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Overview: Single-channel blind source separation (BSS) of audio

» Typical BSS pipeline
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https://angms.science/doc/NMF/20201202iTWIST_12_page_slide.pdf

» This talk: modify this pipeline

» Content
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Power spectrum representation of audio
Time-frequency transform

Random estimation of kernel
Nonnegative Matrix Factorization (NMF)
Separable NMF and SPA

Spectrum misalignment

Wasserstien distance

» Single-channel: one measurement
» blind: no prior knowledge
P source separation: de-mixing

» audio: time series
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https://angms.science/doc/NMF/20201202iTWIST_12_page_slide.pdf

Single-channel blind source separation

K

» Given: z(7) = z sk(T) single observation in RT
k=1

T €10,T) time domain

» sip(r),k=1,2,... K K sources

unknown unknown
» Goal: recover all K sources si(7) from single measurement z(7) under-determined problem
» Blind = no prior knowledge on s, K

» What is known

» T the duration of the time series
» z(7): the observed time series
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Representation of time series

¥

discretize

> z(r) e RT "5 xR 5 X[f,t] e CPXT

vvyVvyyvyy

sampling
x € RY : vector of L elements
X |[f,t] : time-frequency content of @ at (f-Hz, t-second)
f € [0, F], there are F frequency bins (y-coordinate)
t € [0, T], there are T time frame (x-coordinate)

() with (+) is continuous, x[t] with [-] is discrete

» ¢ DSTFT (Discrete Short-time Fourier Transform) RY — CF*(T+D

vV VY VYV YVvyYy

N-1

X[f,1] = Zw[n]m[n—l—tH}exp[—i%fn]. (®)

n=0
N number of short-time intervals
n € [0, N — 1] is interval index
[®[0 + tH], [l + tH],...,®[N — 1 4+ tH]] is a segment of € RE
H € [0, L] hop size, a shift parameter
w € RY : [w[0], w[1], ..., w[N — 1]] a window function

t € [0, T] time frame and T' = I_LEN is the max frame

f € [0, F] frequency bin, F = N —1and f = I_%J is Shannon-Nyqusit frequency

Time series x
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Picture of DSTFT

Hankelization of x

H 0%t column (m=0, no shift) of Hy 5 (x)

1%t column (m=1, first shift) of H}y 5 (x)

’ !

L
x€ER XERN

. 1

Hy z(x) € RV*M*1: 3 “Hankel matrix” of x,
with shift parameter H and segment length N

https://angms.science/doc/SP/SP_STFT.pdf
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https://angms.science/doc/SP/SP_STFT.pdf

Power spectrogram and decomposition

» Suppose we have a complex spectrogram X |[f,t] €

» Convert the complex X to real power spectrogram / amplitude spectrogram / magnitude spectrogram

(CFXT

z=re' =  X|[f.t] = ‘X[f,t]‘eﬁ@[f’t].
—_——
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Nonnegative Matrix Factorization

» Given V € RTX”, find W ¢ RTxr and H € R:an such that V.= WH

» A linear algebra problem, earliest apperance in chemistry in 1960s See Sectl.4 in Gillis 2020!
» A NP-hard problem Vavasis 072
» A nonsmooth nonconvex biconvex optimization problem many works

» Conic geometry

https://angms.science/doc/NMF/20181003WhatNMF _kul.pdf

INicolas Gillis, Nonnegative Matrix Factorization, SIAM, 2020
2Steve Vavasis, On the complexity of nonnegative matrix factorization, SIAM J OPT, 2007
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https://angms.science/doc/NMF/20181003WhatNMF_kul.pdf

Separable NMF

SPA (Successive Projection alg.)
1R=V
2J={}
3Fori=1:%k
4 J = argmax f(Ry) f=1-15
5|J=7U{j}
6|H= i A% —||A - BJ]2

argmin 9(VVsy) 9= 14— BIf%

7|R=R-V,H
» Separable NMF: W are certain columns of V/
V =WH = V,[I. HI,.

» W comes from r columns of V/, labelled by an r-set J.
» II, is column permutation

» 1. is r-order identity matrix

> H ¢ R'r'x(nf'r)

» SPA (Successive Projection Algorithm)

» find column with largest norm
» projects out such column from the residual data matrix
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NMF works quite well on (simple) audio ...

