MGProx: A nonsmooth MultiGrid Proximal gradient method, and +

Andersen Ang

ECS, Uni. Southampton, UK andersen.ang@soton.ac.uk

Homepage angms.science

Version: June 16, 2023
First draft: Dec 2, 2022

Mathematical Optimization for Machine Learning Humboldt-Universitat zu Berlin June 14-16 2023
arXiv 2302.04077 joint work with

Hans De Sterck Steve Vavasis

Standard setup in convex optimization

$$
(\mathcal{P}): \underset{x}{\operatorname{argmin}}\left\{F_{0}(x):=f_{0}(x)+g_{0}(x)\right\}
$$

- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex, L-smooth ${ }^{1}$

$$
f \in \mathcal{C}_{L}^{1,1}
$$

- $g_{0}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ convex, possibly nonsmooth ${ }^{2}$
- $\overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty\}$ extended real
- To make (my) life easier:
- Everything in finite dimensional Euclidean space
$\mathbb{R}^{n},\langle\cdot, \cdot\rangle,\|\cdot\|$
- f_{0} is strongly convex $\Longrightarrow \mathcal{P}$ has an unique global sol
$\operatorname{argmin} F_{0}$ is a singleton
- g_{0} is "proximable" \Longrightarrow prox operator prox has closed-form / efficiently computable
- F_{0} has "multigrid-able" structure \Longrightarrow restriction, prolongation are given R, P known
- Assume all other necessary rigour things ${ }^{3}$

Topic today: solve \mathcal{P} by proximal gradient method \oplus multigrid.

[^0]1 page review on solving $(\mathcal{P}): \min \left\{F_{0}(x):=f_{0}(x)+g_{0}(x)\right\}$

Proximal gradient iteration

$$
\begin{aligned}
x^{+} & :=\operatorname{prox}_{\alpha g_{0}}\left(x-\alpha \nabla f_{0}(x)\right) \\
& =\underset{\xi}{\operatorname{argmin}} \alpha g_{0}(\xi)+\frac{1}{2}\left\|\xi-\left(x-\alpha \nabla f_{0}(x)\right)\right\|_{2}^{2}
\end{aligned}
$$

- $\alpha \in\left(0, \frac{2}{L}\right]$ gradient stepsize. We fix $\alpha \equiv \frac{1}{L}$.
- prox operator of αg_{0} at ζ :

$$
\operatorname{prox}_{\alpha g_{0}}(\zeta):=\underset{\xi}{\operatorname{argmin}} \alpha g_{0}(\xi)+\frac{1}{2}\|\xi-\zeta\|_{2}^{2}
$$

Usefulness: prox $_{\alpha g_{0}}$ fixes nonsmoothness
$\left\{\right.$ model regularization g_{0}
model constraint (indicator function) g_{0}
Many prox ${ }_{\alpha g_{0}}$ has closed-form sol.

- Literature history
- Moreau envelope

Moreau 1962

- Proximal point method
- Forward-Backward splitting
- Earliest proximal gradient

Rockafellar 1976 Pasty 1979

- Proximal FB splitting
- Now everywhere in Opt. \& ML

Fukushima \& Mine 1981 Combettes \& Wajs 2005

Multigrid: coarse correction iteration

$$
x^{+}:=x+\alpha P\left(\hat{x}^{+}-\hat{x}\right)
$$

Use coarse to improve fine

- $\hat{x} \in \mathbb{R}^{n_{1}}$ restricted version of $x \in \mathbb{R}^{n_{0}}$
- \hat{x}^{+}: obtained by solving an auxiliary coarse optimization problem, a "smaller" \mathcal{P} (talk later)
- P : prolongation

History

- For $g_{0} \equiv 0$ (smooth convex optimization)
- Linear system from the discretization of PDEs
- Later generalized to system of nonlinear eqs
- \exists nonsmooth multigird in literature, but all different from this talk (see paper for detail)

Usefulness: fast, convergence independent of problem size

Literature history

- Earliest(?) work on Poisson problem
- Multi-level adaptive technique
- Multigrid Methods

This work

Proximal gradient

- Wide applications (due to g_{0})
- 2 slow

Multigrid

- Fastest known method (at least for PDEs)
- -2 Narrow applications: only for PDEs

Million dollar question: can we have both © ?

MGProx: for some F_{0}, yes.
2022
MGPD: for more F_{0}, yes
2023

see arXiv 2302.04077 Section 1.4.2 for literature review

- Brandt \& Cryer, Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems
- Hackbusch \& Mittelmann, On multi-grid methods for variational inequalities
- Mandel, A multilevel iterative method for symmetric, positive definite linear complementarity problems
- Vogel \& Oman, Iterative methods for total variation denoising
- Chan, Chan \& Wana, Multigrid for differential-convolution problems arising from image processing
- Nash, A multigrid approach to discretized optimization problems
- Graser, Sack and Sander, Truncated nonsmooth Newton multigrid methods for convex minimization problems
- Parpas, A multilevel proximal gradient algorithm for a class of composite optimization problems
- Graser \& Sander, Truncated nonsmooth Newton multigrid methods for block-separable minimization problems

A remark on the popular MGOPT by Nash

Remark 1.1 (MGOPT has no theoretical convergence guarantee). The proof of [27, Theorem 1] on the convergence of MGOPT requires additional assumptions. In short the proof states the following: on solving (1.3) with an iterative algorithm $x^{k+1}:=\sigma\left(x^{k}\right)$ where the update map $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is assumed to be converging from any starting point x^{1}, now suppose $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is some other operator with the descending property that $f_{0}(\rho(x)) \leq f_{0}(x)$. Then [27, Theorem 1] claimed that an algorithm consisting of interlacing σ with ρ repeatedly is also convergent. This is generally not true without further assumptions. E.g., consider a function $f\left(x_{1}, x_{2}\right)$ that is equal to $\frac{1}{1+x_{2}^{2}}$ on the set $U:=\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \geq 1\right\}$ and on the complementary set $\mathbb{R}^{2} \backslash U$ that $f\left(x_{1}, x_{2}\right)$ has a unique minimizer at $(0,0)$. Then $\sigma:\left(x_{1}, x_{2}\right) \mapsto \frac{9}{10}\left(x_{1}, x_{2}\right)$ and $\left.\rho\right|_{U}:\left(x_{1}, x_{2}\right) \mapsto\left(\frac{10}{9} x_{1}, 2 x_{2}\right)$ satisfies the hypothesis but diverges from any stationary point in $\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \geq \frac{10}{9}\right\}$.

