hankelization of ${\bf x}$

with shift parameter H and segment length N

https://angms.science/doc/SP/SP_STFT.pdf

Power spectrogram and decomposition

- ▶ Suppose we have a complex spectrogram $oldsymbol{X}[f,t] \in \mathbb{C}^{F imes T}$
- \blacktriangleright Convert the complex X to real power spectrogram / amplitude spectrogram / magnitude spectrogram

Nonnegative Matrix Factorization

- ▶ Given $V \in \mathbb{R}^{m imes n}_+$, find $W \in \mathbb{R}^{m imes r}_+$ and $H \in \mathbb{R}^{r imes n}_+$ such that V = WH
 - ► A linear algebra problem, earliest apperance in chemistry in 1960s
 - A NP-hard problem
 - A nonsmooth nonconvex biconvex optimization problem

See Sect1.4 in Gillis 2020¹ Vavasis 07² many works

Conic geometry

 $^{^1}$ Nicolas Gillis, Nonnegative Matrix Factorization, SIAM, 2020 2 Steve Vavasis, On the complexity of nonnegative matrix factorization, SIAM J OPT, 2007

Separable NMF

Separable NMF: W are certain columns of V

$$V = WH = V_{:J}[I_r H']\Pi_n.$$

- W comes from r columns of V, labelled by an r-set J.
- Π_n is column permutation
- I_r is *r*-order identity matrix
- $\blacktriangleright \mathbf{H}' \in \mathbb{R}^{r \times (n-r)}$
- SPA (Successive Projection Algorithm)
 - ▶ find column with largest norm
 - projects out such column from the residual data matrix

NMF works quite well on (simple) audio ...

- Fast algorithm
- Identifiability / solution of is unique, even the problem is nonconvex
- Rank selection power?

Leplat et al., Blind Audio Source Separation with Minimum-Volume Beta-Divergence NMF, IEEE TSP, 2020

Two challenges

1. It is expensive to obtain a spectrogram

- ▶ STFT is expensive: $\sim O(N^3)$ cost
- \blacktriangleright \longrightarrow Treat STFT as a kernel process, approximate it by randomization
- 2. Spectrum misalignment on more complicated audio
 - ▶ Inharmonicity³, an unavoidable physical phenomenon
 - \blacktriangleright \longrightarrow use Wasserstien metric to allow spectrum shifting

⁽N = #short intervals)

³Chris Murray, *Musical String Inharmonicity*,

 $^{{\}tt https://publicwebuploads.uwec.edu/documents/Musical-string-inharmonicity-Chris-Murray.pdf}$

Randomization: idea

Observation: STFT is a dot product

$$\boldsymbol{X}[f,t] = \sum_{n=0}^{N-1} \boldsymbol{w}[n]\boldsymbol{x}[n+tH] \exp\left[-i\frac{2\pi}{N}fn\right] \longrightarrow \boldsymbol{X}[\cdot,t] = \left\langle \boldsymbol{x}[n+tH], \underbrace{\boldsymbol{w}[n] \exp\left[-i\frac{2\pi}{N}fn\right]}_{\text{"nonlinear kernel"}} \right\rangle$$

This is giving a hint on kernel estimation.

 \blacktriangleright We treat STFT as a nonlinear kernel and we approximate the power spectrum V

$$\mathbf{V}[f,t] = |\mathbf{X}[f,t]| \approx \sum_{ij} S_{ij} \sin \omega_i t_j + C_{ij} \cos \omega_i t_j = \sum_{ij} \left[\sin \omega_i t_j \cos \omega_i t_j \right] \begin{bmatrix} S_{ij} \\ C_{ij} \end{bmatrix}$$

$$\blacktriangleright \text{ sine-cosine is because } \underbrace{\exp\left[-i\frac{2\pi}{N}fn\right]}_{\text{sin,cos}}$$

- we work on V instead of X because
 - we don't want to deal with complex numbers / phase
 - \blacktriangleright standard NMF works on $\mathbb R$ not $\mathbb C$
- Why it will work: Rahimi-Recht's random feature⁴