» Fast algorithm
» Identifiability / solution of is unique, even the problem is nonconvex
» Rank selection power?
Leplat et al., Blind Audio Source Separation with Minimum-Volume Beta-Divergence NMF, IEEE TSP, 2020
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Two challenges

1. It is expensive to obtain a spectrogram
> STFT is expensive: ~ O(N?) cost (N = #short intervals)

» — Treat STFT as a kernel process, approximate it by randomization

2. Spectrum misalignment on more complicated audio
» Inharmonicity®, an unavoidable physical phenomenon

» — use Wasserstien metric to allow spectrum shifting

3Chris Murray, Musical String Inharmonicity,
https://publicwebuploads.uwec.edu/documents/Musical-string-inharmonicity-Chris-Murray.pdf
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https://publicwebuploads.uwec.edu/documents/Musical-string-inharmonicity-Chris-Murray.pdf

Randomization: idea
» Observation: STFT is a dot product

N-1
XI[f,t]= Z w[n]m[n—l—tH}exp[—i%fn] — X[t = <m[n—|—tH], 'w[n]exp[—i%fn] >

n=0

“nonlinear kernel”

This is giving a hint on kernel estimation.

» We treat STFT as a nonlinear kernel and we approximate the power spectrum V'

Vif.t = | XI[f.t]] =~ ZSU sinw;t; + C;j coswit; = Z[SiHWitj COqu',tj} {gﬁﬂ
ij ij

. . 27
> sine-cosine is because exp [ — zﬁfn}

sin,cos

» we work on V instead of X because

» we don't want to deal with complex numbers / phase
» standard NMF works on R not C

» Why it will work: Rahimi-Recht's random feature*

4Rahimi and Recht, Random Features for Large-Scale Kernel Machines, NIPS, 2007
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Randomization: procedure

» Step 1. Randomization on frequency
» Randomly pick N; frequencies f; such that f; ~ U[0, F].
sinwit coswit

» Let w = 27 f, construct a frequency-basis matrix A = € RN1x2
sinwn,;t  coswn,t
» Step 2. Randomization on time
» Divide the time domain [0, T] into N3 disjoint time windows of the same length.
» Uniformly sample M time points in, t;, j € [M] each time window.
> Extract signal «; := x(t;) associated to the time points ¢;.
>

For each time window j, solve

y; = argmin |yl st. [[Ay —z;]l2 <o,
yER2X N1
*4
where y;.‘ = |:C:4 is the sparse sine-cosine coefficient that makes x; best match A
:J

» The jt" column (jth time frame) of the estimated power spectrogram V is V[:, j] = , /S?j + C’2J

» For the whole V' across all time point, the whole problem on is nonsmooth non-proximable convex.
» Here we are estimating the power spectrogram = we do not need to deal with phase.
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[llustration: 600 time-freq points vs 10000 time-freq points
» F = 100Hz, frequency resolution Af = 1Hz

» T = 100Second with a temporal resolution At of 1second
» Random Nj = 20 frequencies: 12, 16, 18, 22, 27, 34, 38, 44, 45, 49, 50, 59, 65, 66, 68, 71, 76, 77, 80, 96
» We divide [0, 7] into N2 = 10 time windows (each 10 second).
» In each time window we randomly pick M = 3 time points.
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Spectrum misalignment on more complicated audio: inharmonics
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» E: Young's modulus
(string's resistance to deform)

» Wave equation for ideal string £ =0
(string deforms without effort)

14/21



Wasserstein distance / OT distance

» 1-dimensional discrete Wasserstein distance

—_

de(z,y) = [[Clx —y)l1 =

H
—
-

®

|

&

—_—— ———
1-dim OT cost matrix 1
do not confuse the C' here with the C'; in the previous slide, they are different things

» Ideas
» SPA in Wass-distance
» Transform the data via the Wasserstein cost matrix C
» Why Wass-distance: holistic comparison fitting vs element-wise comparison fitting

allow misalignment does not allow misalignment

» Wasserstein-NMF is not a new idea e.g., Flammy 20165
Our approach differs in
» NMF vs separable NMF
» OT divergence solved via linear program vs nonlinear problem
» Different transport matrix C: different C and also different dimension for OT
» Semi-supervised (pre-define W as a comb) vs unsupervised

5Flamary et al., Optimal spectral transportation with application to music transcription, NIPS2016 15/21



Example: 5 sources
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Columns of spectrogram selected by SPA in Wass-distance

» In this example, we let SPA with Wass-distance select 2 features (i.e. two columns of the spectrogram)

» SPA with Wass-distance captures the solo periods of both instruments.

1200:

10001

800

6001

Frequency (HZ)

400——

200

Column 1
Column 2

Active Frequencies in the First and the Second Column

0 0.005 0.0

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features
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17/21



Plots of W and H
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Reconstructed modes (C5 and C3)

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features 1921



Reconstructed modes (C5 and C3)

Ground Truth -- Flute C5

0 02 04 06 08 1 12 14 16 18
Time (s)

Ground Truth -- Guitar C3

06 08 1 12 14 16 18 2
Time (s)

There are 5 sources: C5, D5, C3, D3, G2 and here we are demonstrating 2 features
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Last page - summary

Blind Source separation

Power spectrum
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Advertisement
| am looking for PhD students on

» continuous optimization for machine learning
» discrete optimization on graphical learning

» statistical approach on nonnegative matrix factorization
Contact me if interested. Contact in first slide.

End of document
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