A first look at 2-level MGProx algorithm for $(\mathcal{P}): \min _{x}\left\{F_{0}(x):=f_{0}(x)+g_{0}(x)\right\}$ i prox-grad update at level-0

Algorithm 2.1 2-level MGProx for an approximate solu
Initialize x_{0}^{1}, R and P
for $k=1,2, \ldots$ do
(i) $y_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(x_{0}^{k}-\frac{1}{L_{0}} \nabla f\left(x_{0}^{k}\right)\right)$
(ii) $y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1}$
(iii) $\tau_{0 \rightarrow 1}^{k+1} \in \underline{\partial F_{1}\left(y_{1}^{k+1}\right)}-R\left(y_{0}^{k+1}\right) \partial F_{0}\left(y_{0}^{k+1}\right)$
(iv) $x_{1}^{k+1}=\underset{\xi}{\operatorname{argmin}}\left\{F_{1}^{\tau}(\xi):=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle\right\}$
(v) $z_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$
(vi) $x_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(z_{0}^{k+1}-\frac{1}{L_{0}} \nabla f\left(z_{0}^{k+1}\right)\right)$
end for

- Variable sequence $\left\{x_{0}^{k}, y_{0}^{k}, z_{0}^{k}\right\}_{k \in \mathbb{N}}$
- superscript k : iteration number
- subscript 0 : level
- x : main sequence
- y, z intermediate variables
- When converge: $x_{0}=y_{0}=z_{0}$ (fixed-point)
- $\frac{1}{L_{0}}$ stepsize, L_{0} is the Lipschitz const. of ∇f_{0}
- this step is called "pre-smoothing" in multigrid
- we use x to get y
ii Adaptive restriction of the updated y_{0}^{k+1}
- R : (adaptive) restriction operator adapted to y_{0}^{k+1}
iii τ carries the level- 0 info to level- 1
- ∂F_{1} : cvx subdifferential of F_{1} at level 1
- ∂F_{0} : cvx subdifferential of F_{1} at level 0
- τ can be any element of the set

iv Solve the coarse problem

- a "smaller" \mathcal{P} with a linear perturbation τ
v Coarse correction step
- P : prolongate level-1 variable to level-0
- we use x, y to get z
vi prox-grad update at level-0
- $\frac{1}{L_{0}}$ stepsize, L_{0} is the Lipschitz const. of ∇f_{0}
- this step is called "post-smoothing" in multigrid
- we use z to get x

Subdifferential, Minkowski sum and adaptive restriction

$$
\begin{equation*}
y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{0 \rightarrow 1}^{k+1} \in \underline{\tau_{0 \rightarrow 1}^{k+1}}:=\underline{\partial F_{1}\left(y_{1}^{k+1}\right)} \oplus(-R) \underline{\partial F_{0}\left(y_{0}^{k+1}\right)} \tag{iii}
\end{equation*}
$$

- (Fenchel) Convex subdifferential of a function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a point x_{0} is the set $\left\{\boldsymbol{q} \in \mathbb{R}^{n}: \phi(x) \geq \phi\left(x_{0}\right)+\left\langle\boldsymbol{q}, x-x_{0}\right\rangle\right\}$.
- Underline means set, no underline means singleton.
- Subdifferentials $\partial F_{1}\left(y_{1}^{k+1}\right) \& \partial F_{0}\left(y_{0}^{k+1}\right)$ are sets $\longrightarrow \underline{\tau_{0 \rightarrow 1}^{k+1}}:=\underline{\partial F_{1}\left(y_{1}^{k+1}\right)} \oplus(-R) \partial F_{0}\left(y_{0}^{k+1}\right)$ is a Minkowski sum.
- To make life easier, use R to turn $R \partial F_{0}\left(y_{0}^{k+1}\right)$ into a singleton vector.
- R reduces $R \partial F_{0}\left(y_{0}^{k+1}\right)$ from a set-valued vector to a singleton vector. All sets map to the singleton $\{0\}$.
- No more complicated Minkowski sum, now we have

$$
\underline{\partial F_{1}\left(y_{1}^{k+1}\right)} \oplus(-R) \underline{\partial F_{0}\left(y_{0}^{k+1}\right)}=\underline{\partial F_{1}\left(y_{1}^{k+1}\right)}-R \underline{\partial F_{0}\left(y_{0}^{k+1}\right)} .
$$

- Not just "make life easier", the adaptive R plays critical role in proving convergence.
- Open problem: non-adaptive R, general multi-member Minkowski sum of subdifferentials
- Example for separable g such as $\|\boldsymbol{x}\|_{1}, \max \{\boldsymbol{x}, \boldsymbol{c}\}$, etc.
- Definition Let $\mathcal{I}=\left\{i \in[n]:\left[\partial F_{0}\left(y_{0}^{k+1}\right)\right]_{i}\right.$ is a set $\}$.
- Adaptive restriction R is defined as the (full) restriction matrix $R_{\text {full }}$ with column $i \in \mathcal{I}$ set to zero.

Restriction and coarse level object

(ii) $\quad y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1}$
(iii) $\quad \tau_{0 \rightarrow 1}^{k+1} \in \underline{\partial F_{1}\left(y_{1}^{k+1}\right)}-R \underline{\partial F_{0}\left(y_{0}^{k+1}\right)}$
(iv) $\quad x_{1}^{k+1} \in \underset{\xi}{\operatorname{argmin}}\left\{F_{1}^{\tau}(\xi):=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle\right\}$

- Level- 0 variable $x_{0}=P x_{1}$
- Level-1 variable $x_{1}=R x_{0}$
- Level-1 function $F_{1}\left(x_{1}\right):=F_{0}\left(P x_{1}\right)$
- $F_{1}^{\tau}:=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle$
- R, P preserve convexity
maps vectors in $\mathbb{R}^{n_{0}}$ to $\mathbb{R}^{n_{1}}$ with $n_{1}=\left\lceil\frac{n_{0}-1}{2}\right\rceil$.
$\Longrightarrow 50 \%$ reduction in problem size
Example: 1-dimensional full weighting

$$
R=\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{4} & & & \\
& \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & \\
& & \ddots & \ddots & \ddots
\end{array}\right]
$$

$$
P=2 R^{\top}
$$

For 2-dimensional case, reduce size to $\frac{1}{4}$

Theoretical results

1. At convergence, x_{ℓ}^{k} has a fixed-pt. property $\forall \ell$
2. Nonsmooth angle condition $\left\langle P\left(x_{1}^{k+1}-y_{1}^{k+1}\right), \partial F_{0}\left(y_{0}^{k+1}\right)\right\rangle<0$.
3. Descent property: stepsize $\alpha>0$ exists and $P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$ is a descent direction at y_{0}^{k+1}

$$
\text { i.e., } F_{0}\left(y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)\right)<F_{0}\left(y_{0}^{k+1}\right)
$$

4. $\left\{F_{0}\left(x_{0}^{k}\right)\right\}_{k \in \mathbb{N}}$ converges to $F_{0}^{*}:=\inf F_{0}$, with

- a sublinear rate

$$
F_{0}\left(x_{0}^{k}\right)-F_{0}^{*} \leq \frac{\max \left\{8 \delta^{2} L_{0}, F_{0}\left(x_{0}^{1}\right)-F_{0}^{*}\right\}}{k}
$$

- L_{0} : Lipschitz constant of ∇f_{0}
- δ : diameter of sublevel set $\left\{\boldsymbol{\xi} \in \mathbb{R}^{n_{0}} \mid F_{0}(\boldsymbol{\xi}) \leq F_{0}\left(\boldsymbol{x}_{0}^{1}\right)\right\}$
- a linear rate

$$
F_{0}\left(x_{0}^{k}\right)-F^{*} \leq\left(1-\frac{\mu}{L_{0}}\right)^{k}\left(F_{0}\left(x_{1}^{k}\right)-F^{*}\right)
$$

Both holds so

$$
F_{0}\left(x_{0}^{k}\right)-F^{*} \leq \min \left\{\frac{\text { const. }}{k},\left(1-\frac{\mu}{L_{0}}\right)^{k}\right\}
$$

5. $\left\{\boldsymbol{x}_{0}^{k}\right\}_{k \in \mathbb{N}} \xrightarrow{k} \boldsymbol{x}_{0}^{*}$

How we prove them

1. At convergence, x_{ℓ}^{k} has a fixed-pt. property $\forall \ell$
2. Nonsmooth angle condition
$\left\langle P\left(x_{1}^{k+1}-y_{1}^{k+1}\right), \partial F_{0}\left(y_{0}^{k+1}\right)\right\rangle<0$.
3. Descent property: stepsize $\alpha>0$ exists and $P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$ is a descent direction at y_{0}^{k+1}

$$
\text { i.e., } F_{0}\left(y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)\right)<F_{0}\left(y_{0}^{k+1}\right)
$$