⁴Rahimi and Recht, Random Features for Large-Scale Kernel Machines, NIPS, 2007

Randomization: procedure

- Step 1. Randomization on frequency

 - **•** Randomly pick N₁ frequencies f_i such that $J_i \sim \alpha_{[0, \star]}$. **•** Let $\omega = 2\pi f$, construct a frequency-basis matrix $\boldsymbol{A} = \begin{bmatrix} \sin \omega_1 t & \cos \omega_1 t \\ \vdots & \vdots \\ \sin \omega_{N_1} t & \cos \omega_{N_1} t \end{bmatrix} \in \mathbb{R}^{N_1 \times 2}$
- Step 2. Randomization on time
 - \blacktriangleright Divide the time domain [0, T] into N_2 disjoint time windows of the same length.
 - Uniformly sample M time points in, t_j , $j \in [M]$ each time window.
 - Extract signal $x_i \coloneqq x(t_i)$ associated to the time points t_i .
 - For each time window j, solve

$$\boldsymbol{y}_j^* \coloneqq \operatorname*{argmin}_{\boldsymbol{y} \in \mathbb{R}^{2 imes N_1}} \| \boldsymbol{y} \|_1 ext{ s.t. } \| \boldsymbol{A} \boldsymbol{y} - \boldsymbol{x}_j \|_2 \leq \sigma,$$

where $m{y}_j^* = egin{bmatrix} S_{ij}^* \ C_{i}^* \end{bmatrix}$ is the sparse sine-cosine coefficient that makes $m{x}_j$ best match $m{A}$

- The j^{th} column (jth time frame) of the estimated power spectrogram \hat{V} is $\hat{V}[:, j] = \sqrt{S_{:j}^2 + C_{:j}^2}$.
- For the whole \hat{V} across all time point, the whole problem on is nonsmooth non-proximable convex.
- Here we are estimating the power spectrogram \implies we do not need to deal with phase.

Illustration: 600 time-freq points vs 10000 time-freq points

- ▶ F = 100Hz, frequency resolution $\Delta f = 1$ Hz
- ▶ T = 100Second with a temporal resolution Δt of 1second
- **•** Random $N_1 = 20$ frequencies: 12, 16, 18, 22, 27, 34, 38, 44, 45, 49, 50, 59, 65, 66, 68, 71, 76, 77, 80, 96
- We divide [0, T] into $N_2 = 10$ time windows (each 10 second).
- In each time window we randomly pick M = 3 time points.

Spectrum misalignment on more complicated audio: inharmonics

$$u\frac{\partial^2 y}{\partial t^2} = T\frac{\partial^2 y}{\partial x^2} - ESK^2\frac{\partial^4 y}{\partial x^4}$$

- E: Young's modulus (string's resistance to deform)
- Wave equation for ideal string E = 0 (string deforms without effort)

Wasserstein distance / OT distance

1-dimensional discrete Wasserstein distance

do not confuse the $oldsymbol{C}$ here with the $C_{:j}$ in the previous slide, they are different things

- Ideas
 - SPA in Wass-distance
 - Transform the data via the Wasserstein cost matrix C
 - Why Wass-distance: holistic comparison fitting vs element-wise comparison fitting

allow misalignment

does not allow misalignment

Wasserstein-NMF is not a new idea

Our approach differs in

- ► NMF vs separable NMF
- OT divergence solved via linear program vs nonlinear problem
- ▶ Different transport matrix C: different C and also different dimension for OT
- Semi-supervised (pre-define W as a comb) vs unsupervised

⁵Flamary et al., Optimal spectral transportation with application to music transcription, NIPS2016

e.g., Flammy 2016⁵

Example: 5 sources

Columns of spectrogram selected by SPA in Wass-distance

- ▶ In this example, we let SPA with Wass-distance select 2 features (i.e. two columns of the spectrogram)
- ► SPA with Wass-distance captures the solo periods of both instruments.

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features

Plots of ${old W}$ and ${old H}$

Reconstructed modes (C5 and C3)

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features

Reconstructed modes (C5 and C3)

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features

Blind Source separation Power spectrum Nonnegative Matrix Factorization Separable NMF Random kernel estimation Spectrum misalignment Wasserstein distance

Advertisement

I am looking for PhD students on

- continuous optimization for machine learning
- discrete optimization on graphical learning
- statistical approach on nonnegative matrix factorization

Contact me if interested. Contact in first slide.

End of document