4. $\left\{F_{0}\left(x_{0}^{k}\right)\right\}_{k \in \mathbb{N}}$ converges to $F_{0}^{*}:=\inf F_{0}$, with

- a sublinear rate

$$
F_{0}\left(x_{0}^{k}\right)-F_{0}^{*} \leq \frac{\max \left\{8 \delta^{2} L_{0}, F_{0}\left(x_{0}^{1}\right)-F_{0}^{*}\right\}}{k}
$$

a linear rate

$$
F_{0}\left(x_{0}^{k}\right)-F^{*} \leq\left(1-\frac{\mu}{L_{0}}\right)^{k}\left(F_{0}\left(x_{1}^{k}\right)-F^{*}\right)
$$

Both holds so

$$
F_{0}\left(x_{0}^{k}\right)-F^{*} \leq \min \left\{\frac{\text { const. }}{k},\left(1-\frac{\mu}{L_{0}}\right)^{k}\right\}
$$

5. $\left\{\boldsymbol{x}_{0}^{k}\right\}_{k \in \mathbb{N}} \xrightarrow{k} \boldsymbol{x}_{0}^{*}$
6. Fixed-pt. property of proximal gradient step

- Adaptive R reduces set to singleton
- Subgradient 1st-order optimality

2. Adaptive R reduces set to singleton

- Definition of τ and x_{1}^{k+1}
- Convexity of F_{1}
- Restriction preserves convexity

3. Result 2 (angle condition)

- Subdifferential ∂F is a compact convex set
- Strict hyperplane separation
- Support of $\partial F=$ directional derivative of F

4. Result 3 (descent property) \& 4 lemmas

- a sufficient "descent" inequality
- a quadratic overestimator of F_{0}
- diameter of sublevel set of F_{0}
- an inequality of scalar sequence
\& a bunch of convex analysis techniques
- Result 3 (descent property) \& the proximal Polyak-Łojasiewics inequality
Both convergences results are global (regardless of starting pt.)

5. Result 4 and F_{0} is strictly convex by assumption

Fixed-point property

Theorem 2.5 (Fixed-point). In Algorithm 2.1, if x_{0}^{k} solves (1.1), then we have the fixedpoint properties $x_{0}^{k+1}=y_{0}^{k+1}=x_{0}^{k}$ and $x_{1}^{k+1}=y_{1}^{k+1}$.

Proof. The fixed-point property of the proxima gradient operator [32, page 150] gives

$$
\begin{equation*}
y_{0}^{k+1} \stackrel{\text { fixed-point }}{=} x_{0}^{k} \stackrel{\text { assumption }}{=} \operatorname{argmin} F_{0}(x) \tag{2.6}
\end{equation*}
$$

As a result, the coarse variable satisfies
(2.7)

$$
y_{1}^{k+1}:=R y_{0}^{k+1} \stackrel{(2.6)}{=} R x_{0}^{k}
$$

```
\(\overline{\text { Algorithm 2.1 2-level MGProx for an approximate solu }}\)
    Initialize \(x_{0}^{1}, R\) and \(P\)
    for \(k=1,2, \ldots\) do
        (i) \(y_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(x_{0}^{k}-\frac{1}{L_{0}} \nabla f\left(x_{0}^{k}\right)\right)\)
        (ii) \(y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1}\)
        (iii) \(\tau_{0 \rightarrow 1}^{k+1} \in \partial F_{1}\left(y_{1}^{k+1}\right)-R\left(y_{0}^{k+1}\right) \partial F_{0}\left(y_{0}^{k+1}\right)\)
        (iv) \(\left.x_{1}^{k+1}=\underset{\xi}{\operatorname{argmin}\left\{F_{1}^{\tau}\right.}(\xi):=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle\right\}\)
        (v) \(z_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)\)
        (vi) \(x_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(z_{0}^{k+1}-\frac{1}{L_{0}} \nabla f\left(z_{0}^{k+1}\right)\right)\)
    end for
```

$$
\begin{aligned}
& \text { The } \\
& \text { ply } \\
& \text { (2.8 }
\end{aligned}
$$

The subgradient 1 st-order optimality to $y_{0}^{k+1} \stackrel{(2.6)}{\epsilon} \operatorname{argmin} F_{0}(x)$ gives $0 \in \partial F_{0}\left(y_{0}^{k+1}\right)$. Multiplying by $-R$ (which reduces the set $\partial F_{0}\left(x_{0}^{k}\right)$ to a singleton) gives

$$
\begin{equation*}
0=-R \partial F_{0}\left(x_{0}^{k}\right) \tag{2.8}
\end{equation*}
$$

Then adding $\partial F_{1}\left(y_{1}^{k+1}\right)$ on both sides of (2.8) gives

$$
\begin{equation*}
\frac{\partial F_{1}\left(y_{1}^{k+1}\right)}{}=\underline{\partial F_{1}\left(y_{1}^{k+1}\right)}-R\left(x_{0}^{k}\right) \partial F_{0}\left(x_{0}^{k}\right) \tag{2.9a}
\end{equation*}
$$

In (2.8), $-R \partial F_{0}\left(x_{0}^{k}\right)$ is the zero vector, so the equality in (2.9a) holds since we are adding zero to a (non-empty) set. The inclusion (2.9b) follows from (2.4a) as $\partial F_{1}\left(y_{1}^{k+1}\right)-R\left(x_{0}^{k}\right) \partial F_{0}\left(x_{0}^{k}\right)$ is the set $\tau_{0 \rightarrow 1}^{k+1}$.

Now rearranging (2.9b) gives $0 \in \partial F_{1}\left(y_{1}^{k+1}\right)-\tau_{0 \rightarrow 1}^{k+1}$, which is exactly the subgradient 1 st-order optimality condition for the coarse problem $\underset{\xi}{\operatorname{argmin}} F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle$. By strong convexity of $F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle$, the point y_{1}^{k+1} is the unique minimizer of the coarse problem, so $x_{1}^{k+1}=y_{1}^{k+1}$ by step (iv) of the algorithm and $x_{0}^{k+1}=y_{0}^{k+1} \stackrel{(2.6)}{=} x_{0}^{k}$ by steps (v) and (vi). \square

Nonsmooth angle condition

Theorem 2.6 (Angle condition of coarse correction). For $P\left(x_{1}^{k+1}-y_{1}^{k+1}\right) \neq 0$, the following directional derivative is strictly negative

$$
\begin{equation*}
\left\langle\underline{\left.\partial F_{0}\left(y_{0}^{k+1}\right), P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)\right\rangle<0 . . . ~}\right. \tag{2.10}
\end{equation*}
$$

Before we prove the theorem we emphasize that (2.10) applies for any subgradient in the set $\partial F_{0}\left(y_{0}^{k+1}\right)$. Furthermore,

$$
\text { (2.10) } \Longleftrightarrow\left\langle P^{\top} \partial F_{0}\left(y_{0}^{k+1}\right), x_{1}^{k+1}-y_{1}^{k+1}\right\rangle<0 \stackrel{P^{\top}=c R, c>0}{\Longleftrightarrow} c\left\langle R \partial F_{0}\left(y_{0}^{k+1}\right), x_{1}^{k+1}-y_{1}^{k+1}\right\rangle<0 .
$$

```
\(\overline{\text { Algorithm 2.1 2-level MGProx for an approximate solu }}\)
    Initialize \(x_{0}^{1}, R\) and \(P\)
    for \(k=1,2, \ldots\) do
        (i) \(y_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(x_{0}^{k}-\frac{1}{L_{0}} \nabla f\left(x_{0}^{k}\right)\right)\)
        (ii) \(y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1}\)
        (iii) \(\tau_{0 \rightarrow 1}^{k+1} \in \partial F_{1}\left(y_{1}^{k+1}\right)-R\left(y_{0}^{k+1}\right) \partial F_{0}\left(y_{0}^{k+1}\right)\)
        (iv) \(x_{1}^{k+1}=\underset{\xi}{\operatorname{argmin}}\left\{F_{1}^{\tau}(\xi):=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle\right\}\)
        (v) \(z_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)\)
        (vi) \(x_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(z_{0}^{k+1}-\frac{1}{L_{0}} \nabla f\left(z_{0}^{k+1}\right)\right)\)
    end for
```


Descent property

Lemma 2.8 (Existence of stepsize). There exists $\alpha_{k}>0$ such that (2.13) is satisfied for $P\left(x_{1}^{k+1}-y_{1}^{k+1}\right) \neq 0$.

$$
\begin{aligned}
& \hline \text { Algorithm 2.1 2-level MGProx for an approximate solu } \\
& \hline \text { Initialize } x_{0}^{1}, R \text { and } P \\
& \text { for } k=1,2, \ldots \text { do } \\
& \text { (i) } y_{0}^{k+1}=\operatorname{prox} x_{\frac{1}{L_{0}} g_{0}}\left(x_{0}^{k}-\frac{1}{L_{0}} \nabla f\left(x_{0}^{k}\right)\right) \\
& \text { (ii) } y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1} \\
& \text { (iii) } \tau_{0 \rightarrow 1}^{k+1} \in \underline{\partial F_{1}\left(y_{1}^{k+1}\right)-R\left(y_{0}^{k+1}\right) \partial F_{0}\left(y_{0}^{k+1}\right)} \\
& \text { (iv) } x_{1}^{k+1}=\underset{\xi}{\operatorname{argmin}\left\{F_{1}^{\tau}(\xi):=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle\right\}} \\
& \text { (v) } z_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right) \\
& \text { (vi) } x_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}^{\left(z_{0}^{k+1}-\frac{1}{L_{0}} \nabla f\left(z_{0}^{k+1}\right)\right)}
\end{aligned}
$$

end for
 end for

To prove the lemma, we make use the second definition of subdifferential we discussed in subsection 2.2: $\partial F_{0}\left(y_{0}^{k+1}\right)$ is a compact convex set whose support function is the directional derivative of F_{0} at y_{0}^{k+1}. Note that $F_{0}: \mathbb{R}^{n_{0}} \rightarrow \overline{\mathbb{R}}$ will never reach $+\infty$ at z_{0}^{k+1} since z_{0}^{k+1} is obtained by the proximal gradient step, so we can make use of the result on directional derivative in [19, Def. 1.1.4, p.165] associated with subdifferential.

Proof. We prove the lemma in 3 steps.

1. (Halfspace) The strict inequality in Theorem 2.6 means that $\partial F_{0}\left(y_{0}^{k+1}\right)$ is strictly inside a halfspace with normal vector $p=P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$.
2. (Strict separation) Being a compact convex set, $\partial F_{0}\left(y_{0}^{k+1} 0\right)$ lying strictly on one side of the hyperplane must be a positive distance (say $\alpha_{k}>0$) from that hyperplane.
3. (Support and directional derivative) Evaluating the support function of $\partial F_{0}\left(y_{0}^{k+1}\right)$, i.e., the directional derivative of F_{0} at y_{0}^{k+1} in the direction p, we have (2.13). \square $\left\langle\partial F_{0}^{\left(y_{0}^{n+i}\right)}, P\left(x^{\prime \prime 2} y_{1}^{\prime \prime \prime}\right)\right\rangle<0$

Sublinear rate convergence

Algorithm 2.1 2-level MGProx for an approximate solu
Initialize x_{0}^{1}, R and P
for $k=1,2, \ldots$ do
(i) $y_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{1}} g_{0}}\left(x_{0}^{k}-\frac{1}{L_{0}} \nabla f\left(x_{0}^{k}\right)\right)$
(ii) $y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1}$
(iii) $\tau_{0 \rightarrow 1}^{k+1} \in \partial F_{1}\left(y_{1}^{k+1}\right)-R\left(y_{0}^{k+1}\right) \partial F_{0}\left(y_{0}^{k+1}\right)$
(iv) $\left.\left.x_{1}^{k+1}=\overline{\operatorname{argmin}\left\{F_{1}^{\tau}\right.}(\xi):=F_{1} \overline{(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}\right.}, \xi\right\rangle\right\}$
(v) $z_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$
(vi) $x_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(z_{0}^{k+1}-\frac{1}{L_{0}} \nabla f\left(z_{0}^{k+1}\right)\right)$

end for

- Existing proof framework of prox-grad method cannot be used.
- MGProx is interlacing two update operations
- Prox-grad iteration guarantee descent of function value

$$
f\left(\xi^{+}\right) \leq f(\operatorname{ProxGradUpdate}(\xi))
$$

- descent of function value does not imply variable getting closer to sol.

$$
(*) \nRightarrow\left\|\xi^{+}-\xi^{*}\right\| \leq\left\|\xi-\xi^{*}\right\|
$$

Lemma 2.11 (Sufficient descent of MGProx iteration). For all iterations k, we have

$$
\begin{equation*}
F\left(x^{k+1}\right)-F^{*} \leq \frac{L}{2}\left(\left\|x^{k}-x^{*}\right\|_{2}^{2}-\left\|y^{k+1}-x^{*}\right\|_{2}^{2}\right) . \tag{2.15}
\end{equation*}
$$

Lemma 2.13 (A quadratic overestimator). For all x, we have

$$
\begin{equation*}
F(x)-F\left(x^{k+1}\right) \geq L\left\langle x^{k}-y^{k+1}, x-x^{k}\right\rangle+\frac{L}{2}\left\|y^{k+1}-x^{k}\right\|_{2}^{2} \tag{2.19}
\end{equation*}
$$

Lemma 2.14 (Diameter of sublevel set). At initial guess $x^{1} \in \mathbb{R}^{n}$, define

$$
\begin{array}{rlrl}
\mathcal{L}_{\leq F\left(x^{1}\right)} & :=\left\{x \in \mathbb{R}^{n} \mid F(x) \leq F\left(x^{1}\right)\right\}, & & \left(\text { sublevel } \text { set of } x^{1}\right) \\
\delta=\operatorname{diam} \mathcal{L}_{\leq F\left(x^{1}\right)} & :=\sup \left\{\|x-y\|_{2} \mid F(x) \leq F\left(x^{1}\right), F(y) \leq F\left(y^{1}\right)\right\} . & \left(\text { diameter of } \mathcal{L}_{\leq F\left(x^{1}\right)}\right)
\end{array}
$$

Then for $x^{*}:=\operatorname{argmin} F(x)$, we have $\left\|x^{k}-x^{*}\right\|_{2} \leq \delta$ and $\left\|y^{k}-x^{*}\right\|_{2} \leq \delta$ for all k.
Proof. We have $F\left(x^{*}\right) \leq F\left(x^{1}\right)$ by definition. By the descent property of the coarse correction and proximal gradient updates, we have $F\left(x^{k}\right) \leq F\left(x^{1}\right)$ and $F\left(y^{k}\right) \leq F\left(x^{1}\right)$ for all k. These results mean that x^{k}, y^{k+1} and x^{*} are inside $\mathcal{L}_{\leq F\left(x^{1}\right)}$, therefore both $\left\|x^{k}-x^{*}\right\|_{2}$ and $\left\|y^{k+1}-x^{*}\right\|_{2}$ are bounded above by δ. Lastly, F is strongly convex so $\mathcal{L}_{\leq F\left(x^{1}\right)}$ is bounded and $\delta<+\infty$.

Lemma 2.15 (Monotone sequence). For a nonnegative sequence $\left\{\omega_{k}\right\}_{k \in \mathbb{N}} \rightarrow \omega^{*}$ that is monotonically decreasing with $\omega_{1}-\omega^{*} \leq 4 \mu$ and $\omega_{k}-\omega_{k+1} \geq \frac{\left(\omega_{k+1}-\omega^{*}\right)^{2}}{\mu}$, it holds that $\omega_{k}-\omega^{*} \leq \frac{4 \mu}{k}$ for all k.

Proof. By induction. See proof in [22, Lemma 4].
Lemma 2.11 + Lemma 2.13 + Lemma 2.14 + Lemma $2.15=$ sublinear rate

$$
F_{0}\left(x_{0}^{k}\right)-F_{0}^{*} \leq \frac{\text { const. }}{k}
$$

Linear rate convergence via proximal Polyak-Łojasiewics inequality

2.4.6. Linear convergence rate by Proximal PL inequality. All the functions and variables here are at level 0 so we omit the subscripts. Now we show that $\left\{F\left(x^{k}\right)\right\}_{k \in \mathbb{N}}$ converges to F^{*} with a linear rate using the Proximal Polyak-Lojasiewics inequality [21, Section 4]. The function F in Problem (1.1) is called ProxPŁ if there exists $\mu>0$ such that

Algorithm 2.1 2-level MGProx for an approximate solu
Initialize x_{0}^{1}, R and P
for $k=1,2, \ldots$ do
(i) $y_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0}} g_{0}}\left(x_{0}^{k}-\frac{1}{L_{0}} \nabla f\left(x_{0}^{k}\right)\right)$
(ii) $y_{1}^{k+1}=R\left(y_{0}^{k+1}\right) y_{0}^{k+1}$
(iii) $\tau_{0 \rightarrow 1}^{k+1} \in \underset{F_{1}\left(y_{1}^{k+1}\right)-R\left(y_{0}^{k+1}\right) \partial F_{0}\left(y_{0}^{k+1}\right)}{\text { (iv) } x_{1}^{k+1}=\underset{\xi}{\operatorname{argmin}}\left\{F_{1}^{\tau}(\xi):=F_{1}(\xi)-\left\langle\tau_{0 \rightarrow 1}^{k+1}, \xi\right\rangle\right\}}$
(v) $z_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$
(vi) $x_{0}^{k+1}=\operatorname{prox}_{\frac{1}{L_{0} g_{0}}}\left(z_{0}^{k+1}-\frac{1}{L_{0}} \nabla f\left(z_{0}^{k+1}\right)\right)$
end for

(ProxPŁ)

$$
\frac{1}{2} \underline{\mathcal{D}_{g}(x, L)} \geq \mu\left(F(x)-F^{*}\right) \quad \forall x
$$

where μ is called the ProxPŁ constant and

$$
\begin{equation*}
\mathcal{D}_{g}(x, \alpha):=-2 \alpha \min _{z}\left\{\frac{\alpha}{2}\|z-x\|_{2}^{2}+\langle z-x, \nabla f(x)\rangle+g(z)-g(x)\right\} . \tag{2.25}
\end{equation*}
$$

Intuitively, \mathcal{D}_{g} is defined based on the proximal gradient operator:

$$
\operatorname{prox}_{\frac{1}{L} g}\left(x-\frac{\nabla f(x)}{L}\right) \stackrel{(2.21)}{=} \underset{z}{\operatorname{argmin}} \frac{L}{2}\|z-x\|_{2}^{2}+\langle z-x, \nabla f(x)\rangle+g(z)-g(x) .
$$

It has been shown in [21] that if f in (1.1) is μ-strongly convex, then F is μ-ProxPŁ. Now we

Theorem 2.16. Let x_{0}^{1} be the initial guess of the algorithm, $F_{0}^{*}=F_{0}\left(x_{0}^{*}\right)$ and $x_{0}^{*}=$ argmin $F_{0}(x)$. The sequence $\left\{x_{0}^{k}\right\}_{k \in \mathbb{N}}$ generated by MGProx (Algorithm 2.1) for solving Problem (1.1) satisfies $F_{0}\left(x_{0}^{k+1}\right)-F_{0}^{*} \leq\left(1-\frac{\mu_{0}}{L_{0}}\right)^{k}\left(F_{0}\left(x_{0}^{1}\right)-F_{0}^{*}\right)$.

Parameters in the algorithm

- Gradient stepsize in the proximal gradient iteration $y_{0}^{k+1}=\operatorname{prox}_{\alpha g}\left(x_{0}^{k}-\alpha \nabla f\left(x_{0}^{k}\right)\right)$

$$
\text { just use constant stepsize } \alpha=\frac{1}{L_{0}}
$$

- The selection of τ in $\underline{\tau_{0 \rightarrow 1}^{k+1}} \in \underline{\partial F_{1}\left(y_{1}^{k+1}\right)}-R \underline{F_{0}\left(y_{0}^{k+1}\right)}$
any possible τ in the set $\underline{\tau}$ is ok
- Coarse correction stepsize in $y_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)$
just use any naive line search on α for $F_{0}\left(y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)\right)<F_{0}\left(y_{0}^{k+1}\right)$
- < becomes $=$ when $x_{1}^{k+1}=y_{1}^{k+1}$, i.e., we reached fixed-pt. (convergence).
- We deal with nonsmooth problem, cannot use classical stuffs like Armijo rule, Wolfe condition, Goldstein line search: they assume function F_{0} is differentiable
- We do not need sufficient descent condition for MGProx because the sufficient descent condition from proximal gradient iteration is sufficient
- Design line search with nonsmooth sufficient descent condition is possible, but out of scope. In fact, line search for nonsmooth descent is very deep, linked to the Kurdyka-Lojasiewicz inequality.

Algorithm 3.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)
Initialize x_{0}^{1} and the full version of $R_{\ell \rightarrow \ell+1}, P_{\ell+1 \rightarrow \ell}$ for $\ell \in\{0,1, \ldots, L-1\}$
for $k=1,2, \ldots$ do
Set $\tau_{-1 \rightarrow 0}^{k+1}=0$
for $\ell=0,1, \ldots, L-1$ do

$$
\begin{aligned}
y_{\ell}^{k+1} & =\operatorname{prox}_{\frac{1}{L_{\ell}} g_{\ell}}\left(x_{\ell}^{k}-\frac{\nabla f_{\ell}\left(x_{\ell}^{k}\right)-\tau_{\ell-1 \rightarrow \ell}^{k+1}}{L_{\ell}}\right) \\
x_{\ell+1}^{k} & =R_{\ell \ell+1}\left(y_{\ell}^{k+1}\right) y_{\ell}^{k+1} \\
\tau_{\ell \rightarrow \ell+1}^{k+1} & \in \dot{F}_{\ell+1}\left(x_{\ell+1}^{k}\right)-R_{\ell \rightarrow \ell+1}\left(y_{\ell}^{k+1}\right) \partial F_{\ell}\left(y_{\ell}^{k+1}\right)
\end{aligned}
$$

pre-smoothing restriction to next level create tau vector

end for

$$
w_{L}^{k+1}=\underset{\xi}{\operatorname{argmin}}\left\{F_{L}^{\tau}(\xi):=F_{L}(\xi)-\left\langle\tau_{L-1 \rightarrow L}^{k+1}, \xi\right\rangle\right\}
$$

$$
\begin{aligned}
& z_{\ell}^{k+1}=y_{\ell}^{k+1}+\alpha P_{\ell+1 \rightarrow \ell}\left(w_{\ell+1}^{k+1}-x_{\ell+1}^{k}\right) \\
& w_{\ell}^{k+1}=\operatorname{prox}_{\frac{1}{L_{\ell}} g_{\ell}}\left(z_{\ell}^{k+1}-\frac{\nabla f_{\ell}\left(z_{\ell}^{k+1}\right)-\tau_{\ell-1 \rightarrow \ell}^{k+1}}{L_{\ell}}\right)
\end{aligned}
$$

end for

$$
x_{0}^{k+1}=w_{0}^{k+1}
$$

solve the level- L coarse problem

> coarse correction
post-smoothing
update the fine variable

Elastic Obstacle Problem $\min _{u \geq \phi} \int_{\Omega} \sqrt{1+\|\nabla u\|_{L^{2}}^{2}} d x d y \approx \min _{u \geq \phi} \int_{\Omega} \frac{1}{2}\|\nabla u\|_{L^{2}}^{2} d x d y$

- Given obstacle ϕ, find a membrane $u \geq \phi$ with the \min. elastic potential energy.

$$
\begin{array}{lll}
\min _{u} & \int_{\Omega} \frac{1}{2}\|\nabla u\|_{L^{2}}^{2} d x d y & \text { minimum variation } \\
\text { s.t. } & u \geq \phi, \text { in } \Omega & \text { obstacle constraint } \\
& u=0, \text { on } \partial \Omega & \text { boundary condition }
\end{array}
$$

$$
\begin{array}{cl}
\Omega \subset \mathbb{R}^{2} & \text { domain } \\
\phi(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R} & \text { obstacle } \\
u(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R} & \text { membrane }
\end{array}
$$

- N-by- N grid discretization:

$$
\nabla u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad \text { gradient field of } u
$$

$$
\min _{u \in \mathbb{R}^{N^{2}}} \underbrace{\frac{1}{2}\left\langle Q_{0} u, u\right\rangle}_{f_{0}}+\underbrace{i_{\geq \phi}(u)}_{g_{0}}, \quad Q:=\frac{1}{h^{2}}\left[\begin{array}{ccc}
4 & -1 & \\
-1 & 4 & \ddots \\
& \ddots & \ddots
\end{array}\right] \quad-1] \approx \nabla^{2}, \quad i_{\geq \phi}(u)=\left\{\begin{array}{ll}
0 & u \geq \phi \\
\infty & u<\phi
\end{array}\right]
$$

- Why this problem: \because people know what R, P can be used.
- Can we use MGProx on other problem: yes if you give me the R, P that will work.

On $\min _{x}\left\{F_{0}(x):=\frac{1}{2}\left\langle Q_{0} x, x\right\rangle+i_{\geq \phi}(x)\right\}$

Figure 2. Typical convergence plots of Prox, Nest, MGProx-1, MGProx-10 and MGProx ${ }^{+}-10$ for 1 dimensional (Shifted aEOP). The number of variables in this experiment is $2^{9}-1=511$. All MGProx methods use 7 levels.

Different Elastic Obstacle Problems

$$
\min _{x}\left\{F_{0}(x):=f_{0}(x)+g_{0}(x)\right\} .
$$

- Previous slide: Constrained approximated EOP

$$
f_{0}(x)=\frac{1}{2}\left\langle Q_{0} x, x\right\rangle, \quad g_{0}(x)=i_{\geq \phi}(x)
$$

- Now: Unconstrained penalized approximated EOP

$$
f_{0}(x)=\frac{1}{2}\left\langle Q_{0} x, x\right\rangle, \quad g_{0}(x)=\mu\left\|(\phi-u)_{+}\right\|_{1} .
$$

- Unconstrained penalized full EOP

$$
f_{0}(x)=\sqrt{1+\left\langle Q_{0} x, x\right\rangle}, \quad g_{0}(x)=\mu\left\|(\phi-u)_{+}\right\|_{1} .
$$

$$
\text { On } \min _{x}\left\{F_{0}(x):=\frac{1}{2}\left\langle Q_{0} x, x\right\rangle+\mu\left\|(\phi-u)_{+}\right\|_{1}\right\}
$$

Run time

MGProx: < 1sec reach 10^{-15}

Nesterov \& Prox-grad: not yet converge after 300sec

On $\min _{x}\left\{F_{0}(x):=\sqrt{1+\left\langle Q_{0} x, x\right\rangle}+\mu\left\|(\phi-u)_{+}\right\|_{1}\right\}$

Num iteration

MGProx: 10^{2} reach 10^{-15}
Nesterov: 10^{6}
Prox-grad: 10^{7}
Run time
MGProx: < 1sec
Nesterov: 40sec
Prox-grad: 70sec

Why so fast?

- The coarse correction

$$
x_{0}^{k+1}=y_{0}^{k+1}+\alpha P\left(x_{1}^{k+1}-y_{1}^{k+1}\right)
$$

- Reduction in problem size

$$
n_{0} \rightarrow \frac{1}{4} n_{0} \rightarrow \frac{1}{16} n_{0} \rightarrow \frac{1}{64} n_{0} \rightarrow \frac{1}{256} n_{0} \rightarrow \frac{1}{1024} n_{0}
$$

- Per-iteration cost by geometric series $a, r \in(0,1)$

$$
a+a r+a r^{2}+\cdots \rightarrow \frac{a}{1-r}
$$

For $n=\frac{1}{4}$ gives $1.33 n_{0}$. V-cycle is then $2.66 n_{0}$ for all single proximal gradient update.

- Can you add Nesterov's acceleration to MGProx?
- No. In fact Nesterov's acceleration works very badly with MGProx.

Why: due to Nesterov's ripples in the convergence.
However, you can add Nesterov's acceleration in the pre/post-smoothing iteation.

Other things / future works

- Theory
- Grid independence: convergence rate is independent of problem size
- Classical Fourier analysis of multigrid
- Algorithms
- MGProx that also corrects the active points
- MGProx on proximal averages
- Multigrid Proximal (quasi) Newton's method
- Nonsmooth multigrid trust-region method
- Nonsmooth multigrid ADMM
- Nonsmooth multigrid manifold optimization
- Block nonconvex but bi-convex problems (matrix factorizations)
- Applications
- Image deblurring, dezooming, completion
- Volumetric imaging (e.g. 3D medical imaging)
- PDE-based image processing
- Graphs

Last page - summary

```
Algorithm 3.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)
    Initialize \(x_{0}^{1}\) and the full version of \(R_{\ell \rightarrow \ell+1}, P_{\ell+1 \rightarrow \ell}\) for \(\ell \in\{0,1, \ldots, L-1\}\)
```

- Multigrid proximal gradient method for $k=1,2, \ldots$ do

$$
\begin{aligned}
& \text { Set } \tau_{-1 \rightarrow 0}^{k+1}=0 \\
& \text { for } \ell=0,1, \ldots, L-1 \text { do }
\end{aligned}
$$

$$
\begin{aligned}
y_{\ell}^{k+1} & =\operatorname{prox}_{\frac{1}{L_{\ell}} g_{\ell}}\left(x_{\ell}^{k}-\frac{\nabla f_{\ell}\left(x_{\ell}^{k}\right)-\tau_{\ell-1 \rightarrow \ell}^{k+1}}{L_{\ell}}\right) \\
x_{\ell+1}^{k} & =R_{\ell \rightarrow \ell+1}\left(y_{\ell}^{k+1}\right) y_{\ell}^{k+1} \\
\tau_{\ell \rightarrow \ell+1}^{k+1} & \in F_{\ell+1}\left(x_{\ell+1}^{k}\right)-R_{\ell \rightarrow \ell+1}\left(y_{\ell}^{k+1}\right) \partial F_{\ell}\left(y_{\ell}^{k+1}\right)
\end{aligned}
$$

pre-smoothing

- Theoretical characterizations
- Fixed-pt
end for
- Existence of line search stepsize

$$
w_{L}^{k+1}=\underset{\xi}{\operatorname{argmin}}\left\{F_{L}^{\tau}(\xi):=F_{L}(\xi)-\left\langle\tau_{L-1 \rightarrow L}^{k+1}, \xi\right\rangle\right\}
$$

- Global sublinear convergence rate

$$
\text { for } \ell=L-1, L-2, \ldots, 0 \text { do }
$$

- Global linear convergence rate

$$
z_{\ell}^{k+1}=y_{\ell}^{k+1}+\alpha P_{\ell+1 \rightarrow \ell}\left(w_{\ell+1}^{k+1}-x_{\ell+1}^{k}\right)
$$

$$
w_{\ell}^{k+1}=\operatorname{prox}_{\frac{1}{L_{\ell}} g_{\ell}}\left(z_{\ell}^{k+1}-\frac{\nabla f_{\ell}\left(z_{\ell}^{k+1}\right)-\tau_{\ell-1 \rightarrow \ell}^{k+1}}{L_{\ell}}\right)
$$

end for
$x_{0}^{k+1}=w_{0}^{k+1} \quad$ update the fine variable end for

Paper arXiv2302.04077 now under review. Slide available angms.science End of document

Primal-dual extension(New!)

- A non-diagonal evil \boldsymbol{A} will make proximal gradient method does not work well on

$$
\operatorname{argmin} f(\boldsymbol{x})+g(\boldsymbol{A} \boldsymbol{x}) .
$$

- Convex-concave primal-dual problem

$$
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{argmin}} \underset{\boldsymbol{\lambda} \in \mathbb{R}^{m}}{\operatorname{argmax}} L(\boldsymbol{x}, \boldsymbol{\lambda})
$$

- Component-wise subgradient $\mathcal{D}:=\binom{\partial_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda})}{-\partial_{\boldsymbol{\lambda}} L(\boldsymbol{x}, \boldsymbol{\lambda})}$
- Subdifferential 1st-order optimality condition

$$
\mathbf{0} \in\binom{\partial_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda})}{-\partial_{\boldsymbol{\lambda}} L(\boldsymbol{x}, \boldsymbol{\lambda})}+\boldsymbol{W}\binom{\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}}{\boldsymbol{\lambda}_{k+1}-\boldsymbol{\lambda}_{k}}
$$

- Chambolle-Pock Primal-dual hybrid gradient is $\boldsymbol{W}=\left(\begin{array}{cc}\frac{1}{\eta} \boldsymbol{I} & \boldsymbol{A}^{\top} \\ \boldsymbol{A} & \frac{1}{\eta} \boldsymbol{I}\end{array}\right)$
- ADMM is $\boldsymbol{W}=\left(\begin{array}{ccc}\mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \eta \boldsymbol{A}^{\top} \boldsymbol{A} & -\boldsymbol{A}^{\top} \\ \mathbf{0} & -\boldsymbol{A} & \frac{1}{\eta} \boldsymbol{I}\end{array}\right)$

Algorithm 1: 2-level MGPD

Input: L
Output: \boldsymbol{z}^{k} that approximately solve (1)
Initialize $\boldsymbol{z}^{1}, \boldsymbol{W}, \boldsymbol{R}, \boldsymbol{P}$
2 for $k=1,2, \ldots$ do
3 Get $\boldsymbol{z}_{0}^{k+\frac{1}{3}}$ via solving the inclusion
\% pre-smoothing at level-0

$$
\mathbf{0} \in \mathcal{D}_{0}\left(\boldsymbol{z}_{0}^{k+\frac{1}{3}}\right)+\boldsymbol{W}\left(\boldsymbol{z}_{0}^{k+\frac{1}{3}}-\boldsymbol{z}_{0}^{k}\right)
$$

Block-wise coarsification

$$
\boldsymbol{z}_{1}^{k+\frac{1}{3}}=\mathcal{R}\left(\boldsymbol{z}_{0}^{k+\frac{1}{3}}\right):=\left(\begin{array}{ll}
\boldsymbol{R}_{1} & \\
& \boldsymbol{R}_{2}
\end{array}\right)\binom{\boldsymbol{x}_{0}^{k+\frac{1}{3}}}{\boldsymbol{\lambda}_{0}^{k+\frac{1}{3}}}
$$

Tau:
\% tau vecotr

$$
\boldsymbol{\tau}_{0 \rightarrow 1}^{k+1} \in \mathcal{D}_{1}\left(\boldsymbol{z}_{1}^{k+\frac{1}{3}}\right)-\mathcal{R} \mathcal{D}_{0}\left(\boldsymbol{z}_{0}^{k+\frac{1}{3}}\right)=\binom{\partial_{\boldsymbol{x}_{1}} L_{1}\left(\boldsymbol{x}_{1}^{k+\frac{1}{3}}, \boldsymbol{\lambda}_{1}^{k+\frac{1}{3}}\right)}{\partial_{\boldsymbol{z}_{1}} L_{1}\left(\boldsymbol{x}_{1}^{k+\frac{1}{3}}, \boldsymbol{\lambda}_{1}^{k+\frac{1}{3}}\right)}-\left(\begin{array}{cc}
\boldsymbol{R}_{1} & \\
& \boldsymbol{R}_{2}
\end{array}\right)\binom{\partial_{\boldsymbol{x}_{0}} L_{0}\left(\boldsymbol{x}_{0}^{k+\frac{1}{3}}, \boldsymbol{\lambda}_{0}^{k+\frac{1}{3}}\right)}{\partial_{\boldsymbol{z}_{0}} L_{0}\left(\boldsymbol{x}_{0}^{k+\frac{1}{3}}, \boldsymbol{\lambda}_{0}^{k+\frac{1}{3}}\right)}
$$

Solve the coarse problem
\% solve the level-1 coarse problem

$$
\boldsymbol{z}_{1}^{k+\frac{2}{3}} \in \underset{\boldsymbol{x}_{1}}{\operatorname{argmin}} \underset{\boldsymbol{\lambda}_{1}}{\operatorname{argmax}} L_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{\lambda}_{1}\right)+\left\langle\boldsymbol{\tau}_{0 \rightarrow 1}^{k+1}, \boldsymbol{z}_{1}\right\rangle=L_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{\lambda}_{1}\right)+\left\langle\left(\begin{array}{l}
1 \\
\boldsymbol{\tau}_{0 \rightarrow 1}^{k+1} \\
2 \\
\boldsymbol{\tau}_{0 \rightarrow 1}^{k+1}
\end{array}\right),\binom{\boldsymbol{x}_{1}}{\boldsymbol{\lambda}_{1}}\right\rangle
$$

Coarse correction
\% Coarse correction

$$
\boldsymbol{z}_{0}^{k+\frac{2}{3}}=\boldsymbol{z}_{0}^{k+\frac{1}{3}}+\left(\begin{array}{ll}
a & -\alpha
\end{array}\right)\left(\begin{array}{ll}
\boldsymbol{P}_{1} & \\
& \boldsymbol{P}_{2}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{x}_{1}^{k+\frac{2}{3}}-\boldsymbol{x}_{1}^{k+\frac{1}{3}} \\
\\
\boldsymbol{\lambda}_{1}^{k+\frac{2}{3}}-\boldsymbol{\lambda}_{1}^{k+\frac{1}{3}}
\end{array}\right)
$$

\% post-smoothing at level-0

Get \boldsymbol{z}_{0}^{k+1} via solving the inclusion

$$
0 \in \mathcal{D}_{0}\left(z_{0}^{k+1}\right)+\boldsymbol{W}\left(\boldsymbol{z}_{0}^{k+1}-\boldsymbol{z}_{0}^{k+\frac{2}{3}}\right)
$$

Now repeat the poof of MGProx on MGPD
"mind-blown.gif"

END OF PDF

(New New!)

Algorithm 1: FMGProx: Fast MGProx with Nesterov's acceleration
Input: The constants L of f
Output: x^{k} the approximately solve (1)
Initialization $z^{0}=x^{0}, \gamma^{0}>0$
for $k=1,2, \ldots$ do
Compute $\left.\alpha^{k} \in\right] 0,1\left[\right.$ from $L\left(\alpha^{k}\right)^{2}=\left(1-\alpha^{k}\right) \gamma^{k} \quad / /$ extrapolation parameter
$\gamma^{k+1}=\left(1-\alpha^{k}\right) \gamma^{k} \quad / /$ extrapolation parameter
$y^{k}=\alpha^{k} z^{k}+\left(1-\alpha^{k}\right) x^{k} \quad / /$ Nesterov's extrapolation
$x^{k+1}=\left(\right.$ MGProx-V-cycle $\left.\circ \operatorname{prox}_{\frac{1}{L} g}\right)\left(y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)\right) \quad / /$ prox-grad step with MGProx V-cycle
$g^{k}=\frac{y^{k}-x^{k+1}}{L}$
// a '(gradient')
12

13
$z^{k+1}=z^{k}-\frac{\alpha^{k}}{\gamma^{k+1}} g^{k}$

Lemma 1. Assuming

$$
\begin{gather*}
F\left(x_{k}^{*}\left(y^{k}\right)\right) \leq M_{k}\left(x_{k}^{*}\left(y^{k}\right) ; y^{k}\right) \tag{A0}\\
f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \tag{A1}\\
\phi^{0}(x) \text { is a convex function, } \tag{A2}\\
\left\{y^{k}\right\} \text { is an arbitrary sequence, } \tag{A3}\\
\left.\left\{\alpha^{k}\right\} \text { is a sequence that } \alpha^{k} \in\right] 0,1[, \\
\left\{\alpha^{k}\right\} \text { is a sequence that } \sum_{k=0}^{\infty} \alpha^{k}=\infty, \\
\lambda^{0}:=1 \tag{A5}\\
\lambda^{k+1}:=\left(1-\alpha^{k}\right) \lambda^{k} \tag{A6}\\
\phi^{k+1}(x):=\left(1-\alpha^{k}\right) \phi^{k}(x)+\alpha^{k}\left[F\left(x_{k}^{*}\left(y^{k}\right)\right)+\left\langle g^{k}, x-y^{k}\right\rangle+\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\right] \tag{A7}
\end{gather*}
$$

Then the pair of sequences $\left\{\phi^{k}(x), \lambda^{k}\right\}$ generated as in (A6), (A7) is an estimate sequence of F.

Lemma 2. Let $\phi^{0}(x):=F\left(x^{0}\right)+\frac{\gamma^{0}}{2}\left\|x-z^{0}\right\|_{2}^{2}$. Then ϕ^{k+1} generated recursively as in (A7) in Lemma 1 has a closed-form expression

$$
\begin{equation*}
\phi^{k+1}(x)=\bar{\phi}^{k+1}+\frac{\gamma^{k+1}}{2}\left\|x-z^{k+1}\right\|_{2}^{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{gather*}
\gamma^{k+1}=\left(1-\alpha^{k}\right) \gamma^{k} \tag{9a}\\
z^{k+1}=z^{k}-\frac{\alpha^{k}}{\gamma^{k+1}} g^{k} \tag{9b}\\
\bar{\phi}^{k+1}=\left(1-\alpha^{k}\right) \bar{\phi}^{k}+\alpha^{k} F\left(x_{k}^{*}\left(y^{k}\right)\right)+\frac{\alpha^{k}}{2}\left(\frac{1}{L}-\frac{\alpha^{k}}{\gamma^{k+1}}\right)\left\|g^{k}\right\|_{2}^{2}+\alpha^{k}\left\langle g^{k}, z^{k}-y^{k}\right\rangle \tag{9c}
\end{gather*}
$$

Lemma 3. For minimization problem (1), assume $x^{*} \in X^{*}:=\operatorname{argmin} F(x)$ exists and denote $F^{*}:=F\left(x^{*}\right)$. Suppose $F\left(x^{k}\right) \leq \bar{\phi}^{k}:=\min _{x} \phi_{k}(x)$ holds for a sequence $\left\{x^{k}\right\}_{k \in \mathbb{N}}$, where $\left\{\phi^{k}, \lambda^{k}\right\}_{k \in \mathbb{N}}$ is an estimate sequence of F, and we define $\phi^{0}:=F\left(x^{0}\right)+\frac{\gamma^{0}}{2}\left\|x^{0}-x^{*}\right\|_{2}^{2}$, then we have for all $k \in \mathbb{N}$ that

$$
F\left(x^{k}\right)-F^{*} \leq \lambda^{k}\left[F\left(x^{0}\right)+\frac{\gamma^{0}}{2}\left\|x^{0}-x^{*}\right\|_{2}^{2}-F^{*}\right]
$$

Theorem 1. Suppose $F\left(x^{k}\right) \leq \bar{\phi}^{k}:=\min _{x} \phi_{k}(x)$ holds for a sequence $\left\{x^{k}\right\}_{k \in \mathbb{N}}$, where $\left\{\phi^{k}, \lambda^{k}\right\}_{k \in \mathbb{N}}$ is an estimate sequence of F. Define $\phi^{0}:=F\left(x^{0}\right)+\frac{\gamma^{0}}{2}\left\|x^{0}-x^{*}\right\|_{2}^{2}$. Assuming all the conditions in Lemma 1, Lemma 2 and Lemma 3. Then we have

$$
0<\lambda^{k}<\frac{4 L}{\left(1-\alpha^{k}\right)\left(\gamma^{0} k^{2}+4 \sqrt{\gamma^{0} L} k+4 L\right)} .
$$

Corollary 1. For the sequence $\left\{x^{k}\right\}$ produced by Algorithm FMGProx, we have

$$
F\left(x^{k}\right)-F^{*} \leq \frac{4 L}{\left(1-\alpha^{k}\right)\left(\gamma^{0} k^{2}+4 \sqrt{\gamma^{0} L} k+4 L\right)}\left[F\left(x^{0}\right)+\frac{\gamma^{0}}{2}\left\|x^{0}-x^{*}\right\|_{2}^{2}-F^{*}\right] .
$$

$$
\leqslant \frac{\text { const. }}{k^{2}} \quad \text { (optimal) }
$$

[^0]: ${ }^{1} f_{0}$ differentiable $\& \nabla f_{0}$ is L-Lipschitz
 ${ }^{2}$ not everywhere differentiable
 ${ }^{3} f_{0}$ lower bounded, g_{0} proper, lower-semicontinuous, lower level-bounded, prox-bounded with finite threshold, $\operatorname{prox}_{g_{0}}$ nonempty compact, f_{0}, g_{0} both subdifferentiable

